SIMPLE SUBALGEBRAS OF GROUP GRADED ALGEBRAS

ILUŞCA BONTA

Abstract. We study the situation when the 1-component A_1 of a Ggraded \mathcal{O} -algebra A has an \mathcal{O} -simple subalgebra $S \simeq M_n(\mathcal{O})$. We prove
that the centralizer $C_A(S)$ of S is a graded subalgebra of A, and that there
is a graded Morita equivalence between A and $C_A(S)$. This generalizes a
theorem of L. Puig.

1. Introduction

Let G be a finite group and let \mathcal{O} be a commutative local noetherian ring, complete with respect to the $J(\mathcal{O})$ -adic topology, and such that the residue field $k = \mathcal{O}/J(\mathcal{O})$ is algebraically closed of characteristic p > 0. All \mathcal{O} -algebras are assumed to be finitely generated and free as \mathcal{O} -modules.

If $A = \bigoplus_{g \in G} A_g$ and $B = \bigoplus_{g \in G} B_g$ are two *G*-graded *O*-algebras, then recall that the *O*-algebra homomorphism $f: A \to B$ is called *G*-graded if $f(A_g) \subseteq B_g$ for all $g \in G$. A subalgebra *C* of *A* is a graded subalgebra if for any $c = \sum_{g \in G} c_g \in C$, the homogeneous component c_g also belongs to *C* for all $g \in G$. In this case we have that $C = \bigoplus_{g \in G} C_g$, where $C_g = C \cap A_g$.

An \mathcal{O} -algebra S is called \mathcal{O} -simple if is isomorphic to $\operatorname{End}_{\mathcal{O}}(V)$ for some free \mathcal{O} -module V, that is, if S isomorphic to a matrix algebra $M_n(\mathcal{O})$ over \mathcal{O} (where n is the dimension of V).

The centralizer of the subalgebra S in A is, by definition, the subalgebra

$$C_A(S) = \{ a \in A \mid as = sa \text{ for all } s \in S \}.$$

If B is a G-graded \mathcal{O} -algebra, then the matrix algebra $A = M_n(B)$ is a Ggraded algebra, where for each $g \in G$, A_g consists of matrices with entries in B_g . The A_1 has a subalgebra S isomorphic to $M_n(\mathcal{O})$, and there is an isomorphism $C_A(S) \simeq B$ of G-graded algebras, mapping an element $a \in C_A(S)$ to eae = ea = ae, where e is

ILUŞCA BONTA

the matrix having 1 in the top left corner and 0 elsewhere. Moreover, there is an isomorphism $A \simeq S \otimes_{\mathcal{O}} C_A(S)$ of *G*-graded algebras, and there is a graded Morita equivalence between A and B (see Section 3 below).

In this note we consider the converse situation. We assume that $A = \bigoplus_{g \in G} A_g$ is a *G*-graded algebra and $S \simeq M_n(\mathcal{O})$ is an \mathcal{O} -simple subalgebra of A_1 , and we show that there is a graded Morita equivalence between A and $C_A(S)$. This generalizes a theorem of L. Puig [2] (see also [3, Sections 1.7 and 1.9]. For notions and results on graded algebras and graded Morita equivalences we refer to [1].

2. Simple subalgebras

In this section $A = \bigoplus_{g \in G} A_g$ is a *G*-graded \mathcal{O} -algebra and $S \simeq \operatorname{End}_{\mathcal{O}}(L)$ be a *G*-graded \mathcal{O} -simple subalgebra of A_1 with $1_S = 1_A$. Let $C_A(S)$ be the centralizer of *S* and let *e* be a primitive idempotent of *S*. The next results are generalizations of [3, Propositions 7.5 and 7.6].

Proposition 2.1 With the above notations and assumptions, the following statements hold.

- a) $C_A(S)$ is a G-graded subalgebra of S.
- b) There is an isomorphism of G-graded O-algebras given by

$$\phi: S \otimes_{\mathcal{O}} C_A(S) \to A, \quad \phi(s \otimes a) = sa$$

c) There is an isomorphism of G-graded \mathcal{O} -algebras given by

$$\eta: C_A(S) \to eAe, \quad \eta(a) = ea = ae = eae.$$

Proof. a) We know that $C_A(S)$ is a subalgebra of A. We have to prove that $C_A(S)$ is G-graded subalgebra. For any $a = \sum_{g \in G} a_g \in A$, if $a \in C_A(S)$, then we have as = safor all $s \in S$. It follows that $\sum_{g \in G} a_g s = \sum_{g \in G} sa_g$. Since $S \subseteq A_1$, $a_g s = sa_g$ for all $s \in S$ and $g \in G$. This means that $a_g \in C_A(S)$ for all $g \in G$.

b) We know from the proof of [3, Proposition 7.5] that ϕ is an isomorphism of \mathcal{O} -algebras and that the map

$$\psi: A \to S \otimes_{\mathcal{O}} C_A(S), \quad \psi(a) = \sum_{u,v \in U} (u^{-1}ev \otimes \sum_{w \in U} (euav^{-1}e)^w)$$

4

is \mathcal{O} -algebra homomorphism, which is the inverse of ϕ . Here U denotes a finite set of invertible elements of S satisfying $1_S = \sum_{u \in U} e^u$ (recall that all the primitive idempotents of S are conjugate). We only have to verify that ϕ and ψ are gradepreserving.

Because A is a G-graded algebra, we have that $S \otimes_{\mathcal{O}} C_A(S)$ is also G-graded, with components $(S \otimes_{\mathcal{O}} C_A(S))_g = S \otimes_{\mathcal{O}} C_A(S)_g$. If $s \otimes a_g \in S \otimes_{\mathcal{O}} C_A(S)_g$, we have that $\phi(s \otimes a_g) = sa_g$ belongs to $SA_g \subseteq A_1A_g = A_g$, hence $\phi(S \otimes_{\mathcal{O}} C_A(S)_g) \subseteq A_g$. Finally, if $a_g \in A_g$ then

$$\psi(a_g) = \sum_{u,v \in U} (u^{-1}ev \otimes \sum_{w \in U} (eua_g v^{-1}e)^w) \in S \otimes_{\mathcal{O}} C_A(S)_g$$

since $U \subset A_1$, so $\psi(A_g) \subseteq S \otimes_{\mathcal{O}} C_A(S)_g$.

c) We know that $C_A(S)$ and eAe are isomorphic as \mathcal{O} -algebras. We have to prove they are isomorphic as G-graded algebras. For all $a_g \in C_A(S)_g$ we have $\eta(a_g) = ea_g e$ belongs to $eA_g e$, so $\eta(C_A(S)_g) \subseteq eA_g e$. Consequently η is G-graded. Similarly, the inverse of η , given by $eae \mapsto \sum_{u \in U} (eae)^u$ is a G-graded map, so the proposition is proved.

Proposition 2.2. Let M be a G-graded A-module. Then there is an isomorphism of G-graded A-modules given by

$$\phi: Se \otimes_{\mathcal{O}} eM \to M, \quad \phi(s \otimes m) = sm.$$

Proof. Since M is a G-graded A-module and $e \in S \subseteq A_1$, we have that eM is a G-graded eAe-submodule of M, hence eM is a G-graded $C_A(S)$ -module via the isomorphism η of Proposition 2.1 c). Consequently $Se \otimes_{\mathcal{O}} eM$ is a G-graded $S \otimes_{\mathcal{O}} C_A(S)$ -module. We know that ϕ is homomorphism of A-modules. Letting $1_A = 1_S = \sum_{u \in U} e^u$ be a primitive decomposition of the identity in S, consider the map

$$\psi: M \to Se \otimes_{\mathcal{O}} eM, \quad \psi(m) = \sum_{u \in U} u^{-1}e \otimes eum,$$

where U is a finite set of invertible elements of S.

ILUŞCA BONTA

We are going to show that ψ is the inverse of ϕ and that both maps are grade-preserving. First we have that

$$\begin{aligned} (\phi \circ \psi)(m) &= \phi(\sum_{u \in U} u^{-1}e \otimes eum) = \sum_{u \in U} \phi(u^{-1}e \otimes eum) \\ &= \sum_{u \in U} u^{-1}eum = \sum_{u \in U} e^um = m, \end{aligned}$$

because $1_S = 1_A = \sum_{u \in U} e^u$.

On the other hand let $m \in M$ and let $s^{-1}et$ be a basis element of S, where $s,t \in U$. Then we have

$$\begin{split} (\psi \circ \phi)(s^{-1}ete \otimes em) &= \psi(s^{-1}etem) = \sum_{u \in U} u^{-1}e \otimes eus^{-1}etem \\ &= \sum_{u \in U} u^{-1}e \otimes u(u^{-1}eu)(s^{-1}es)s^{-1}tem \\ &= s^{-1}e \otimes etem = s^{-1}ete \otimes em, \end{split}$$

where we have used that $e^u e^s = 0$ unless u = s.

For all $s \otimes m_g \in Se \otimes_{\mathcal{O}} eM_g$, we have that $\phi(s \otimes m_g) = sm_g$ belongs to $SM_g \subseteq M_g$, so $\phi(Se \otimes_{\mathcal{O}} eM_g) \subseteq M_g$. Similarly, if $m_g \in M_g$, the $\psi(m_g)$ belongs to $Se \otimes_{\mathcal{O}} eM_g$ since $U \subset A_1$ and $e \in A_1$.

3. A Morita equivalence

We keep the notations and assumptions of the preceding section. The following result is a generalization to the case of G-graded algebras of [2, Theorem 3].

Theorem 3.1. The algebras A and $C_A(S)$ are graded Morita equivalent.

Proof. Since A is isomorphic to $S \otimes_{\mathcal{O}} C_A(S)$ as G-graded algebras, it is enough to prove the following statement. Let C be an \mathcal{O} -algebra and let $S \simeq \operatorname{End}_{\mathcal{O}}(L)$ be an \mathcal{O} -simple algebra. Then $S \otimes_{\mathcal{O}} C$ is graded Morita equivalent to C. Indeed, consider the functor

$$F: C-\operatorname{mod} \to S \otimes_{\mathcal{O}} C-\operatorname{mod}, \quad F(M) = L \otimes_{\mathcal{O}} M.$$

Observe that if $M = \bigoplus_{x \in G} M_x$ is a *G*-graded *C*-module, then F(M) is a *G*-graded $S \otimes_{\mathcal{O}} C$ -module with components $F(M)_x = L \otimes_{\mathcal{O}} M_x$ for all $x \in G$. Moreover, if M(g) is the *g*-th suspension of M (where $M(g)_x = M_{xg}$ for all $x \in G$), then 6

F(M(g)) = F(M)(g). Therefore, the restriction of F gives a graded functor F^{gr} : $C-\operatorname{gr} \to S \otimes_{\mathcal{O}} C-\operatorname{gr}$, which clearly commutes with the grade forgetting functor. It remains to prove that F is an equivalence of categories. Observe that $L \simeq Se$, where e is a primitive idempotent of S. By replacing A with $A \otimes_{\mathcal{O}} C$ and e with $e \otimes 1$, Proposition 2.2 shows that any $S \otimes_{\mathcal{O}} C$ -module is naturally isomorphic to a module of the form $L \otimes_{\mathcal{O}} M$, where M is a C-module. This immediately implies that F is an equivalence.

Remark 3.2. Alternatively, we could have used the isomorphism $C_A(S) \simeq eAe$ of G-graded algebras. Since $1_A = 1_S = \sum_{u \in U} e^u$, we have that AeA = A. Consequently, the G-graded bimodules Ae and e induce a graded Morita equivalence between A and eAe.

References

- A. Marcus, Representation Theory of Group Graded Algebras, Nova Science Publishers, Commack N.Y. 1999.
- [2] L. Puig, Pointed groups and construction of characters, Math. Z. 176 (1981), 209–216.
- [3] J. Thévenaz, G-Algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

Received: 28.06.2001