PICARD PAIRS AND WEAKLY PICARD PAIRS OF OPERATORS

ALINA SÎNTĂMĂRIAN

Abstract

The purpose of this paper is to introduce the notions of Picard pair, c-Picard pair, weakly Picard pair and c-weakly Picard pair of operators and to present examples for these notions. We also study the data dependence of the common fixed points set of c-weakly Picard pairs of operators.

1. Introduction

Let (X, d) be a metric space. Further on we shall need the following notations

$$
\begin{gathered}
P(X):=\{Y \mid \emptyset \neq Y \subseteq X\} \\
P_{c l}(X):=\{Y \mid Y \in P(X) \text { and } Y \text { is a closed set }\}
\end{gathered}
$$

and the following functionals

$$
\begin{gathered}
D: P(X) \times P(X) \rightarrow \mathbb{R}_{+}, D(A, B)=\inf \{d(a, b) \mid a \in A, b \in B\}, \\
H: P(X) \times P(X) \rightarrow \mathbb{R}_{+} \cup\{+\infty\}, H(A, B)=\max \left\{\sup _{a \in A} D(a, B), \sup _{b \in B} D(b, A)\right\} .
\end{gathered}
$$

Let $f_{1}, f_{2}: X \rightarrow X$ be two operators. We denote by $G_{f_{1}}$ the graph of f_{1}, by $F_{f_{1}}$ the fixed points set of f_{1} and by $(C F)_{f_{1}, f_{2}}$ the common fixed points set of f_{1} and f_{2}.

The purpose of this paper is to study the following problems:
Problem 1.1. Let (X, d) be a metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators. Determine the metric conditions which imply that $\left(f_{1}, f_{2}\right)$ is a (weakly) Picard pair of operators or (and) f_{1}, f_{2} are (weakly) Picard operators.

Problem 1.2. Let (X, d) be a metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators such that $(C F)_{f_{1}, f_{2}},(C F)_{g_{1}, g_{2}} \neq \emptyset$. We suppose that there exists $\eta>0$ with

[^0]the property that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that $d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta$. In these conditions estimate the Pompeiu-Hausdorff distance $H\left((C F)_{f_{1}, f_{2}},(C F)_{g_{1}, g_{2}}\right)$.

Throughout the paper we follow the terminology and the notations from Rus [7], [8] and Rus-Mureşan [9], [10].

2. Picard pairs and weakly Picard pairs of operators

Definition 2.1. [Rus [6], [7], [8]] Let (X, d) be a metric space. An operator $f: X \rightarrow X$ is a Picard operator (briefly P. o.) iff there exists $x^{*} \in X$ such that $F_{f}=\left\{x^{*}\right\}$ and $\left(f^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges to x^{*}, for all $x_{0} \in X$.

Let (X, d) be a metric space. We say that a P. o. $f: X \rightarrow X$ is a c-Picard operator $(c \in[0,+\infty[)$ (briefly c - P. o.) iff the following condition is satisfied

$$
d\left(x, x^{*}\right) \leq c d(x, f(x))
$$

for each $x \in X$, where x^{*} is the unique fixed point of f.
Definition 2.2. [Rus [6], [7], [8]] Let (X, d) be a metric space. An operator $f: X \rightarrow X$ is a weakly Picard operator (briefly w. P. o.) iff for each $x_{0} \in X$, the sequence $\left(f^{n}\left(x_{0}\right)\right)_{n \in \mathbb{N}}$ converges and its limit is a fixed point of f.

For examples of P. o. and w. P. o. see for instance Rus [6], [7], [8].
Let (X, d) be a metric space and $f: X \rightarrow X$ be a w. P. o.. We consider the operator $f^{\infty}: X \rightarrow F_{f}$, defined as follows

$$
f^{\infty}(x)=\lim _{n \rightarrow \infty} f^{n}(x)
$$

for each $x \in X$.
Definition 2.3. [Rus-Mureşan [10]] Let (X, d) be a metric space and $f: X \rightarrow X$ be a w. P. o.. We say that f is a c-weakly Picard operator $(c \in[0,+\infty[)$ (briefly c-w. P. o.) iff the following condition is satisfied

$$
d\left(x, f^{\infty}(x)\right) \leq c d(x, f(x)),
$$

for each $x \in X$.
Examples of c-w. P. o. are given in Rus-Mureşan [10].
Definition 2.4. Let (X, d) be a metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators. We say that the pair of operators $\left(f_{1}, f_{2}\right)$ is a Picard pair of operators (briefly P. p. o.) iff there exists $x^{*} \in X$ such that $(C F)_{f_{1}, f_{2}}=\left\{x^{*}\right\}$ and for each $x \in X$ and for 90
every $y \in\left\{f_{1}(x), f_{2}(x)\right\}$, the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ defined as follows: $x_{0}=x, x_{1}=y$ and $x_{2 n-1}=f_{i}\left(x_{2 n-2}\right), x_{2 n}=f_{j}\left(x_{2 n-1}\right)$, for each $n \in \mathbb{N}^{*}$, where $i, j \in\{1,2\}$, with $i \neq j$, converges to x^{*}.

The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is, by definition, a sequence of successive approximations for the pair $\left(f_{1}, f_{2}\right)$, starting from $\left(x_{0}, x_{1}\right)$.
Definition 2.5. Let (X, d) be a metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators which form a P. p. o.. We say that $\left(f_{1}, f_{2}\right)$ is a c-Picard pair of operators $(c \in$ $[0,+\infty[)$ (briefly c-P. p. o.) iff the following condition is satisfied

$$
d\left(x, x^{*}\right) \leq c d(x, y),
$$

for each $(x, y) \in G_{f_{1}} \cup G_{f_{2}}$, where x^{*} is the unique common fixed point of f_{1} and f_{2}. Definition 2.6. Let (X, d) be a metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators. We say that the pair of operators $\left(f_{1}, f_{2}\right)$ is a weakly Picard pair of operators (briefly w. P. p. o.) iff for each $x \in X$ and for every $y \in\left\{f_{1}(x), f_{2}(x)\right\}$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(i) $x_{0}=x, x_{1}=y$;
(ii) $x_{2 n-1}=f_{i}\left(x_{2 n-2}\right)$ and $x_{2 n}=f_{j}\left(x_{2 n-1}\right)$, for each $n \in \mathbb{N}^{*}$, where $i, j \in$ $\{1,2\}$, with $i \neq j$;
(iii) the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and its limit is a common fixed point of f_{1} and f_{2}.

Definition 2.7. Let (X, d) be a metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators which form a w. P. p. o.. Then we consider the multivalued operator $\left(f_{1}, f_{2}\right)^{\infty}: G_{f_{1}} \cup G_{f_{2}} \rightarrow P\left((C F)_{f_{1}, f_{2}}\right)$ as follows: for each $(x, y) \in G_{f_{1}} \cup G_{f_{2}}$, we define $\left(f_{1}, f_{2}\right)^{\infty}(x, y)=\left\{z \in(C F)_{f_{1}, f_{2}} \mid\right.$ there exists a sequence of successive approximations for the pair $\left(f_{1}, f_{2}\right)$, starting from (x, y), that converges to $\left.z\right\}$.
Definition 2.8. Let (X, d) be a metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators which form a w. P. p. o.. We say that $\left(f_{1}, f_{2}\right)$ is a c-weakly Picard pair of operators $\left(c \in\left[0,+\infty[)\right.\right.$ (briefly c-w. P. p. o.) iff there exists a selection $f_{1,2}^{\infty}$ of $\left(f_{1}, f_{2}\right)^{\infty}$ such that

$$
d\left(x, f_{1,2}^{\infty}(x, y)\right) \leq c d(x, y)
$$

for each $(x, y) \in G_{f_{1}} \cup G_{f_{2}}$.

Remark 2.1. It is obvious that a P. p. o. is a w. P. p. o. and a c-P. p. o. is a $c-w . P$. p. o..

Further on we shall give some examples of c-P. p. o. and c-w. P. p. o..
Theorem 2.1. Let (X, d) be a complete metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators for which there exists $a \in[0,1 / 2[$ such that

$$
d\left(f_{1}(x), f_{2}(y)\right) \leq a\left[d\left(x, f_{1}(x)\right)+d\left(y, f_{2}(y)\right)\right]
$$

for each $x, y \in X$.
Then $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\},\left(f_{1}, f_{2}\right)$ is $c-P$. p. o. and f_{1} and f_{2} are $c-P$. o., with $c=(1-a) /(1-2 a)$.

Proof. The conclusion follows immediately from Kannan's theorem [3] and from the Theorem 2 given by Rus in [5].

Theorem 2.2. Let (X, d) be a complete metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators for which there exist $a, b \in \mathbb{R}_{+}$, with $a+b<1$ such that

$$
d\left(f_{1}(x), f_{2}(y)\right) \leq a d\left(x, f_{1}(x)\right)+b d\left(y, f_{2}(y)\right)
$$

for each $x, y \in X$.
Then $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ and $\left(f_{1}, f_{2}\right)$ is c-P. p. o., with $c=(1-$ $\min \{a, b\}) /[1-(a+b)]$.

Theorem 2.3. Let (X, d) be a complete metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators. We suppose that there exist $\alpha, \beta, \gamma \in \mathbb{R}_{+}$, with $\alpha+2 \beta+2 \gamma<1$ such that
$d\left(f_{1}(x), f_{2}(y)\right) \leq \alpha d(x, y)+\beta\left[d\left(x, f_{1}(x)\right)+d\left(y, f_{2}(y)\right)\right]+\gamma\left[d\left(x, f_{2}(y)\right)+d\left(y, f_{1}(x)\right)\right]$,
for each $x, y \in X$
Then $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ and $\left(f_{1}, f_{2}\right)$ is $c-P$. p. o., with $c=[1-(\beta+\gamma)] /[1-$ $(\alpha+2 \beta+2 \gamma)]$.

Proof. The fact that $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ follows from a theorem given by Rus in [4].
In order to prove the second part of the conclusion we shall take again the proof

Let $i, j \in\{1,2\}$, with $i \neq j$. Let $x_{0} \in X$ and we take $x_{2 n-1}=f_{i}\left(x_{2 n-2}\right)$, $x_{2 n}=f_{j}\left(x_{2 n-1}\right)$, for each $n \in \mathbb{N}^{*}$.

We have

$$
\begin{gathered}
d\left(x_{1}, x_{2}\right)=d\left(f_{i}\left(x_{0}\right), f_{j}\left(x_{1}\right)\right) \leq \\
\leq \alpha d\left(x_{0}, x_{1}\right)+\beta\left[d\left(x_{0}, f_{i}\left(x_{0}\right)\right)+d\left(x_{1}, f_{j}\left(x_{1}\right)\right)\right]+\gamma\left[d\left(x_{0}, f_{j}\left(x_{1}\right)\right)+d\left(x_{1}, f_{i}\left(x_{0}\right)\right)\right]= \\
=\alpha d\left(x_{0}, x_{1}\right)+\beta\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right]+\gamma d\left(x_{0}, x_{2}\right) \leq \\
\leq \alpha d\left(x_{0}, x_{1}\right)+\beta\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right]+\gamma\left[d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)\right]
\end{gathered}
$$

and hence

$$
d\left(x_{1}, x_{2}\right) \leq(\alpha+\beta+\gamma) /[1-(\beta+\gamma)] d\left(x_{0}, x_{1}\right)
$$

Similarly, we have that

$$
d\left(x_{2}, x_{3}\right) \leq(\alpha+\beta+\gamma) /[1-(\beta+\gamma)] d\left(x_{1}, x_{2}\right)
$$

By induction we get that

$$
d\left(x_{n}, x_{n+1}\right) \leq\left[\frac{\alpha+\beta+\gamma}{1-(\beta+\gamma)}\right]^{n} d\left(x_{0}, x_{1}\right)
$$

for each $n \in \mathbb{N}$.
This implies that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence, because (X, d) is a complete metric space. The limit of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is the unique common fixed point x^{*} of f_{1} and f_{2}.

We have

$$
d\left(x_{n}, x^{*}\right) \leq\left[\frac{\alpha+\beta+\gamma}{1-(\beta+\gamma)}\right]^{n} \frac{1-(\beta+\gamma)}{1-(\alpha+2 \beta+2 \gamma)} d\left(x_{0}, x_{1}\right)
$$

for each $n \in \mathbb{N}$.
For $n=0$, we obtain

$$
d\left(x_{0}, x^{*}\right) \leq[1-(\beta+\gamma)] /[1-(\alpha+2 \beta+2 \gamma)] d\left(x_{0}, f_{i}\left(x_{0}\right)\right) .
$$

So, we can assert that $\left(f_{1}, f_{2}\right)$ is a c-P. p. o., with $c=[1-(\beta+\gamma)] /[1-(\alpha+2 \beta+2 \gamma)]$.

Remark 2.2. If we take $\alpha=\beta=0$ in the metric condition of the Theorem 2.3, then the part which affirms that $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ is a result given by Chatterjea in [1] and we have that $\left(f_{1}, f_{2}\right)$ is $c-P$. p. o., with $c=(1-\gamma) /(1-2 \gamma)$.

Theorem 2.4. Let (X, d) be a complete metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators for which there exist $a_{1}, \ldots, a_{5} \in \mathbb{R}_{+}$, with $a_{1}+a_{2}+a_{3}+2 \max \left\{a_{4}, a_{5}\right\}<1$ such that

$$
\begin{aligned}
d\left(f_{1}(x), f_{2}(y)\right) & \leq a_{1} d(x, y)+a_{2} d\left(x, f_{1}(x)\right)+a_{3} d\left(y, f_{2}(y)\right)+ \\
& +a_{4} d\left(x, f_{2}(y)\right)+a_{5} d\left(y, f_{1}(x)\right),
\end{aligned}
$$

for each $x, y \in X$.
Then $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ and $\left(f_{1}, f_{2}\right)$ is $c-P$. p. o., with $c=(1-l)^{-1}$, where $l=\max \left\{\left(a_{1}+a_{2}+a_{4}\right) /\left[1-\left(a_{3}+a_{4}\right)\right],\left(a_{1}+a_{3}+a_{5}\right) /\left[1-\left(a_{2}+a_{5}\right)\right]\right\}$.

Proof. The proof is made similarly with that of the Theorem 2.3.
Theorem 2.5. Let (X, d) be a complete metric space and $f_{1}, f_{2}: X \rightarrow X$ be two operators. We suppose that there exists $a \in[0,1[$ such that

$$
\begin{gathered}
d\left(f_{1}(x), f_{2}(y)\right) \leq a \max \left\{d(x, y), d\left(x, f_{1}(x)\right), d\left(y, f_{2}(y)\right),\right. \\
\left.1 / 2\left[d\left(x, f_{2}(y)\right)+d\left(y, f_{1}(x)\right)\right]\right\},
\end{gathered}
$$

for each $x, y \in X$.
Then $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ and $\left(f_{1}, f_{2}\right)$ is $c-P$. p. o., with $c=(1-a)^{-1}$.
Proof. The fact that $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ follows from a theorem given by Ćirić in [2]. For the second part of the conclusion, the proof is made similarly with that of the Theorem 2.3.
Theorem 2.6. Let (X, d) be a complete metric space and $\varphi: \mathbb{R}_{+}^{5} \rightarrow \mathbb{R}_{+}$be a continuous function which satisfies the following two conditions:
($\left.\mathrm{i}_{\varphi}\right) \varphi$ is monoton increasing in each variable;
(ii $\left.\varphi_{\varphi}\right) \varphi(t, t, t, 2 t, 0) \leq t, \varphi(t, t, t, 0,2 t) \leq t$ and $\varphi(t, 0,0, t, t) \leq t$, for each $t>0$.
Let $f_{1}, f_{2}: X \rightarrow X$ be two operators for which there exists $a \in[0,1[$ such that

$$
d\left(f_{1}(x), f_{2}(y)\right) \leq a \varphi\left(d(x, y), d\left(x, f_{1}(x)\right), d\left(y, f_{2}(y)\right), d\left(x, f_{2}(y)\right), d\left(y, f_{1}(x)\right)\right)
$$

for each $x, y \in X$.
Then $F_{f_{1}}=F_{f_{2}}=\left\{x^{*}\right\}$ and $\left(f_{1}, f_{2}\right)$ is $c-P$. p. o., with $c=(1-a)^{-1}$.
Proof. The proof is made similarly with that of the Theorem 2.3, taking into account the properties of the function φ.

Remark 2.3. It is an open question if the operators f_{1} and f_{2} from the Remark 2.2, the Theorems 2.2, 2.3, 2.4, 2.5 or 2.6 are P. o..

Theorem 2.7. Let (X, d) be a complete metric space and $f_{1}, f_{2}: X \rightarrow X$ be two continuous operators. We suppose that there exist $a_{1}, a_{2} \in[0,1[$ such that for each $i, j \in\{1,2\}$, with $i \neq j$ we have

$$
d\left(f_{i}(x), f_{j}\left(f_{i}(x)\right)\right) \leq a_{i} d\left(x, f_{i}(x)\right),
$$

for each $x \in X$.
Then $F_{f_{1}}=F_{f_{2}} \in P_{c l}(X)$ and $\left(f_{1}, f_{2}\right)$ is $c-w . \quad P$. p. o., with $c=(1-$ $\left.\max \left\{a_{1}, a_{2}\right\}\right)^{-1}$.

Proof. We show in the beginning that $F_{f_{1}}=F_{f_{2}}$. Let $x^{*} \in F_{f_{1}}$. Then we have

$$
d\left(x^{*}, f_{2}\left(x^{*}\right)\right)=d\left(f_{1}\left(x^{*}\right), f_{2}\left(f_{1}\left(x^{*}\right)\right)\right) \leq a_{1} d\left(x^{*}, f_{1}\left(x^{*}\right)\right)=0 .
$$

So $x^{*} \in F_{f_{2}}$ and thus we are able to write that $F_{f_{1}} \subseteq F_{f_{2}}$. Analogously we get that $F_{f_{2}} \subseteq F_{f_{1}}$. Hence $F_{f_{1}}=F_{f_{2}}$.

It is not difficult to see that $F_{f_{1}}$ and $F_{f_{2}}$ are closed sets. In order to prove that let $i \in\{1,2\}$ and $x_{n} \in F_{f_{i}}$, for each $n \in \mathbb{N}$, with the property that $x_{n} \rightarrow x^{*}$, as $n \rightarrow \infty$. From $x_{n}=f_{i}\left(x_{n}\right)$, for each $n \in \mathbb{N}$ and taking into account the fact that f_{i} is continuous we get, by letting n to tend to infinity, that $x^{*}=f_{i}\left(x^{*}\right)$, i. e. $x^{*} \in F_{f_{i}}$. So $F_{f_{i}}$ is a closed set.

Further on we shall prove that $(C F)_{f_{1}, f_{2}} \neq \emptyset$. Let $i, j \in\{1,2\}$, with $i \neq j$. Let $x_{0} \in X$ and we put $x_{2 n-1}=f_{i}\left(x_{2 n-2}\right), x_{2 n}=f_{j}\left(x_{2 n-1}\right)$, for each $n \in \mathbb{N}^{*}$. We have

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right)= & d\left(f_{i}\left(x_{0}\right), f_{j}\left(x_{1}\right)\right)=d\left(f_{i}\left(x_{0}\right), f_{j}\left(f_{i}\left(x_{0}\right)\right)\right) \leq \\
& \leq a_{i} d\left(x_{0}, f_{i}\left(x_{0}\right)\right)=a_{i} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

Similarly, we have that

$$
d\left(x_{2}, x_{3}\right) \leq a_{j} d\left(x_{1}, x_{2}\right) .
$$

We put $a=\max \left\{a_{1}, a_{2}\right\}$. By induction we get that

$$
d\left(x_{n}, x_{n+1}\right) \leq a^{n} d\left(x_{0}, x_{1}\right)
$$

for each $n \in \mathbb{N}$.

This implies that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence, because (X, d) is a complete metric space. Let $x^{*}=\lim _{n \rightarrow \infty} x_{n}$. From $x_{2 n-1}=f_{i}\left(x_{2 n-2}\right), x_{2 n}=f_{j}\left(x_{2 n-1}\right)$, for each $n \in \mathbb{N}^{*}$ and taking into account the fact that f_{1} and f_{2} are continuous, it follows that $x^{*} \in(C F)_{f_{1}, f_{2}}$. So $(C F)_{f_{1}, f_{2}}=F_{f_{1}}=F_{f_{2}} \neq \emptyset$. By an easy calculation we have

$$
d\left(x_{n}, x^{*}\right) \leq a^{n} /(1-a) d\left(x_{0}, x_{1}\right)
$$

for each $n \in \mathbb{N}$.
For $n=0$ we get

$$
d\left(x_{0}, x^{*}\right) \leq(1-a)^{-1} d\left(x_{0}, x_{1}\right)
$$

Therefore $\left(f_{1}, f_{2}\right)$ is a c-w. P. p. o., where $c=\left(1-\max \left\{a_{1}, a_{2}\right\}\right)^{-1}$.
Remark 2.4. It is an open question if the operators f_{1} and f_{2} from the Theorem 2.7 are w. P. o..
3. Data dependence of the common fixed points set of c-weakly Picard pairs of operators

Theorem 3.1. Let (X, d) be a metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(i) $\left(f_{1}, f_{2}\right)$ is a $c_{f}-w$. P. p. o. and $\left(g_{1}, g_{2}\right)$ is a $c_{g}-w . P$. p. o.;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta
$$

Then

$$
H\left((C F)_{f_{1}, f_{2}},(C F)_{g_{1}, g_{2}}\right) \leq \eta \max \left\{c_{f}, c_{g}\right\} .
$$

Proof. It is not difficult to see that

$$
\begin{gathered}
H\left((C F)_{f_{1}, f_{2}},(C F)_{g_{1}, g_{2}}\right) \leq \max \left\{\sup _{x \in(C F))_{g_{1}, g_{2}}} d\left(x, f_{1,2}^{\infty}\left(x, f_{i_{x}}(x)\right)\right),\right. \\
\left.\sup _{x \in(C F)_{f_{1}, f_{2}}} d\left(x, g_{1,2}^{\infty}\left(x, g_{j_{x}}(x)\right)\right)\right\} .
\end{gathered}
$$

If $x \in(C F)_{g_{1}, g_{2}}$, then we have

$$
d\left(x, f_{1,2}^{\infty}\left(x, f_{i_{x}}(x)\right)\right) \leq c_{f} d\left(x, f_{i_{x}}(x)\right)=c_{f} d\left(g_{j_{x}}(x), f_{i_{x}}(x)\right) \leq c_{f} \eta .
$$

If $x \in(C F)_{f_{1}, f_{2}}$, then we get

$$
d\left(x, g_{1,2}^{\infty}\left(x, g_{j_{x}}(x)\right)\right) \leq c_{g} d\left(x, g_{j_{x}}(x)\right)=c_{g} d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq c_{g} \eta .
$$

From these, using the following lemma (see [8])
Lemma 3.1. Let (X, d) be a metric space and $A, B \in P(X)$. We suppose that there exists $\eta \in \mathbb{R}, \eta>0$ such that:
(i) for each $a \in A$, there exists $b \in B$ so that $d(a, b) \leq \eta$,
(ii) for each $b \in B$, there exists $a \in A$ so that $d(b, a) \leq \eta$.

Then $H(A, B) \leq \eta$.
We obtain the conclusion of the theorem.

Further on we shall give some consequences of the abstract result given in Theorem 3.1.

Theorem 3.2. Let (X, d) be a complete metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(if) there exists $a_{f} \in[0,1 / 2[$ such that

$$
d\left(f_{1}(x), f_{2}(y)\right) \leq a_{f}\left[d\left(x, f_{1}(x)\right)+d\left(y, f_{2}(y)\right)\right],
$$

for each $x, y \in X$;
(i_{g}) there exists $a_{g} \in[0,1 / 2[$ such that

$$
d\left(g_{1}(x), g_{2}(y)\right) \leq a_{g}\left[d\left(x, g_{1}(x)\right)+d\left(y, g_{2}(y)\right)\right]
$$

for each $x, y \in X$;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta .
$$

Then $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}, F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and

$$
d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta(1-a) /(1-2 a)
$$

where $a=\max \left\{a_{f}, a_{g}\right\}$.

Proof. From the Theorem 2.1 we have that $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}$ and that $\left(f_{1}, f_{2}\right)$ is c_{f}-P. p. o., with $c_{f}=\left(1-a_{f}\right) /\left(1-2 a_{f}\right)$. From the same theorem we also have that $F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and that $\left(g_{1}, g_{2}\right)$ is c_{g}-P. p. o., with $c_{g}=\left(1-a_{g}\right) /\left(1-2 a_{g}\right)$. The fact that $d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta(1-a) /(1-2 a)$ follows immediately from the Remark 2.1 and the Theorem 3.1.
Theorem 3.3. Let (X, d) be a complete metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(i_{f}) there exist $a_{f}, b_{f} \in \mathbb{R}_{+}$, with $a_{f}+b_{f}<1$ such that

$$
d\left(f_{1}(x), f_{2}(y)\right) \leq a_{f} d\left(x, f_{1}(x)\right)+b_{f} d\left(y, f_{2}(y)\right)
$$

for each $x, y \in X$;
(i_{g}) there exist $a_{g}, b_{g} \in \mathbb{R}_{+}$, with $a_{g}+b_{g}<1$ such that

$$
d\left(g_{1}(x), g_{2}(y)\right) \leq a_{g} d\left(x, g_{1}(x)\right)+b_{g} d\left(y, g_{2}(y)\right)
$$

for each $x, y \in X$;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta
$$

Then $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}, F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and

$$
d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \max \left\{c_{f}, c_{g}\right\}
$$

where $c_{f}=\left(1-\min \left\{a_{f}, b_{f}\right\}\right) /\left[1-\left(a_{f}+b_{f}\right)\right]$ and $c_{g}=\left(1-\min \left\{a_{g}, b_{g}\right\}\right) /\left[1-\left(a_{g}+b_{g}\right)\right]$.
Proof. From the Theorem 2.2 we have that $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}$ and that $\left(f_{1}, f_{2}\right)$ is c_{f}-P. p. o.. From the same theorem we also have that $F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and that $\left(g_{1}, g_{2}\right)$ is c_{g}-P. p. o.. Now, the fact that $d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \max \left\{c_{f}, c_{g}\right\}$ follows immediately from the Remark 2.1 and the Theorem 3.1.
Theorem 3.4. Let (X, d) be a complete metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(i_{f}) there exist $\alpha_{f}, \beta_{f}, \gamma_{f} \in \mathbb{R}_{+}$, with $\alpha_{f}+2 \beta_{f}+2 \gamma_{f}<1$ such that

$$
\begin{aligned}
d\left(f_{1}(x), f_{2}(y)\right) & \leq \alpha_{f} d(x, y)+\beta_{f}\left[d\left(x, f_{1}(x)\right)+d\left(y, f_{2}(y)\right)\right]+ \\
& +\gamma_{f}\left[d\left(x, f_{2}(y)\right)+d\left(y, f_{1}(x)\right)\right]
\end{aligned}
$$

for each $x, y \in X ;$
(i_{g}) there exist $\alpha_{g}, \beta_{g}, \gamma_{g} \in \mathbb{R}_{+}$, with $\alpha_{g}+2 \beta_{g}+2 \gamma_{g}<1$ such that

$$
\begin{aligned}
d\left(g_{1}(x), g_{2}(y)\right) & \leq \alpha_{g} d(x, y)+\beta_{g}\left[d\left(x, g_{1}(x)\right)+d\left(y, g_{2}(y)\right)\right]+ \\
& +\gamma_{g}\left[d\left(x, g_{2}(y)\right)+d\left(y, g_{1}(x)\right)\right]
\end{aligned}
$$

for each $x, y \in X$;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta
$$

Then $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}, F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and

$$
d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \max \left\{c_{f}, c_{g}\right\}
$$

where $c_{f}=\left[1-\left(\beta_{f}+\gamma_{f}\right)\right] /\left[1-\left(\alpha_{f}+2 \beta_{f}+2 \gamma_{f}\right)\right]$ and $c_{g}=\left[1-\left(\beta_{g}+\gamma_{g}\right)\right] /\left[1-\left(\alpha_{g}+\right.\right.$ $\left.\left.2 \beta_{g}+2 \gamma_{g}\right)\right]$.

Proof. From the Theorem 2.3 we have that $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}$ and that $\left(f_{1}, f_{2}\right)$ is c_{f}-P. p. o.. From the same theorem we also have that $F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and that $\left(g_{1}, g_{2}\right)$ is c_{g}-P. p. o.. The fact that $d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \max \left\{c_{f}, c_{g}\right\}$ follows immediately from the Remark 2.1 and the Theorem 3.1.

Theorem 3.5. Let (X, d) be a complete metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(i_{f}) there exist $a_{1}^{f}, \ldots, a_{5}^{f} \in \mathbb{R}_{+}$, with $a_{1}^{f}+a_{2}^{f}+a_{3}^{f}+2 \max \left\{a_{4}^{f}, a_{5}^{f}\right\}<1$ such that

$$
\begin{aligned}
d\left(f_{1}(x), f_{2}(y)\right) & \leq a_{1}^{f} d(x, y)+a_{2}^{f} d\left(x, f_{1}(x)\right)+a_{3}^{f} d\left(y, f_{2}(y)\right)+ \\
& +a_{4}^{f} d\left(x, f_{2}(y)\right)+a_{5}^{f} d\left(y, f_{1}(x)\right)
\end{aligned}
$$

for each $x, y \in X$;
(i_{g}) there exist $a_{1}^{g}, \ldots, a_{5}^{g} \in \mathbb{R}_{+}$, with $a_{1}^{g}+a_{2}^{g}+a_{3}^{g}+2 \max \left\{a_{4}^{g}, a_{5}^{g}\right\}<1$ such that

$$
\begin{aligned}
d\left(g_{1}(x), g_{2}(y)\right) & \leq a_{1}^{g} d(x, y)+a_{2}^{g} d\left(x, g_{1}(x)\right)+a_{3}^{g} d\left(y, g_{2}(y)\right)+ \\
& +a_{4}^{g} d\left(x, g_{2}(y)\right)+a_{5}^{g} d\left(y, g_{1}(x)\right),
\end{aligned}
$$

for each $x, y \in X$;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta
$$

Then $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}, F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and

$$
d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \max \left\{c_{f}, c_{g}\right\}
$$

where $c_{f}=\left(1-l_{f}\right)^{-1}$, with $l_{f}=\max \left\{\left(a_{1}^{f}+a_{2}^{f}+a_{4}^{f}\right) /\left[1-\left(a_{3}^{f}+a_{4}^{f}\right)\right],\left(a_{1}^{f}+a_{3}^{f}+\right.\right.$ $\left.\left.a_{5}^{f}\right) /\left[1-\left(a_{2}^{f}+a_{5}^{f}\right)\right]\right\}$ and $c_{g}=\left(1-l_{g}\right)^{-1}$, with $l_{g}=\max \left\{\left(a_{1}^{g}+a_{2}^{g}+a_{4}^{g}\right) /\left[1-\left(a_{3}^{g}+\right.\right.\right.$ $\left.\left.\left.a_{4}^{g}\right)\right],\left(a_{1}^{g}+a_{3}^{g}+a_{5}^{g}\right) /\left[1-\left(a_{2}^{g}+a_{5}^{g}\right)\right]\right\}$.
Proof. From the Theorem 2.4 we have that $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}$ and that $\left(f_{1}, f_{2}\right)$ is c_{f}-P. p. o.. From the same theorem we also have that $F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and that $\left(g_{1}, g_{2}\right)$ is c_{g}-P. p. o.. Now, the fact that $d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta \max \left\{c_{f}, c_{g}\right\}$ follows from the Remark 2.1 and the Theorem 3.1.

Theorem 3.6. Let (X, d) be a complete metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(i_{f}) there exists $a_{f} \in[0,1[$ such that

$$
\begin{gathered}
d\left(f_{1}(x), f_{2}(y)\right) \leq a_{f} \max \left\{d(x, y), d\left(x, f_{1}(x)\right), d\left(y, f_{2}(y)\right),\right. \\
\left.1 / 2\left[d\left(x, f_{2}(y)\right)+d\left(y, f_{1}(x)\right)\right]\right\},
\end{gathered}
$$

for each $x, y \in X ;$
(i_{g}) there exists $a_{g} \in[0,1[$ such that

$$
\begin{aligned}
& d\left(g_{1}(x), g_{2}(y)\right) \leq a_{g} \max \left\{d(x, y), d\left(x, g_{1}(x)\right), d\left(y, g_{2}(y)\right),\right. \\
&\left.1 / 2\left[d\left(x, g_{2}(y)\right)+d\left(y, g_{1}(x)\right)\right]\right\},
\end{aligned}
$$

for each $x, y \in X$;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta
$$

Then $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}, F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and

$$
d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta\left(1-\max \left\{a_{f}, a_{g}\right\}\right)^{-1}
$$

Proof. From the Theorem 2.5 we have that $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}$ and that $\left(f_{1}, f_{2}\right)$ is c_{f}-P. p. o., with $c_{f}=\left(1-a_{f}\right)^{-1}$. From the same theorem we also have that $F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and that $\left(g_{1}, g_{2}\right)$ is c_{g}-P. p. o., with $c_{g}=\left(1-a_{g}\right)^{-1}$. The fact that $d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta\left(1-\max \left\{a_{f}, a_{g}\right\}\right)^{-1}$ follows immediately from the Remark 2.1 and the Theorem 3.1.

Theorem 3.7. Let (X, d) be a complete metric space and $\varphi_{f}, \varphi_{g}: \mathbb{R}_{+}^{5} \rightarrow \mathbb{R}_{+}$be two continuous functions which satisfy the following conditions:

$$
\begin{aligned}
& \left(\mathrm{i}_{\varphi_{f, g}}\right) \varphi_{f} \text { and } \varphi_{g} \text { are monoton increasing in each variable; } \\
& \left(\mathrm{ii}_{\varphi_{f, g}}\right) \varphi_{f}(t, t, t, 2 t, 0) \leq t, \varphi_{f}(t, t, t, 0,2 t) \leq t \text { and } \varphi_{f}(t, 0,0, t, t) \leq t \text {, for each } \\
& \\
& \quad t>0 \text { and } \varphi_{g}(t, t, t, 2 t, 0) \leq t, \varphi_{g}(t, t, t, 0,2 t) \leq t \text { and } \varphi_{g}(t, 0,0, t, t) \leq t \text {, } \\
& \quad \text { for each } t>0
\end{aligned}
$$

Let $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(i_{f}) there exists $a_{f} \in[0,1[$ such that

$$
\begin{aligned}
& d\left(f_{1}(x), f_{2}(y)\right) \leq a_{f} \varphi_{f}\left(d(x, y), d\left(x, f_{1}(x)\right), d\left(y, f_{2}(y)\right), d\left(x, f_{2}(y)\right), d\left(y, f_{1}(x)\right)\right), \\
& \quad \text { for each } x, y \in X \\
& \quad\left(\mathrm{i}_{g}\right) \text { there exists } a_{g} \in[0,1[\text { such that } \\
& d\left(g_{1}(x), g_{2}(y)\right) \leq a_{g} \varphi_{g}\left(d(x, y), d\left(x, g_{1}(x)\right), d\left(y, g_{2}(y)\right), d\left(x, g_{2}(y)\right), d\left(y, g_{1}(x)\right)\right),
\end{aligned}
$$

for each $x, y \in X$;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta
$$

Then $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}, F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and

$$
d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta\left(1-\max \left\{a_{f}, a_{g}\right\}\right)^{-1} .
$$

Proof. From the Theorem 2.6 we have that $F_{f_{1}}=F_{f_{2}}=\left\{x_{f}^{*}\right\}$ and that $\left(f_{1}, f_{2}\right)$ is c_{f}-P. p. o., with $c_{f}=\left(1-a_{f}\right)^{-1}$. From the same theorem we also have that $F_{g_{1}}=F_{g_{2}}=\left\{x_{g}^{*}\right\}$ and that $\left(g_{1}, g_{2}\right)$ is c_{g}-P. p. o., with $c_{g}=\left(1-a_{g}\right)^{-1}$. Now, the fact that $d\left(x_{f}^{*}, x_{g}^{*}\right) \leq \eta\left(1-\max \left\{a_{f}, a_{g}\right\}\right)^{-1}$ follows immediately from the Remark 2.1 and the Theorem 3.1.

Theorem 3.8. Let (X, d) be a complete metric space and $f_{1}, f_{2}, g_{1}, g_{2}: X \rightarrow X$ be four operators. We suppose that:
(i_{f}) there exist $a_{1}^{f}, a_{2}^{f} \in[0,1[$ such that for each $k, l \in\{1,2\}$, with $k \neq l$ we have

$$
d\left(f_{k}(x), f_{l}\left(f_{k}(x)\right)\right) \leq a_{k}^{f} d\left(x, f_{k}(x)\right)
$$

for each $x \in X$;
(i_{g}) there exist $a_{1}^{g}, a_{2}^{g} \in[0,1[$ such that for each $k, l \in\{1,2\}$, with $k \neq l$ we have

$$
d\left(g_{k}(x), g_{l}\left(g_{k}(x)\right)\right) \leq a_{k}^{g} d\left(x, g_{k}(x)\right)
$$

for each $x \in X$;
(ii) there exists $\eta>0$ such that for each $x \in X$, there are $i_{x}, j_{x} \in\{1,2\}$ so that

$$
d\left(f_{i_{x}}(x), g_{j_{x}}(x)\right) \leq \eta
$$

Then

$$
H\left((C F)_{f_{1}, f_{2}},(C F)_{g_{1}, g_{2}}\right) \leq \eta\left(1-\max \left\{a_{1}^{f}, a_{2}^{f}, a_{1}^{g}, a_{2}^{g}\right\}\right)^{-1}
$$

Proof. From the Theorem 2.7 we have that $\left(f_{1}, f_{2}\right)$ is c_{f}-w. P. p. o., with $c_{f}=$ $\left(1-\max \left\{a_{1}^{f}, a_{2}^{f}\right\}\right)^{-1}$ and that $\left(g_{1}, g_{2}\right)$ is c_{g}-w. P. p. o., with $c_{g}=\left(1-\max \left\{a_{1}^{g}, a_{2}^{g}\right\}\right)^{-1}$. The conclusion follows from the Theorem 3.1.

References

[1] S. K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci. 25, 1972, 727-730.
[2] L. B. Cirić, On a family of contractive maps and fixed points, Publ. Inst. Math. 17, 1974, 45-51.
[3] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60, 1968, 71-76.
[4] I. A. Rus, On common fixed points, Studia Univ. Babeş-Bolyai, Ser. Math.-Mech. 18 (1), 1973, 31-33.
[5] I. A. Rus, Approximation of common fixed point in a generalized metric space, Anal. Numér. Théor. Approx. 8 (1), 1979, 83-87.
[6] I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae 34 (4), 1993, 769-733.
[7] I. A. Rus, Picard operators and applications, Seminar on Fixed Point Theory, "BabeşBolyai" Univ., Preprint Nr. 3, 1996.
[8] I. A. Rus, Generalized contractions and applications, Cluj University Press, ClujNapoca, 2001.
[9] I. A. Rus, S. Mureşan, Data dependence of the fixed points set of weakly Picard operators, Studia Univ. Babeş-Bolyai, Mathematica 43, 1998, 79-83.
[10] I. A. Rus, S. Mureşan, Data dependence of the fixed points set of some weakly Picard operators, Tiberiu Popoviciu Itinerant Seminar of Functional Equations, Approximation and Convexity, Cluj-Napoca, May 23-29, 2000, 201-207.

PICARD PAIRS AND WEAKLY PICARD PAIRS OF OPERATORS

Faculty of Mathematics and Computer Science,
Babes-Bolyai University, 3400 Cluj-Napoca, Romania

Received: 04.07.2001

[^0]: 2000 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. fixed point, common fixed point, Picard operator, weakly Picard operator, Picard pair of operators, weakly Picard pair of operators.

