COMMON FIXED POINT THEOREMS FOR MULTIVALUED OPERATORS ON COMPLETE METRIC SPACES

AUREL MUNTEAN

1. Introduction

The purpose of this paper is to prove a common fixed point theorem for multivalued operators defined on a complete metric space. Then, as consequences, we obtain some generalizations of several results proved in [6] for singlevalued operators.

For other results of this type see [1], [2], [3] and [5]. The metric conditions which appears in Theorem 3.1 generalize some conditions given in [6].

2. Preliminaries

Let X be a nonempty set. We denote:

$$P(X) := \{A \subset X \mid A \neq \emptyset\} \text{ and } P_{cl}(X) := \{A \in P(X) \mid A = \overline{A}\}.$$

If (X, d) is a metric space, $B \in P(X)$ and $a \in A$, then

$$D(a,B) := \inf\{d(a,b) \mid b \in B\}.$$

Definition 2.1. If $T: X \multimap X$ is a multivalued operator, then an element $x \in X$ is a *fixed point of* T, iff $x \in T(x)$.

We denote by $F_T := \{x \in X \mid x \in T(x)\}$ the fixed points set of T.

Definition 2.2. Let $(T_n)_{n \in \mathbb{N}^*}$ be a sequence of multivalued operators $T_n : X \to P(X)$, $(\forall) \ n \in \mathbb{N}^*$. Then we denote by

$$Com(T) := \{ x \in X \mid x \in T_n(x), \quad (\forall) \, n \in \mathbb{N}^* \} = \bigcap_{n \in \mathbb{N}^*} F_{T_n}$$

the common fixed points set of the sequence $(T_n)_{n \in \mathbb{N}^*}$.

²⁰⁰⁰ Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. fixed point, multivalued operator, common fixed point.

Lemma 2.3. (I.A.Rus [4]). Let $\varphi : \mathbb{R}^k_+ \to \mathbb{R}_+$ $(k \in \mathbb{N}^*)$ be a function and denote by $\psi : \mathbb{R}_+ \to \mathbb{R}_+$, the mapping given by $\psi(t) = \varphi(t, t, ..., t)$, $(\forall) t \in \mathbb{R}_+$.

Suppose that the following conditions are satisfied:

$$i) \quad (r \leqslant s, \quad r, s \in \mathbb{R}^k_+) \quad \Rightarrow \quad \varphi(r) \leqslant \varphi(s);$$

- ii) φ is upper semi-continuous;
- iii) $\psi(t) < t$, for each t > 0.

Then $\lim_{n \to \infty} \psi^n(t) = 0$, for each $t \ge 0$.

In [6], T.Veerapandi and S.A.Kumar gave the following result:

Theorem 2.4. Let X be a Hilbert space, $Y \in P_{cl}(X)$ and $T_n : Y \to Y$, for $n \in \mathbb{N}$, be a sequence of mappings.

We suppose that at least one of the following conditions is satisfied:

i) there exist real numbers a, b, c, satisfying $0 \le a, b, c < 1$ and a + 2b + 2c < 1 such that for each $x, y \in Y$ and $x \neq y$,

$$||T_{i}(x) - T_{j}(y)||^{2} \leq a \cdot ||x - y||^{2} + b \Big(||x - T_{i}(x)||^{2} + ||y - T_{j}(y)||^{2} \Big) + \frac{c}{2} \Big(||x - T_{j}(y)||^{2} + ||y - T_{i}(x)||^{2} \Big), \text{ for } i, j;$$

 $ii) \quad there \ exist \ a \ real \ number \ h \quad satisfying \quad 0 \leqslant h < 1 \quad such \ that \ for \ all \\ x,y \in Y \ and \ x \neq y,$

$$||T_{i}(x) - T_{j}(y)||^{2} \leq h \cdot \max\left\{||x - y||^{2}, \frac{1}{2}\left(||x - T_{i}(x)||^{2} + ||y - T_{j}(y)||^{2}\right), \frac{1}{4}\left(||x - T_{j}(y)||^{2} + ||y - T_{i}(x)||^{2}\right)\right\}, \text{ for } i, j.$$

Then, $(T_n)_{n \in \mathbb{N}^*}$ has a unique common fixed point.

3. The main results

The first result of this section improve and generalize Theorem 2.4 in the multivoque case.

Theorem 3.1. Let (X, d) be a complete metric space and $S, T : X \to P_{cl}(X)$ multivalued operators.

We suppose that there exists a function $\varphi : \mathbb{R}^3_+ \to \mathbb{R}_+$ such that:

- $i) \quad (r\leqslant s, \quad r,s\in \mathbb{R}^3_+) \quad \Rightarrow \quad \varphi(r)\leqslant \varphi(s);$
- ii) $\varphi(t,t,t) < t$ for each t > 0;

7	4
	-

COMMON FIXED POINT THEOREMS

iii) φ is continuous;

iv) for each $x \in X$, any $u_x \in S(x)$ and for all $y \in X$, there exists $u_y \in T(y)$ so that we have

$$d^{2}(u_{x}, u_{y}) \leqslant \varphi \left(d^{2}(x, y), \frac{d^{2}(x, u_{x}) + d^{2}(y, u_{y})}{2}, \frac{d^{2}(x, u_{y}) + d^{2}(y, u_{x})}{4} \right).$$
In these conditions, $F_{2} = F_{2} = \{x^{*}\}$

In these conditions, $F_S = F_T = \{x^*\}.$

Proof. Let $x_0 \in X$ arbitrarily. Then we can construct a sequence $(x_n) \subset X$ such that

$$\begin{cases} x_{2n+1} \in S(x_{2n}) \\ x_{2n+2} \in T(x_{2n+1}) \end{cases} \quad (\forall) n \in \mathbb{N}.$$

Denote by $d_n := d(x_n, x_{n+1}), \quad n \in \mathbb{N}$. We have several steps in our proof.

Step I. Let us prove that the sequence (d_n) is monotone decreasing. Indeed, we have successively:

$$\begin{aligned} d_{2n+1}^2 &= d^2(x_{2n+1}, x_{2n+2}) \leqslant \\ &\leqslant \varphi \Big(d^2(x_{2n}, x_{2n+1}), \frac{d^2(x_{2n}, x_{2n+1}) + d^2(x_{2n+1}, x_{2n+2})}{2}, \\ &\frac{d^2(x_{2n}, x_{2n+2}) + d^2(x_{2n+1}, x_{2n+1})}{4} \Big) \leqslant \\ &\leqslant \varphi \left(d_{2n}^2, \frac{d_{2n}^2 + d_{2n+1}^2}{2}, \frac{(d_{2n} + d_{2n+1})^2}{4} \right) < \max \left\{ d_{2n}^2, \frac{d_{2n}^2 + d_{2n+1}^2}{2} \right\} = d_{2n}^2, \end{aligned}$$

from where it follows $d_{2n+1} < d_{2n}$. By an analogous method we have $d_{2n+2} < d_{2n+1}$.

Step II. We prove that $\lim_{n \to \infty} d_n = 0.$

For this purpose, let us define $\psi : \mathbb{R}_+ \to \mathbb{R}_+$, by $\psi(t) = \varphi(t, t, t)$. Obviously, ψ is monotone increasing and $\psi(t) < t$, $(\forall) t > 0$.

By induction, we can prove that $d_n^2 \leqslant \psi^n(d_0^2), \quad (\forall) \, n \geqslant 1.$

Indeed, we have

$$d_1^2 \leqslant \varphi\left(d_0^2, \frac{d_1^2 + d_0^2}{2}, \frac{(d_0 + d_1)^2}{4}\right) \leqslant \varphi(d_0^2, d_0^2, d_0^2) = \psi(d_0^2).$$

If inequality $d_{2n}^2 \leqslant \psi^{2n}(d_0^2)$ is true, then we get successively:

$$\begin{aligned} d_{2n+1}^2 &\leqslant \varphi \left(d_{2n}^2 \,, \, \frac{d_{2n}^2 + d_{2n+1}^2}{2} \,, \, \frac{(d_{2n} + d_{2n+1})^2}{4} \right) \leqslant \varphi(d_{2n}^2, d_{2n}^2, d_{2n}^2) = \psi(d_{2n}^2) \leqslant \\ &\leq \psi(\psi^{2n}(d_0^2)) = \psi^{2n+1}(d_0^2). \end{aligned}$$

By passing to limit as $n \to \infty$, if $d_0 > 0$ it follows

 $\lim_{n \to \infty} d_n^2 \leqslant \lim_{n \to \infty} \psi^n(d_0^2) = 0, \text{ and hence } \lim_{n \to \infty} d_n = 0.$

75

For $d_0 = 0$, the sequence (d_n) being decreasing it is obviously that $\lim_{n \to \infty} d_n = 0.$

Step III. We'll prove that the sequence (x_n) is Cauchy in X, i.e. for each $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that for each $m, n \ge k$, $d(x_m, x_n) < \varepsilon$.

Suppose, by contradiction, that (x_{2n}) is not Cauchy sequence. Then, there exists $\varepsilon > 0$ such that for each $2k \in \mathbb{N}$ there exist $2m_k, 2n_k \in \mathbb{N}$, $2m_k > 2n_k \ge 2k$, with the property $d(x_{2m_k}, x_{2n_k}) > \varepsilon$.

In what follows, let us suppose the numbers 2m(k) and 2n(k) as follows:

 $2m(k) := \inf\{2m_k \in \mathbb{N} \mid 2m_k > 2n_k \ge 2k, d(x_{2n_k}, x_{2m_k-2}) \le \varepsilon, d(x_{2n_k}, x_{2m_k}) > \varepsilon\}$ and $2n(k) := 2n_k$. Then, $(\forall) 2k \in \mathbb{N}$ we have:

$$\varepsilon < d(x_{2n(k)}, x_{2m(k)}) \leq d(x_{2n(k)}, x_{2m(k)-2}) + d(x_{2m(k)-2}, x_{2m(k)-1}) + d(x_{2m(k)-2}, x_{2m(k)-2}) + d(x_{2$$

$$+d(x_{2m(k)-1}, x_{2m(k)}).$$

Using step II, we deduce that

$$\lim_{k \to \infty} d(x_{2n(k)}, x_{2m(k)}) = \varepsilon.$$
(1)

From the triangle inquality, we get:

$$|d(x_{2n(k)}, x_{2m(k)-1}) - d(x_{2n(k)}, x_{2m(k)})| \leq d(x_{2m(k)-1}, x_{2m(k)})$$

and

$$|d(x_{2n(k)+1}, x_{2m(k)-1}) - d(x_{2n(k)}, x_{2m(k)})| \leq d(x_{2m(k)-1}, x_{2m(k)}) + d(x_{2n(k)}, x_{2n(k)+1}).$$

Using again step III and the relation (1), it follows

$$\lim_{k \to \infty} d(x_{2n(k)}, x_{2m(k)-1}) = \varepsilon$$

$$\lim_{k \to \infty} d(x_{2n(k)+1}, x_{2m(k)-1}) = \varepsilon.$$
(2)

Then, we have successively:

$$d(x_{2n(k)}, x_{2m(k)}) \leq d(x_{2n(k)}, x_{2n(k)+1}) + d(x_{2n(k)+1}, x_{2m(k)}) \leq d(x_{2n(k)}, x_{2n(k)+1}) + \left[\varphi(d^2(x_{2n(k)}, x_{2m(k)-1}), \frac{d^2(x_{2n(k)}, x_{2n(k)+1}) + d^2(x_{2m(k)-1}, x_{2m(k)})}{2}, \frac{d^2(x_{2n(k)}, x_{2n(k)+1}) + d^2(x_{2m(k)-1}, x_{2m(k)})}{2}\right]$$

76

COMMON FIXED POINT THEOREMS

$$\frac{d^2(x_{2n(k)}, x_{2m(k)}) + d^2(x_{2m(k)-1}, x_{2n(k)+1})}{4} \bigg]^{\frac{1}{2}}.$$

Because φ is continuous, passing to the limit as $k \to \infty$, we have:

$$\varepsilon \leqslant \left[\varphi\left(\varepsilon^2, 0, \frac{\varepsilon^2}{2}\right)\right]^{\frac{1}{2}} \leqslant \left[\psi(\varepsilon^2)\right]^{\frac{1}{2}} < \varepsilon, \text{ a contradiction.}$$

Step IV. We prove that $F_T \neq \emptyset$.

Because (x_n) is Cauchy sequence in the complete metric space (X, d) we obtain that there exists $x^* \in X$ such that $\lim_{n \to \infty} x_n = x^*$.

From $x_{2n+1} \in S(x_{2n})$ we have that there exists $u_n \in T(x^*)$ such that:

$$d^{2}(x_{2n+1}, u_{n}) \leqslant$$

$$\leq \varphi \left(d^{2}(x_{2n}, x^{*}), \frac{d^{2}(x_{2n}, x_{2n+1}) + d^{2}(x^{*}, u_{n})}{2}, \frac{d^{2}(x_{2n}, u_{n}) + d^{2}(x^{*}, x_{2n+1})}{4} \right) <$$

$$< \max \left\{ d^{2}(x_{2n}, x^{*}), \frac{d^{2}(x_{2n}, x_{2n+1}) + d^{2}(x^{*}, u_{n})}{2}, \frac{d^{2}(x_{2n}, u_{n}) + d^{2}(x^{*}, x_{2n+1})}{4} \right\}$$

$$:= M.$$

Consequently, we have the following situations:

a. Case $M = d^2(x_{2n}, x^*)$. In this case, we have

$$d^{2}(x_{2n+1}, u_{n}) \leq d^{2}(x_{2n}, x^{*}),$$

from where

$$\lim_{n \to \infty} d(x_{2n+1}, u_n) \leqslant \lim_{n \to \infty} d(x_{2n}, x^*) = 0,$$

i.e.

$$\lim_{n \to \infty} d(x_{2n+1}, u_n) = 0.$$

b. Case $M = \frac{d^2(x_{2n}, x_{2n+1}) + d^2(x^*, u_n)}{2}$. We deduce successively:
 $d^2(x_{2n+1}, u_n) \leqslant \frac{d^2(x_{2n}, x_{2n+1}) + d^2(x^*, u_n)}{2} \leqslant$
 $\leq \frac{d^2(x_{2n}, x_{2n+1}) + [d(x^*, x_{2n+1}) + d(x_{2n+1}, u_n)]^2}{2},$

i.e. $d^2(x_{2n+1}, u_n) - 2 \cdot d(x^*, x_{2n+1}) \cdot d(x_{2n+1}, u_n) - [d^2(x_{2n}, x_{2n+1}) + d^2(x^*, x_{2n+1})] \leq 0$, therefore

$$d(x_{2n+1}, u_n) \leqslant d(x^*, x_{2n+1}) + \sqrt{2 \cdot d^2(x^*, x_{2n+1}) + d^2(x_{2n}, x_{2n+1})}.$$
77

Passing to the limit in this inequality, as $n \to \infty$, we obtain

 $\lim_{n \to \infty} d(x_{2n+1}, u_n) = 0.$

c. Case $M = \frac{d^2(x_{2n}, u_n) + d^2(x^*, x_{2n+1})}{4}$. In this case, from the inequal-

ity

$$d^{2}(x_{2n+1}, u_{n}) \leqslant \frac{d^{2}(x_{2n}, u_{n}) + d^{2}(x^{*}, x_{2n+1})}{4},$$

we have, again,

 $\lim_{n \to \infty} d(x_{2n+1}, u_n) = 0.$

Passing to the limit, as $n \to \infty$, in inequality

$$d(x^*, u_n) \leqslant d(x^*, x_{2n+1}) + d(x_{2n+1}, u_n),$$

on the basis of the limit $\lim_{n \to \infty} d(x_{2n+1}, u_n) = 0$, we obtain $d(x^*, u_n) \to 0$ as $n \to 0$.

Since $u_n \in T(x^*)$, $(\forall) n \in \mathbb{N}$ and $T(x^*)$ is a closed set, it follows that $x^* \in T(x^*)$, i.e. $x^* \in F_T$.

Step V. We'll obtain, now, the conclusion of our theorem. We first prove that $F_S \subset F_T$.

Let $x^* \in F_S$. From $x^* \in S(x^*)$ we have that there exists $u \in T(x^*)$ such that

$$d^{2}(x^{*}, u) \leqslant \varphi \left(d^{2}(x^{*}, x^{*}) , \frac{d^{2}(x^{*}, x^{*}) + d^{2}(x^{*}, u)}{2} , \frac{d^{2}(x^{*}, u) + d^{2}(x^{*}, x^{*})}{4} \right).$$

If we suppose that $d(x^*, u) > 0$, then we obtain

$$d^2(x^*, u) \leqslant \varphi\left(0, \ \frac{d^2(x^*, u)}{2} \ , \ \frac{d^2(x^*, u)}{4} \right) < \frac{d^2(x^*, u)}{2}$$

a contradiction. Thus, $d(x^*, u) = 0$, which means that $u = x^*$. It follows that $x^* \in T(x^*)$ and so $F_S \subset F_T$.

We shall prove now the equality $F_S = F_T$ between the fixed points set for S and T.

If we assume that there exists $y^* \in F_T$ such that $y^* \neq x^* \in F_S$, then we have

$$\begin{split} d^2(x^*, y^*) &\leqslant \varphi \left(d^2(x^*, y^*) \,, \ \frac{d^2(x^*, x^*) + d^2(y^*, y^*)}{2} \,, \ \frac{d^2(x^*, y^*) + d^2(y^*, x^*)}{4} \right) = \\ &= \varphi \left(d^2(x^*, y^*) \,, \ 0 \,, \ \frac{d^2(x^*, y^*)}{2} \right) \leqslant \psi(d^2(x^*, y^*)) < d^2(x^*, y^*), \end{split}$$

78

a contradiction, proving the fact that $F_S = F_T \in P(X)$.

In fact, we have obtained, even more, namely that $F_S = F_T = \{x^*\}$. \Box

Corollary 3.2. Let (X, d) be a complete metric space and $S, T : X \to P_{cl}(X)$ multivalued operators.

We suppose that there exist $a, b, c \in \mathbb{R}_+$, a + 2b + 2c < 1, such that for each $x \in X$, each $u_x \in S(x)$ and for all $y \in X$, there exists $u_y \in T(y)$ so that we have

$$d^{2}(u_{x}, u_{y}) \leq a \cdot d^{2}(x, y) + b \cdot [d^{2}(x, u_{x}) + d^{2}(y, u_{y})] + \frac{c}{2} \cdot [d^{2}(x, u_{y}) + d^{2}(y, u_{x})].$$

Then, $F_S = F_T = \{x^*\}.$

Proof. Applying Theorem 3.1 for the function $\varphi : \mathbb{R}^3_+ \to \mathbb{R}_+, \varphi(t_1, t_2, t_3) = at_1 + 2bt_2 + 2ct_3$, which satisfies the conditions i), ii) and iii) of this theorem, we obtain the conclusion. \Box

Remark 3.3. If T and S are singlevalued operators, then Corollary 3.2 is Theorem 3 from [6].

Corollary 3.4. Let (X, d) be a complete metric space and $S, T : X \to P_{cl}(X)$ multivalued operators.

We suppose that there exists $h \in]0,1[$ such that for each $x \in X$, any $u_x \in S(x)$ and for all $y \in X$, there exists $u_y \in T(y)$ so that we have

$$d^{2}(u_{x}, u_{y}) \leq h \cdot \max\left\{d^{2}(x, y), \frac{d^{2}(x, u_{x}) + d^{2}(y, u_{y})}{2}, \frac{d^{2}(x, u_{y}) + d^{2}(y, u_{x})}{4}\right\}.$$

In these conditions, $F_S = F_T = \{x^*\}.$

Proof. We apply Theorem 3.1 for the function $\varphi : \mathbb{R}^3_+ \to \mathbb{R}_+$, $\varphi(t_1, t_2, t_3) = h \cdot \max\{t_1, t_2, t_3\}$, which satisfies the conditions i), ii) and iii) of this theorem. \Box

Remark 3.5. Corollary 3.4 is a generalization for multivalued operators of Theorem 4 from [6], theorem proved for singlevalued operators in Hilbert spaces.

Remark 3.6. Let (X, d) be a complete metric space and $(T_n)_{n \in \mathbb{N}}$ be a sequence of multivalued operators $T_n : X \to P_{cl}(X), \quad (\forall) n \in \mathbb{N}.$

If each pair of multivalued operators (T_0, T_n) , for $n \in \mathbb{N}^*$, satisfies similar conditions as in Theorem 3.1, then $F_{T_n} = F_{T_0} = \{x^*\}$, for all $n \in \mathbb{N}^*$.

We next give a generalization of Theorem 1 of N.Negoescu [2].

Theorem 3.7. Let (X, d) be a compact metric space, $S, T : X \to P_{cl}(X)$ and $\varphi : \mathbb{R}^3_+ \to \mathbb{R}_+$. Suppose that the following conditions are satisfies:

$$i) \quad (r \leqslant s; \ r, s \in \mathbb{R}^3_+) \quad \Rightarrow \quad \varphi(r) \leqslant \varphi(s)$$

- $ii) \quad \varphi(t,\,t,\,t) < t, \quad (\forall)\,t > 0;$
- iii) S or T be continuous;

$$\begin{aligned} & iv) \quad d^2(u_x, u_y) < \varphi \bigg(d^2(x, y) \,, \ d(x, u_x) \cdot d(y, u_y) \,, \ d(x, u_y) \cdot d(y, u_x) \bigg), \ for \ all \\ & x, y \in X, \ x \neq y \quad and \ for \ all \quad (u_x, u_y) \in S(x) \times T(x). \end{aligned}$$

In these conditions:

- a. S or T has a strict fixed point;
- **b.** if both S and T have such fixed points, then the pair (S, T) has a common fixed point.

Proof. a. Let S be continuous and we consider the function f(x) := D(x, S(x)). Because f is continuous on X, it follows that f takes its minimum value, i.e. there exists $x_0 \in X$ such that $f(x_0) = \inf\{f(x) \mid x \in X\}$.

We prove that x_0 is a fixed point of S or some $x_1 \in S(x_0)$ is a fixed point of T.

Indeed, we choose:

$$x_1 \in S(x_0)$$
 be such that $d(x_0, x_1) = D(x_0, S(x_0));$
 $x_2 \in T(x_1)$ be such that $d(x_1, x_2) = D(x_1, T(x_1));$
 $x_3 \in S(x_2)$ be such that $d(x_2, x_3) = D(x_2, S(x_2)).$

We shall prove that $D(x_0, S(x_0)) = 0$ or $D(x_1, T(x_1)) = 0$, i.e. $x_0 \in S(x_0)$ or $x_1 \in T(x_1)$. We suppose that $D(x_0, S(x_0)) > 0$ and $D(x_1, T(x_1)) > 0$. Hence, using the inequality iv), we have:

$$d^{2}(x_{1}, x_{2}) < \varphi \left(d^{2}(x_{0}, x_{1}), \ d(x_{0}, x_{1}) \cdot d(x_{1}, x_{2}), \ d(x_{0}, x_{2}) \cdot d(x_{1}, x_{1}) \right) \leq d(x_{1}, x_{2}) + d(x_{1}, x$$

$$\leq \max \left\{ d^2(x_0, x_1), \ d(x_0, x_1) \cdot d(x_1, x_2) \right\} := M.$$

Consequently, we distinguish the following situations:

I. Case $M = d^2(x_0, x_1)$. In this case, we deduce $d(x_1, x_2) < d(x_0, x_1)$.

II. Case $M = d(x_0, x_1) \cdot d(x_1, x_2)$. In this case, we have $d^2(x_1, x_2) < d(x_0, x_1) \cdot d(x_1, x_2)$. Since $d(x_1, x_2) = D(x_1, T(x_1)) > 0$, it follows that $d(x_1, x_2) < 80$

 $d(x_0, x_1)$. Now,

$$d^{2}(x_{3}, x_{2}) < \varphi \bigg(d^{2}(x_{2}, x_{1}) \,, \ d(x_{2}, x_{3}) \cdot d(x_{1}, x_{2}) \,, \ d(x_{2}, x_{2}) \cdot d(x_{1}, x_{3}) \bigg) \leqslant \\ \leqslant \max \bigg\{ d^{2}(x_{1}, x_{2}) \,, \ d(x_{2}, x_{3})) \cdot d(x_{1}, x_{2}) \bigg\}.$$

Analogously, it follows that $d^2(x_2, x_3) < d^2(x_1, x_2)$ or $d^2(x_2, x_3) < d(x_2, x_3) \cdot d(x_1, x_2)$.

In the second situations, if $d(x_2, x_3) = 0$, we obtain a contradiction. Thus, it follows that $d(x_2, x_3) < d(x_1, x_2)$.

Similarly, we deduce successively:

$$D(x_2, S(x_2)) = d(x_2, x_3) < d(x_1, x_2) < d(x_0, x_1) = f(x_0),$$

which contradict the minimality of $f(x_0)$. Therefore, $D(x_0, S(x_0)) = 0$ or $D(x_1, T(x_1)) = 0$. So, $x_0 \in S(x_0)$ or $x_1 \in T(x_1)$.

b. We assume that there exist $u \in S(u)$ and $v \in T(v)$, such that $u \neq v$. Then, using the hypothesis iv) we get, again, a contradiction:

$$d^2(u,v) < \varphi \bigg(d^2(u,v) \,, \ d(u,u) \cdot d(v,v) \,, \ d^2(u,v) \bigg) \leqslant d^2(u,v).$$

So, u=v, meaning that u is a common fixed point of S and T. \Box

Remark 3.8. If $\varphi : \mathbb{R}^3_+ \to \mathbb{R}_+$, $\varphi(t_1, t_2, t_3) = \max\{t_1, t_2, t_3\}$, from Theorem 3.7, we get a result of Negoescu [2, Theorem 1].

Remark 3.9. We note that Theorem 3.7 is true for $S = T : X \to P_{cl}(X)$.

References

- [1] I. Kubiaczyk, *Fixed points for contractive correspondences*, Demonstratio Math., 20(1987), 495-500.
- [2] N. Negoescu, Observations sur des paires d'applications multivoques d'un certain type de contractivité, Bul. Instit. Politehnic Iaşi, 35(1989), fasc.3-4, 1989, 21-25.
- [3] V. Popa, Common fixed points of sequence of multifunctions, "Babes-Bolyai" Univ., Seminar on Fixed Point Theory, Preprint nr.3, 1985, 59-68.
- [4] I.A. Rus, Generalized contractions, "Babes-Bolyai" Univ, Seminar on Fixed Point Theory, Preprint nr.3, 1983, 1-130.
- [5] I.A. Rus, A. Petruşel, A. Sîntămărian, Data dependence of the fixed points set of cmultivalued weakly Picard operators, Mathematica, Cluj-Napoca, (to appear).
- [6] T. Veerapandi, S.A. Kumar, Common fixed point theorems of a sequence of mappings in Hilbert space, Bull. Cal. Math. Soc., 91(1999), 299-308.

CAROL I HIGH SCHOOL SIBIU, 2400 SIBIU, ROMANIA *E-mail address*: aurelmuntean@yahoo.com

Received: 28.09.2001