COMMON FIXED POINT THEOREMS FOR MULTIVALUED OPERATORS ON COMPLETE METRIC SPACES

AUREL MUNTEAN

1. Introduction

The purpose of this paper is to prove a common fixed point theorem for multivalued operators defined on a complete metric space. Then, as consequences, we obtain some generalizations of several results proved in [6] for singlevalued operators.

For other results of this type see [1], [2], [3] and [5]. The metric conditions which appears in Theorem 3.1 generalize some conditions given in [6].

2. Preliminaries

Let X be a nonempty set. We denote:

$$
P(X):=\{A \subset X \mid A \neq \varnothing\} \quad \text { and } \quad P_{c l}(X):=\{A \in P(X) \mid A=\bar{A}\} .
$$

If (X, d) is a metric space, $B \in P(X)$ and $a \in A$, then

$$
D(a, B):=\inf \{d(a, b) \mid b \in B\}
$$

Definition 2.1. If $T: X \multimap X$ is a multivalued operator, then an element $x \in X$ is a fixed point of T, iff $x \in T(x)$.

We denote by $F_{T}:=\{x \in X \mid x \in T(x)\}$ the fixed points set of \boldsymbol{T}.
Definition 2.2. Let $\left(T_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of multivalued operators T_{n} : $X \rightarrow P(X), \quad(\forall) n \in \mathbb{N}^{*}$. Then we denote by

$$
\operatorname{Com}(T):=\left\{x \in X \mid x \in T_{n}(x), \quad(\forall) n \in \mathbb{N}^{*}\right\}=\bigcap_{n \in \mathbb{N}^{*}} F_{T_{n}}
$$

the common fixed points set of the sequence $\left(T_{n}\right)_{n \in \mathbb{N}^{*}}$.

[^0]Lemma 2.3. (I.A.Rus [4]). Let $\varphi: \mathbb{R}_{+}^{k} \rightarrow \mathbb{R}_{+} \quad\left(k \in \mathbb{N}^{*}\right)$ be a function and denote by $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, the mapping given by $\quad \psi(t)=\varphi(t, t, \ldots, t), \quad(\forall) t \in \mathbb{R}_{+}$.

Suppose that the following conditions are satisfied:
i) $\left(r \leqslant s, \quad r, s \in \mathbb{R}_{+}^{k}\right) \Rightarrow \varphi(r) \leqslant \varphi(s)$;
ii) φ is upper semi-continuous;
iii) $\psi(t)<t$, for each $t>0$.

Then $\lim _{n \rightarrow \infty} \psi^{n}(t)=0$, for each $t \geqslant 0$.
In [6], T.Veerapandi and S.A.Kumar gave the following result:
Theorem 2.4. Let X be a Hilbert space, $Y \in P_{c l}(X)$ and $T_{n}: Y \rightarrow Y$, for $n \in \mathbb{N}$, be a sequence of mappings.

We suppose that at least one of the following conditions is satisfied:
i) there exist real numbers a, b, c, satisfying $0 \leqslant a, b, c<1$ and $a+2 b+$ $2 c<1$ such that for each $x, y \in Y$ and $x \neq y$,

$$
\begin{gathered}
\left\|T_{i}(x)-T_{j}(y)\right\|^{2} \leqslant a \cdot\|x-y\|^{2}+b\left(\left\|x-T_{i}(x)\right\|^{2}+\left\|y-T_{j}(y)\right\|^{2}\right)+ \\
+\frac{c}{2}\left(\left\|x-T_{j}(y)\right\|^{2}+\left\|y-T_{i}(x)\right\|^{2}\right), \text { for } i, j
\end{gathered}
$$

ii) there exist a real number h satisfying $0 \leqslant h<1$ such that for all $x, y \in Y$ and $x \neq y$,

$$
\begin{gathered}
\left\|T_{i}(x)-T_{j}(y)\right\|^{2} \leqslant h \cdot \max \left\{\|x-y\|^{2}, \frac{1}{2}\left(\left\|x-T_{i}(x)\right\|^{2}+\left\|y-T_{j}(y)\right\|^{2}\right)\right. \\
\left.\frac{1}{4}\left(\left\|x-T_{j}(y)\right\|^{2}+\left\|y-T_{i}(x)\right\|^{2}\right)\right\}, \text { for } i, j
\end{gathered}
$$

Then, $\left(T_{n}\right)_{n \in \mathbb{N}^{*}}$ has a unique common fixed point.

3. The main results

The first result of this section improve and generalize Theorem 2.4 in the multivoque case.

Theorem 3.1. Let (X, d) be a complete metric space and $S, T: X \rightarrow$ $P_{c l}(X)$ multivalued operators.

We suppose that there exists a function $\varphi: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}$such that:
i) $\left(r \leqslant s, \quad r, s \in \mathbb{R}_{+}^{3}\right) \Rightarrow \varphi(r) \leqslant \varphi(s)$;
ii) $\varphi(t, t, t)<t$ for each $t>0$;
iii) φ is continuous;
iv) for each $x \in X$, any $u_{x} \in S(x)$ and for all $y \in X$, there exists $u_{y} \in T(y)$ so that we have

$$
d^{2}\left(u_{x}, u_{y}\right) \leqslant \varphi\left(d^{2}(x, y), \quad \frac{d^{2}\left(x, u_{x}\right)+d^{2}\left(y, u_{y}\right)}{2}, \quad \frac{d^{2}\left(x, u_{y}\right)+d^{2}\left(y, u_{x}\right)}{4}\right) .
$$

In these conditions, $F_{S}=F_{T}=\left\{x^{*}\right\}$.
Proof. Let $x_{0} \in X$ arbitrarily. Then we can construct a sequence $\left(x_{n}\right) \subset X$ such that

$$
\left\{\begin{array}{l}
x_{2 n+1} \in S\left(x_{2 n}\right) \\
x_{2 n+2} \in T\left(x_{2 n+1}\right)
\end{array} \quad(\forall) n \in \mathbb{N}\right.
$$

Denote by $d_{n}:=d\left(x_{n}, x_{n+1}\right), \quad n \in \mathbb{N}$. We have several steps in our proof.
Step I. Let us prove that the sequence $\left(d_{n}\right)$ is monotone decreasing. Indeed, we have successively:

$$
\begin{gathered}
d_{2 n+1}^{2}=d^{2}\left(x_{2 n+1}, x_{2 n+2}\right) \leqslant \\
\leqslant \varphi\left(d^{2}\left(x_{2 n}, x_{2 n+1}\right), \frac{d^{2}\left(x_{2 n}, x_{2 n+1}\right)+d^{2}\left(x_{2 n+1}, x_{2 n+2}\right)}{2}\right. \\
\left.\frac{d^{2}\left(x_{2 n}, x_{2 n+2}\right)+d^{2}\left(x_{2 n+1}, x_{2 n+1}\right)}{4}\right) \leqslant \\
\leqslant \varphi\left(d_{2 n}^{2}, \frac{d_{2 n}^{2}+d_{2 n+1}^{2}}{2}, \frac{\left(d_{2 n}+d_{2 n+1}\right)^{2}}{4}\right)<\max \left\{d_{2 n}^{2}, \frac{d_{2 n}^{2}+d_{2 n+1}^{2}}{2}\right\}=d_{2 n}^{2},
\end{gathered}
$$

from where it follows $d_{2 n+1}<d_{2 n}$. By an analogous method we have $d_{2 n+2}<d_{2 n+1}$.
Step II. We prove that $\lim _{n \rightarrow \infty} d_{n}=0$.
For this purpose, let us define $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, by $\psi(t)=\varphi(t, t, t)$. Obviously, ψ is monotone increasing and $\psi(t)<t, \quad(\forall) t>0$.

By induction, we can prove that $d_{n}^{2} \leqslant \psi^{n}\left(d_{0}^{2}\right), \quad(\forall) n \geqslant 1$.
Indeed, we have

$$
d_{1}^{2} \leqslant \varphi\left(d_{0}^{2}, \frac{d_{1}^{2}+d_{0}^{2}}{2}, \frac{\left(d_{0}+d_{1}\right)^{2}}{4}\right) \leqslant \varphi\left(d_{0}^{2}, d_{0}^{2}, d_{0}^{2}\right)=\psi\left(d_{0}^{2}\right)
$$

If inequality $d_{2 n}^{2} \leqslant \psi^{2 n}\left(d_{0}^{2}\right) \quad$ is true, then we get successively:

$$
\begin{gathered}
d_{2 n+1}^{2} \leqslant \varphi\left(d_{2 n}^{2}, \frac{d_{2 n}^{2}+d_{2 n+1}^{2}}{2}, \frac{\left(d_{2 n}+d_{2 n+1}\right)^{2}}{4}\right) \leqslant \varphi\left(d_{2 n}^{2}, d_{2 n}^{2}, d_{2 n}^{2}\right)=\psi\left(d_{2 n}^{2}\right) \leqslant \\
\leq \psi\left(\psi^{2 n}\left(d_{0}^{2}\right)\right)=\psi^{2 n+1}\left(d_{0}^{2}\right) .
\end{gathered}
$$

By passing to limit as $n \rightarrow \infty$, if $d_{0}>0$ it follows

$$
\lim _{n \rightarrow \infty} d_{n}^{2} \leqslant \lim _{n \rightarrow \infty} \psi^{n}\left(d_{0}^{2}\right)=0, \quad \text { and hence } \quad \lim _{n \rightarrow \infty} d_{n}=0
$$

For $d_{0}=0$, the sequence $\left(d_{n}\right)$ being decreasing it is obviously that $\lim _{n \rightarrow \infty} d_{n}=0$.

Step III. We'll prove that the sequence $\left(x_{n}\right)$ is Cauchy in X, i.e. for each $\varepsilon>0$, there exists $k \in \mathbb{N}$ such that for each $m, n \geqslant k, \quad d\left(x_{m}, x_{n}\right)<\varepsilon$.

Suppose, by contradiction, that $\left(x_{2 n}\right)$ is not Cauchy sequence. Then, there exists $\varepsilon>0$ such that for each $2 k \in \mathbb{N}$ there exist $2 m_{k}, 2 n_{k} \in \mathbb{N}, \quad 2 m_{k}>2 n_{k} \geqslant 2 k$, with the property $d\left(x_{2 m_{k}}, x_{2 n_{k}}\right)>\varepsilon$.

In what follows, let us suppose the numbers $2 m(k)$ and $2 n(k)$ as follows:

$$
2 m(k):=\inf \left\{2 m_{k} \in \mathbb{N} \mid 2 m_{k}>2 n_{k} \geqslant 2 k, d\left(x_{2 n_{k}}, x_{2 m_{k}-2}\right) \leqslant \varepsilon, d\left(x_{2 n_{k}}, x_{2 m_{k}}\right)>\varepsilon\right\}
$$

and $2 n(k):=2 n_{k}$. Then, $(\forall) 2 k \in \mathbb{N}$ we have:

$$
\begin{aligned}
\varepsilon<d\left(x_{2 n(k)}, x_{2 m(k)}\right) \leqslant & d\left(x_{2 n(k)}, x_{2 m(k)-2}\right)+d\left(x_{2 m(k)-2}, x_{2 m(k)-1}\right)+ \\
& +d\left(x_{2 m(k)-1}, x_{2 m(k)}\right) .
\end{aligned}
$$

Using step II, we deduce that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{2 n(k)}, x_{2 m(k)}\right)=\varepsilon \tag{1}
\end{equation*}
$$

From the triangle inquality, we get:

$$
\left|d\left(x_{2 n(k)}, x_{2 m(k)-1}\right)-d\left(x_{2 n(k)}, x_{2 m(k)}\right)\right| \leqslant d\left(x_{2 m(k)-1}, x_{2 m(k)}\right)
$$

and

$$
\left|d\left(x_{2 n(k)+1}, x_{2 m(k)-1}\right)-d\left(x_{2 n(k)}, x_{2 m(k)}\right)\right| \leqslant d\left(x_{2 m(k)-1}, x_{2 m(k)}\right)+d\left(x_{2 n(k)}, x_{2 n(k)+1}\right)
$$

Using again step III and the relation (1), it follows

$$
\left\{\begin{align*}
\lim _{k \rightarrow \infty} d\left(x_{2 n(k)}, x_{2 m(k)-1}\right) & =\varepsilon \tag{2}\\
\lim _{k \rightarrow \infty} d\left(x_{2 n(k)+1}, x_{2 m(k)-1}\right) & =\varepsilon
\end{align*}\right.
$$

Then, we have successively:

$$
\begin{aligned}
& d\left(x_{2 n(k)}, x_{2 m(k)}\right) \leqslant d\left(x_{2 n(k)}, x_{2 n(k)+1}\right)+d\left(x_{2 n(k)+1}, x_{2 m(k)}\right) \leqslant d\left(x_{2 n(k)}, x_{2 n(k)+1}\right)+ \\
& \quad+\left[\varphi \left(d^{2}\left(x_{2 n(k)}, x_{2 m(k)-1}\right), \frac{d^{2}\left(x_{2 n(k)}, x_{2 n(k)+1}\right)+d^{2}\left(x_{2 m(k)-1}, x_{2 m(k)}\right)}{2}\right.\right.
\end{aligned}
$$

$$
\left.\frac{d^{2}\left(x_{2 n(k)}, x_{2 m(k)}\right)+d^{2}\left(x_{2 m(k)-1}, x_{2 n(k)+1}\right)}{4}\right]^{\frac{1}{2}} .
$$

Because φ is continuous, passing to the limit as $k \rightarrow \infty$, we have:

$$
\varepsilon \leqslant\left[\varphi\left(\varepsilon^{2}, 0, \frac{\varepsilon^{2}}{2}\right)\right]^{\frac{1}{2}} \leqslant\left[\psi\left(\varepsilon^{2}\right)\right]^{\frac{1}{2}}<\varepsilon, \quad \text { a contradiction. }
$$

Step IV. We prove that $F_{T} \neq \varnothing$.
Because $\left(x_{n}\right)$ is Cauchy sequence in the complete metric space (X, d) we obtain that there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$.

From $x_{2 n+1} \in S\left(x_{2 n}\right)$ we have that there exists $u_{n} \in T\left(x^{*}\right)$ such that:

$$
\begin{gathered}
d^{2}\left(x_{2 n+1}, u_{n}\right) \leqslant \\
\leq \varphi\left(d^{2}\left(x_{2 n}, x^{*}\right), \frac{d^{2}\left(x_{2 n}, x_{2 n+1}\right)+d^{2}\left(x^{*}, u_{n}\right)}{2}, \frac{d^{2}\left(x_{2 n}, u_{n}\right)+d^{2}\left(x^{*}, x_{2 n+1}\right)}{4}\right)< \\
<\max \left\{d^{2}\left(x_{2 n}, x^{*}\right), \frac{d^{2}\left(x_{2 n}, x_{2 n+1}\right)+d^{2}\left(x^{*}, u_{n}\right)}{2}, \frac{d^{2}\left(x_{2 n}, u_{n}\right)+d^{2}\left(x^{*}, x_{2 n+1}\right)}{4}\right\} \\
:=M .
\end{gathered}
$$

Consequently, we have the following situations:
a. Case $M=d^{2}\left(x_{2 n}, x^{*}\right)$. In this case, we have

$$
d^{2}\left(x_{2 n+1}, u_{n}\right) \leqslant d^{2}\left(x_{2 n}, x^{*}\right),
$$

from where

$$
\lim _{n \rightarrow \infty} d\left(x_{2 n+1}, u_{n}\right) \leqslant \lim _{n \rightarrow \infty} d\left(x_{2 n}, x^{*}\right)=0,
$$

i.e.

$$
\lim _{n \rightarrow \infty} d\left(x_{2 n+1}, u_{n}\right)=0 .
$$

b. Case $\quad M=\frac{d^{2}\left(x_{2 n}, x_{2 n+1}\right)+d^{2}\left(x^{*}, u_{n}\right)}{2}$. We deduce successively:

$$
\begin{aligned}
& d^{2}\left(x_{2 n+1}, u_{n}\right) \leqslant \frac{d^{2}\left(x_{2 n}, x_{2 n+1}\right)+d^{2}\left(x^{*}, u_{n}\right)}{2} \leqslant \\
\leq & \frac{d^{2}\left(x_{2 n}, x_{2 n+1}\right)+\left[d\left(x^{*}, x_{2 n+1}\right)+d\left(x_{2 n+1}, u_{n}\right)\right]^{2}}{2},
\end{aligned}
$$

i.e. $d^{2}\left(x_{2 n+1}, u_{n}\right)-2 \cdot d\left(x^{*}, x_{2 n+1}\right) \cdot d\left(x_{2 n+1}, u_{n}\right)-\left[d^{2}\left(x_{2 n}, x_{2 n+1}\right)+d^{2}\left(x^{*}, x_{2 n+1}\right)\right] \leqslant 0$, therefore

$$
d\left(x_{2 n+1}, u_{n}\right) \leqslant d\left(x^{*}, x_{2 n+1}\right)+\sqrt{2 \cdot d^{2}\left(x^{*}, x_{2 n+1}\right)+d^{2}\left(x_{2 n}, x_{2 n+1}\right)} .
$$

Passing to the limit in this inequality, as $n \rightarrow \infty$, we obtain

$$
\lim _{n \rightarrow \infty} d\left(x_{2 n+1}, u_{n}\right)=0 .
$$

c. Case $M=\frac{d^{2}\left(x_{2 n}, u_{n}\right)+d^{2}\left(x^{*}, x_{2 n+1}\right)}{4}$. In this case, from the inequality

$$
d^{2}\left(x_{2 n+1}, u_{n}\right) \leqslant \frac{d^{2}\left(x_{2 n}, u_{n}\right)+d^{2}\left(x^{*}, x_{2 n+1}\right)}{4}
$$

we have, again,

$$
\lim _{n \rightarrow \infty} d\left(x_{2 n+1}, u_{n}\right)=0 .
$$

Passing to the limit, as $n \rightarrow \infty$, in inequality

$$
d\left(x^{*}, u_{n}\right) \leqslant d\left(x^{*}, x_{2 n+1}\right)+d\left(x_{2 n+1}, u_{n}\right)
$$

on the basis of the limit $\lim _{n \rightarrow \infty} d\left(x_{2 n+1}, u_{n}\right)=0$, we obtain $d\left(x^{*}, u_{n}\right) \rightarrow 0$ as $n \rightarrow 0$.
Since $u_{n} \in T\left(x^{*}\right), \quad(\forall) n \in \mathbb{N}$ and $T\left(x^{*}\right)$ is a closed set, it follows that $x^{*} \in T\left(x^{*}\right)$, i.e. $\quad x^{*} \in F_{T}$.

Step V. We'll obtain, now, the conclusion of our theorem. We first prove that $F_{S} \subset F_{T}$.

Let $x^{*} \in F_{S}$. From $x^{*} \in S\left(x^{*}\right)$ we have that there exists $u \in T\left(x^{*}\right)$ such that

$$
d^{2}\left(x^{*}, u\right) \leqslant \varphi\left(d^{2}\left(x^{*}, x^{*}\right), \frac{d^{2}\left(x^{*}, x^{*}\right)+d^{2}\left(x^{*}, u\right)}{2}, \frac{d^{2}\left(x^{*}, u\right)+d^{2}\left(x^{*}, x^{*}\right)}{4}\right) .
$$

If we suppose that $d\left(x^{*}, u\right)>0$, then we obtain

$$
d^{2}\left(x^{*}, u\right) \leqslant \varphi\left(0, \frac{d^{2}\left(x^{*}, u\right)}{2}, \frac{d^{2}\left(x^{*}, u\right)}{4}\right)<\frac{d^{2}\left(x^{*}, u\right)}{2}
$$

a contradiction. Thus, $d\left(x^{*}, u\right)=0$, which means that $u=x^{*}$. It follows that $x^{*} \in T\left(x^{*}\right)$ and so $F_{S} \subset F_{T}$.

We shall prove now the equality $F_{S}=F_{T}$ betwen the fixed points set for S and T .

If we assume that there exists $\quad y^{*} \in F_{T} \quad$ such that $\quad y^{*} \neq x^{*} \in F_{S}$, then we have

$$
\begin{aligned}
d^{2}\left(x^{*}, y^{*}\right) & \leqslant \varphi\left(d^{2}\left(x^{*}, y^{*}\right), \frac{d^{2}\left(x^{*}, x^{*}\right)+d^{2}\left(y^{*}, y^{*}\right)}{2}, \frac{d^{2}\left(x^{*}, y^{*}\right)+d^{2}\left(y^{*}, x^{*}\right)}{4}\right)= \\
& =\varphi\left(d^{2}\left(x^{*}, y^{*}\right), 0, \frac{d^{2}\left(x^{*}, y^{*}\right)}{2}\right) \leqslant \psi\left(d^{2}\left(x^{*}, y^{*}\right)\right)<d^{2}\left(x^{*}, y^{*}\right)
\end{aligned}
$$

a contradiction, proving the fact that $F_{S}=F_{T} \in P(X)$.
In fact, we have obtained, even more, namely that $F_{S}=F_{T}=\left\{x^{*}\right\}$.
Corollary 3.2. Let (X, d) be a complete metric space and $S, T: X \rightarrow P_{c l}(X)$ multivalued operators .

We suppose that there exist $a, b, c \in \mathbb{R}_{+}, \quad a+2 b+2 c<1, \quad$ such that for each $x \in X$, each $u_{x} \in S(x)$ and for all $y \in X$, there exists $u_{y} \in T(y)$ so that we have

$$
\begin{aligned}
& d^{2}\left(u_{x}, u_{y}\right) \leqslant a \cdot d^{2}(x, y)+b \cdot\left[d^{2}\left(x, u_{x}\right)+d^{2}\left(y, u_{y}\right)\right]+\frac{c}{2} \cdot\left[d^{2}\left(x, u_{y}\right)+d^{2}\left(y, u_{x}\right)\right] . \\
& \text { Then, } \quad F_{S}=F_{T}=\left\{x^{*}\right\} .
\end{aligned}
$$

Proof. Applying Theorem 3.1 for the function $\varphi: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}, \varphi\left(t_{1}, t_{2}, t_{3}\right)=$ $a t_{1}+2 b t_{2}+2 c t_{3}$, which satisfies the conditions i), ii) and iii) of this theorem, we obtain the conclusion.

Remark 3.3. If T and S are singlevalued operators, then Corollary 3.2 is Theorem 3 from [6].

Corollary 3.4. Let (X, d) be a complete metric space and $S, T: X \rightarrow$ $P_{c l}(X)$ multivalued operators.

We suppose that there exists $h \in] 0,1[$ such that for each $x \in X$, any $u_{x} \in S(x)$ and for all $y \in X$, there exists $u_{y} \in T(y)$ so that we have

$$
d^{2}\left(u_{x}, u_{y}\right) \leqslant h \cdot \max \left\{d^{2}(x, y), \frac{d^{2}\left(x, u_{x}\right)+d^{2}\left(y, u_{y}\right)}{2}, \frac{d^{2}\left(x, u_{y}\right)+d^{2}\left(y, u_{x}\right)}{4}\right\} .
$$

In these conditions, $\quad F_{S}=F_{T}=\left\{x^{*}\right\}$.
Proof. We apply Theorem 3.1 for the function $\varphi: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}, \varphi\left(t_{1}, t_{2}, t_{3}\right)=$ $h \cdot \max \left\{t_{1}, t_{2}, t_{3}\right\}$, which satisfies the conditions i), ii) and iii) of this theorem.

Remark 3.5. Corollary 3.4 is a generalization for multivalued operators of Theorem 4 from [6], theorem proved for singlevalued operators in Hilbert spaces.

Remark 3.6. Let (X, d) be a complete metric space and $\left(T_{n}\right)_{n \in \mathbb{N}}$ be a sequence of multivalued operators $\quad T_{n}: X \rightarrow P_{c l}(X), \quad(\forall) n \in \mathbb{N}$.

If each pair of multivalued operators $\left(T_{0}, T_{n}\right)$, for $n \in \mathbb{N}^{*}$, satisfies similar conditions as in Theorem 3.1, then $F_{T_{n}}=F_{T_{0}}=\left\{x^{*}\right\}$, for all $n \in \mathbb{N}^{*}$.

We next give a generalization of Theorem 1 of N.Negoescu [2].

Theorem 3.7. Let (X, d) be a compact metric space, $S, T: X \rightarrow P_{c l}(X)$ and $\varphi: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}$. Suppose that the following conditions are satisfies:
i) $\left(r \leqslant s ; r, s \in \mathbb{R}_{+}^{3}\right) \Rightarrow \varphi(r) \leqslant \varphi(s)$;
ii) $\varphi(t, t, t)<t, \quad(\forall) t>0$;
iii) $\quad S$ or T be continuous;
iv) $d^{2}\left(u_{x}, u_{y}\right)<\varphi\left(d^{2}(x, y), d\left(x, u_{x}\right) \cdot d\left(y, u_{y}\right), d\left(x, u_{y}\right) \cdot d\left(y, u_{x}\right)\right)$, for all $x, y \in X, x \neq y$ and for all $\left(u_{x}, u_{y}\right) \in S(x) \times T(x)$.

In these conditions.
a. $\quad S$ or T has a strict fixed point;
b. if both S and T have such fixed points, then the pair (S, T) has a common fixed point.

Proof. a. Let S be continuous and we consider the function $f(x)$:= $D(x, S(x))$. Because f is continuous on X , it follows that f takes its minimum value, i.e. there exists $x_{0} \in X$ such that $f\left(x_{0}\right)=\inf \{f(x) \mid x \in X\}$.

We prove that x_{0} is a fixed point of S or some $x_{1} \in S\left(x_{0}\right)$ is a fixed point of T .

Indeed, we choose:
$x_{1} \in S\left(x_{0}\right) \quad$ be such that $\quad d\left(x_{0}, x_{1}\right)=D\left(x_{0}, S\left(x_{0}\right)\right)$;
$x_{2} \in T\left(x_{1}\right) \quad$ be such that $d\left(x_{1}, x_{2}\right)=D\left(x_{1}, T\left(x_{1}\right)\right)$;
$x_{3} \in S\left(x_{2}\right) \quad$ be such that $\quad d\left(x_{2}, x_{3}\right)=D\left(x_{2}, S\left(x_{2}\right)\right)$.
We shall prove that $D\left(x_{0}, S\left(x_{0}\right)\right)=0$ or $D\left(x_{1}, T\left(x_{1}\right)\right)=0$, i.e. $x_{0} \in S\left(x_{0}\right)$ or $x_{1} \in T\left(x_{1}\right)$. We suppose that $D\left(x_{0}, S\left(x_{0}\right)\right)>0$ and $D\left(x_{1}, T\left(x_{1}\right)\right)>0$. Hence, using the inequality iv), we have:

$$
\begin{aligned}
d^{2}\left(x_{1}, x_{2}\right)< & \varphi\left(d^{2}\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right) \cdot d\left(x_{1}, x_{2}\right), d\left(x_{0}, x_{2}\right) \cdot d\left(x_{1}, x_{1}\right)\right) \leqslant \\
& \leqslant \max \left\{d^{2}\left(x_{0}, x_{1}\right), d\left(x_{0}, x_{1}\right) \cdot d\left(x_{1}, x_{2}\right)\right\}:=M .
\end{aligned}
$$

Consequently, we distinguish the following situations:
I. Case $M=d^{2}\left(x_{0}, x_{1}\right)$. In this case, we deduce $d\left(x_{1}, x_{2}\right)<d\left(x_{0}, x_{1}\right)$.
II. Case $M=d\left(x_{0}, x_{1}\right) \cdot d\left(x_{1}, x_{2}\right)$. In this case, we have $d^{2}\left(x_{1}, x_{2}\right)<$ $d\left(x_{0}, x_{1}\right) \cdot d\left(x_{1}, x_{2}\right)$. Since $d\left(x_{1}, x_{2}\right)=D\left(x_{1}, T\left(x_{1}\right)\right)>0$, it follows that $d\left(x_{1}, x_{2}\right)<$
$d\left(x_{0}, x_{1}\right)$. Now,

$$
\begin{aligned}
d^{2}\left(x_{3}, x_{2}\right)<\varphi & \left(d^{2}\left(x_{2}, x_{1}\right), d\left(x_{2}, x_{3}\right) \cdot d\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{2}\right) \cdot d\left(x_{1}, x_{3}\right)\right) \leqslant \\
& \left.\leqslant \max \left\{d^{2}\left(x_{1}, x_{2}\right), d\left(x_{2}, x_{3}\right)\right) \cdot d\left(x_{1}, x_{2}\right)\right\} .
\end{aligned}
$$

Analogously, it follows that $d^{2}\left(x_{2}, x_{3}\right)<d^{2}\left(x_{1}, x_{2}\right)$ or $d^{2}\left(x_{2}, x_{3}\right)<$ $d\left(x_{2}, x_{3}\right) \cdot d\left(x_{1}, x_{2}\right)$.

In the second situations, if $d\left(x_{2}, x_{3}\right)=0$, we obtain a contradiction. Thus, it follows that $d\left(x_{2}, x_{3}\right)<d\left(x_{1}, x_{2}\right)$.

Similarly, we deduce successively:

$$
D\left(x_{2}, S\left(x_{2}\right)\right)=d\left(x_{2}, x_{3}\right)<d\left(x_{1}, x_{2}\right)<d\left(x_{0}, x_{1}\right)=f\left(x_{0}\right)
$$

which contradict the minimality of $f\left(x_{0}\right)$. Therefore, $D\left(x_{0}, S\left(x_{0}\right)\right)=0 \quad$ or $D\left(x_{1}, T\left(x_{1}\right)\right)=0$. So, $x_{0} \in S\left(x_{0}\right)$ or $x_{1} \in T\left(x_{1}\right)$.
b. We assume that there exist $u \in S(u)$ and $v \in T(v)$, such that $u \neq v$. Then, using the hypothesis iv) we get, again, a contradiction:

$$
d^{2}(u, v)<\varphi\left(d^{2}(u, v), d(u, u) \cdot d(v, v), d^{2}(u, v)\right) \leqslant d^{2}(u, v)
$$

So, $u=v$, meaning that u is a common fixed point of S and T .
Remark 3.8. If $\varphi: \mathbb{R}_{+}^{3} \rightarrow \mathbb{R}_{+}, \quad \varphi\left(t_{1}, t_{2}, t_{3}\right)=\max \left\{t_{1}, t_{2}, t_{3}\right\}$, from Theorem 3.7, we get a result of Negoescu [2, Theorem 1].

Remark 3.9. We note that Theorem 3.7 is true for $\quad S=T: X \rightarrow P_{c l}(X)$.

References

[1] I. Kubiaczyk, Fixed points for contractive correspondences, Demonstratio Math., 20(1987), 495-500.
[2] N. Negoescu, Observations sur des paires d'applications multivoques d'un certain type de contractivité, Bul. Instit. Politehnic Iaşi, 35(1989), fasc.3-4, 1989, 21-25.
[3] V. Popa, Common fixed points of sequence of multifunctions, "Babes-Bolyai" Univ., Seminar on Fixed Point Theory, Preprint nr.3, 1985, 59-68.
[4] I.A. Rus, Generalized contractions, "Babes-Bolyai" Univ, Seminar on Fixed Point Theory, Preprint nr.3, 1983, 1-130.
[5] I.A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of cmultivalued weakly Picard operators, Mathematica, Cluj-Napoca, (to appear).
[6] T. Veerapandi, S.A. Kumar, Common fixed point theorems of a sequence of mappings in Hilbert space, Bull. Cal. Math. Soc., 91(1999), 299-308.

Carol I High School Sibiu, 2400 Sibiu, ROMANiA
E-mail address: aurelmuntean@yahoo.com

AUREL MUNTEAN

Received: 28.09.2001

[^0]: 2000 Mathematics Subject Classification. 47H10, 54H25.
 Key words and phrases. fixed point, multivalued operator, common fixed point.

