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COMMON FIXED POINT THEOREMS FOR MULTIVALUED
OPERATORS ON COMPLETE METRIC SPACES

AUREL MUNTEAN

1. Introduction

The purpose of this paper is to prove a common fixed point theorem for

multivalued operators defined on a complete metric space. Then, as consequences, we

obtain some generalizations of several results proved in [6] for singlevalued operators.

For other results of this type see [1], [2], [3] and [5]. The metric conditions

which appears in Theorem 3.1 generalize some conditions given in [6].

2. Preliminaries

Let X be a nonempty set. We denote:

P (X) := {A ⊂ X | A 6= ∅} and Pcl(X) := {A ∈ P (X) | A = Ā}.

If (X, d) is a metric space, B ∈ P (X) and a ∈ A, then

D(a,B) := inf{d(a, b) | b ∈ B}.

Definition 2.1. If T : X ( X is a multivalued operator, then an element

x ∈ X is a fixed point of T, iff x ∈ T (x).

We denote by FT := {x ∈ X | x ∈ T (x)} the fixed points set of T.

Definition 2.2. Let (Tn)n∈N∗ be a sequence of multivalued operators Tn :

X → P (X), (∀) n ∈ N∗. Then we denote by

Com(T ) := {x ∈ X | x ∈ Tn(x), (∀)n ∈ N∗} =
⋂

n∈N∗
FTn

the common fixed points set of the sequence (Tn)n∈N∗ .
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Lemma 2.3. (I.A.Rus [4]). Let ϕ : Rk
+ → R+ (k ∈ N∗) be a function and

denote by ψ : R+ → R+, the mapping given by ψ(t) = ϕ(t, t, ..., t), (∀) t ∈ R+.

Suppose that the following conditions are satisfied:

i) (r 6 s, r, s ∈ Rk
+) ⇒ ϕ(r) 6 ϕ(s);

ii) ϕ is upper semi-continuous;

iii) ψ(t) < t, for each t > 0.

Then lim
n→∞

ψn(t) = 0, for each t > 0.

In [6], T.Veerapandi and S.A.Kumar gave the following result:

Theorem 2.4. Let X be a Hilbert space, Y ∈ Pcl(X) and Tn : Y → Y ,

for n ∈ N, be a sequence of mappings.

We suppose that at least one of the following conditions is satisfied:

i) there exist real numbers a, b, c, satisfying 0 6 a, b, c < 1 and a+ 2b+

2c < 1 such that for each x, y ∈ Y and x 6= y,

‖Ti(x)− Tj(y)‖2 6 a · ‖x− y‖2 + b

(
‖x− Ti(x)‖2 + ‖y − Tj(y)‖2

)
+

+
c

2

(
‖x− Tj(y)‖2 + ‖y − Ti(x)‖2

)
, for i, j;

ii) there exist a real number h satisfying 0 6 h < 1 such that for all

x, y ∈ Y and x 6= y,

‖Ti(x)− Tj(y)‖2 6 h ·max
{
‖x− y‖2, 1

2

(
‖x− Ti(x)‖2 + ‖y − Tj(y)‖2

)
,

1
4

(
‖x− Tj(y)‖2 + ‖y − Ti(x)‖2

)}
, for i, j.

Then, (Tn)n∈N∗ has a unique common fixed point.

3. The main results

The first result of this section improve and generalize Theorem 2.4 in the

multivoque case.

Theorem 3.1. Let (X, d) be a complete metric space and S, T : X →

Pcl(X) multivalued operators.

We suppose that there exists a function ϕ : R3
+ → R+ such that:

i) (r 6 s, r, s ∈ R3
+) ⇒ ϕ(r) 6 ϕ(s);

ii) ϕ(t, t, t) < t for each t > 0;
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iii) ϕ is continuous;

iv) for each x ∈ X, any ux ∈ S(x) and for all y ∈ X, there exists uy ∈ T (y)

so that we have

d2(ux, uy) 6 ϕ

(
d2(x, y) ,

d2(x, ux) + d2(y, uy)
2

,
d2(x, uy) + d2(y, ux)

4

)
.

In these conditions, FS = FT = {x∗}.

Proof. Let x0 ∈ X arbitrarily. Then we can construct a sequence (xn) ⊂ X

such that  x2n+1 ∈ S(x2n)

x2n+2 ∈ T (x2n+1)
(∀)n ∈ N.

Denote by dn := d(xn , xn+1), n ∈ N. We have several steps in our proof.

Step I. Let us prove that the sequence (dn) is monotone decreasing. Indeed,

we have successively:

d2
2n+1 = d2(x2n+1, x2n+2) 6

6 ϕ
(
d2(x2n, x2n+1),

d2(x2n, x2n+1) + d2(x2n+1, x2n+2)
2

,

d2(x2n, x2n+2) + d2(x2n+1, x2n+1)
4

)
6

6 ϕ

(
d2
2n ,

d2
2n + d2

2n+1

2
,

(d2n + d2n+1)2

4

)
< max

{
d2
2n ,

d2
2n + d2

2n+1

2

}
= d2

2n,

from where it follows d2n+1 < d2n. By an analogous method we have d2n+2 < d2n+1.

Step II. We prove that lim
n→∞

dn = 0.

For this purpose, let us define ψ : R+ → R+, by ψ(t) = ϕ(t, t, t). Obviously,

ψ is monotone increasing and ψ(t) < t, (∀) t > 0.

By induction, we can prove that d2
n 6 ψn(d2

0), (∀)n > 1.

Indeed, we have

d2
1 6 ϕ

(
d2
0 ,

d2
1 + d2

0

2
,

(d0 + d1)2

4

)
6 ϕ(d2

0, d
2
0, d

2
0) = ψ(d2

0).

If inequality d2
2n 6 ψ2n(d2

0) is true, then we get successively:

d2
2n+1 6 ϕ

(
d2
2n ,

d2
2n + d2

2n+1

2
,

(d2n + d2n+1)2

4

)
6 ϕ(d2

2n, d
2
2n, d

2
2n) = ψ(d2

2n) 6

≤ ψ(ψ2n(d2
0)) = ψ2n+1(d2

0).

By passing to limit as n→∞, if d0 > 0 it follows

lim
n→∞

d2
n 6 lim

n→∞
ψn(d2

0) = 0, and hence lim
n→∞

dn = 0.
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For d0 = 0, the sequence (dn) being decreasing it is obviously that

lim
n→∞

dn = 0.

Step III. We’ll prove that the sequence (xn) is Cauchy in X, i.e. for each

ε > 0, there exists k ∈ N such that for each m,n > k, d(xm, xn) < ε.

Suppose, by contradiction, that (x2n) is not Cauchy sequence. Then, there

exists ε > 0 such that for each 2k ∈ N there exist 2mk, 2nk ∈ N, 2mk > 2nk > 2k,

with the property d(x2mk
, x2nk

) > ε.

In what follows, let us suppose the numbers 2m(k) and 2n(k) as follows:

2m(k) := inf{2mk ∈ N | 2mk > 2nk > 2k, d(x2nk
, x2mk−2) 6 ε, d(x2nk

, x2mk
) > ε}

and 2n(k) := 2nk. Then, (∀) 2k ∈ N we have:

ε < d(x2n(k), x2m(k)) 6 d(x2n(k), x2m(k)−2) + d(x2m(k)−2, x2m(k)−1)+

+d(x2m(k)−1, x2m(k)).

Using step II, we deduce that

lim
k→∞

d(x2n(k), x2m(k)) = ε. (1)

From the triangle inquality, we get:

|d(x2n(k), x2m(k)−1)− d(x2n(k), x2m(k))| 6 d(x2m(k)−1, x2m(k))

and

|d(x2n(k)+1, x2m(k)−1)− d(x2n(k), x2m(k))| 6 d(x2m(k)−1, x2m(k)) + d(x2n(k), x2n(k)+1).

Using again step III and the relation (1), it follows
lim

k→∞
d(x2n(k), x2m(k)−1) = ε

lim
k→∞

d(x2n(k)+1, x2m(k)−1) = ε.

(2)

Then, we have successively:

d(x2n(k), x2m(k)) 6 d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k)) 6 d(x2n(k), x2n(k)+1)+

+

[
ϕ(d2(x2n(k), x2m(k)−1),

d2(x2n(k), x2n(k)+1) + d2(x2m(k)−1, x2m(k))
2

,
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d2(x2n(k), x2m(k)) + d2(x2m(k)−1, x2n(k)+1)
4

] 1
2

.

Because ϕ is continuous, passing to the limit as k →∞, we have:

ε 6

[
ϕ

(
ε2, 0,

ε2

2

)] 1
2

6
[
ψ(ε2)

] 1
2 < ε, a contradiction.

Step IV. We prove that FT 6= ∅.

Because (xn) is Cauchy sequence in the complete metric space (X, d) we

obtain that there exists x∗ ∈ X such that lim
n→∞

xn = x∗.

From x2n+1 ∈ S(x2n) we have that there exists un ∈ T (x∗) such that:

d2(x2n+1, un) 6

≤ ϕ

(
d2(x2n, x

∗) ,
d2(x2n, x2n+1) + d2(x∗, un)

2
,
d2(x2n, un) + d2(x∗, x2n+1)

4

)
<

< max
{
d2(x2n, x

∗) ,
d2(x2n, x2n+1) + d2(x∗, un)

2
,
d2(x2n, un) + d2(x∗, x2n+1)

4

}
:= M.

Consequently, we have the following situations:

a. Case M = d2(x2n, x
∗). In this case, we have

d2(x2n+1, un) 6 d2(x2n, x
∗),

from where

lim
n→∞

d(x2n+1, un) 6 lim
n→∞

d(x2n, x
∗) = 0,

i.e.

lim
n→∞

d(x2n+1, un) = 0.

b. Case M =
d2(x2n, x2n+1) + d2(x∗, un)

2
. We deduce successively:

d2(x2n+1, un) 6
d2(x2n, x2n+1) + d2(x∗, un)

2
6

≤ d2(x2n, x2n+1) + [d(x∗, x2n+1) + d(x2n+1, un)]2

2
,

i.e. d2(x2n+1, un)−2·d(x∗, x2n+1)·d(x2n+1, un)−[d2(x2n, x2n+1)+d2(x∗, x2n+1)] 6 0,

therefore

d(x2n+1, un) 6 d(x∗, x2n+1) +
√

2 · d2(x∗, x2n+1) + d2(x2n, x2n+1).
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Passing to the limit in this inequality, as n→∞, we obtain

lim
n→∞

d(x2n+1, un) = 0.

c. Case M =
d2(x2n, un) + d2(x∗, x2n+1)

4
. In this case, from the inequal-

ity

d2(x2n+1, un) 6
d2(x2n, un) + d2(x∗, x2n+1)

4
,

we have, again,

lim
n→∞

d(x2n+1, un) = 0.

Passing to the limit, as n→∞, in inequality

d(x∗, un) 6 d(x∗, x2n+1) + d(x2n+1, un),

on the basis of the limit lim
n→∞

d(x2n+1, un) = 0, we obtain d(x∗, un) → 0 as n→ 0.

Since un ∈ T (x∗), (∀)n ∈ N and T (x∗) is a closed set, it follows that

x∗ ∈ T (x∗), i.e. x∗ ∈ FT .

Step V. We’ll obtain, now, the conclusion of our theorem. We first prove

that FS ⊂ FT .

Let x∗ ∈ FS . From x∗ ∈ S(x∗) we have that there exists u ∈ T (x∗) such

that

d2(x∗, u) 6 ϕ

(
d2(x∗, x∗) ,

d2(x∗, x∗) + d2(x∗, u)
2

,
d2(x∗, u) + d2(x∗, x∗)

4

)
.

If we suppose that d(x∗, u) > 0, then we obtain

d2(x∗, u) 6 ϕ

(
0,

d2(x∗, u)
2

,
d2(x∗, u)

4

)
<
d2(x∗, u)

2
,

a contradiction. Thus, d(x∗, u) = 0, which means that u = x∗. It follows that

x∗ ∈ T (x∗) and so FS ⊂ FT .

We shall prove now the equality FS = FT betwen the fixed points set for S

and T.

If we assume that there exists y∗ ∈ FT such that y∗ 6= x∗ ∈ FS , then

we have

d2(x∗, y∗) 6 ϕ

(
d2(x∗, y∗) ,

d2(x∗, x∗) + d2(y∗, y∗)
2

,
d2(x∗, y∗) + d2(y∗, x∗)

4

)
=

= ϕ

(
d2(x∗, y∗) , 0 ,

d2(x∗, y∗)
2

)
6 ψ(d2(x∗, y∗)) < d2(x∗, y∗),
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a contradiction, proving the fact that FS = FT ∈ P (X).

In fact, we have obtained, even more, namely that FS = FT = {x∗}. �

Corollary 3.2. Let (X, d) be a complete metric space and S, T : X → Pcl(X)

multivalued operators .

We suppose that there exist a, b, c ∈ R+, a + 2b + 2c < 1, such that for

each x ∈ X, each ux ∈ S(x) and for all y ∈ X, there exists uy ∈ T (y) so that we

have

d2(ux, uy) 6 a · d2(x, y) + b · [d2(x, ux) + d2(y, uy)] +
c

2
· [d2(x, uy) + d2(y, ux)].

Then, FS = FT = {x∗}.

Proof. Applying Theorem 3.1 for the function ϕ : R3
+ → R+, ϕ(t1, t2, t3) =

at1 + 2bt2 + 2ct3, which satisfies the conditions i), ii) and iii) of this theorem, we

obtain the conclusion. �

Remark 3.3. If T and S are singlevalued operators, then Corollary 3.2 is

Theorem 3 from [6].

Corollary 3.4. Let (X, d) be a complete metric space and S, T : X →

Pcl(X) multivalued operators.

We suppose that there exists h ∈]0, 1[ such that for each x ∈ X, any

ux ∈ S(x) and for all y ∈ X, there exists uy ∈ T (y) so that we have

d2(ux, uy) 6 h ·max
{
d2(x, y) ,

d2(x, ux) + d2(y, uy)
2

,
d2(x, uy) + d2(y, ux)

4

}
.

In these conditions, FS = FT = {x∗}.

Proof. We apply Theorem 3.1 for the function ϕ : R3
+ → R+, ϕ(t1, t2, t3) =

h ·max{t1, t2, t3}, which satisfies the conditions i), ii) and iii) of this theorem.

�

Remark 3.5. Corollary 3.4 is a generalization for multivalued operators of

Theorem 4 from [6], theorem proved for singlevalued operators in Hilbert spaces.

Remark 3.6. Let (X, d) be a complete metric space and (Tn)n∈N be a

sequence of multivalued operators Tn : X → Pcl(X), (∀)n ∈ N.

If each pair of multivalued operators (T0, Tn), for n ∈ N∗, satisfies similar

conditions as in Theorem 3.1, then FTn = FT0 = {x∗}, for all n ∈ N∗.

We next give a generalization of Theorem 1 of N.Negoescu [2].
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Theorem 3.7. Let (X, d) be a compact metric space, S, T : X → Pcl(X)

and ϕ : R3
+ → R+. Suppose that the following conditions are satisfies:

i) (r 6 s; r, s ∈ R3
+) ⇒ ϕ(r) 6 ϕ(s);

ii) ϕ(t, t, t) < t, (∀) t > 0;

iii) S or T be continuous;

iv) d2(ux, uy) < ϕ

(
d2(x, y) , d(x, ux) ·d(y, uy) , d(x, uy) ·d(y, ux)

)
, for all

x, y ∈ X, x 6= y and for all (ux, uy) ∈ S(x)× T (x).

In these conditions:

a. S or T has a strict fixed point;

b. if both S and T have such fixed points, then the pair (S, T) has a common

fixed point.

Proof. a. Let S be continuous and we consider the function f(x) :=

D(x, S(x)). Because f is continuous on X, it follows that f takes its minimum

value, i.e. there exists x0 ∈ X such that f(x0) = inf{f(x) | x ∈ X}.

We prove that x0 is a fixed point of S or some x1 ∈ S(x0) is a fixed

point of T.

Indeed, we choose:

x1 ∈ S(x0) be such that d(x0, x1) = D(x0, S(x0));

x2 ∈ T (x1) be such that d(x1, x2) = D(x1, T (x1));

x3 ∈ S(x2) be such that d(x2, x3) = D(x2, S(x2)).

We shall prove that D(x0, S(x0)) = 0 or D(x1, T (x1)) = 0, i.e. x0 ∈ S(x0)

or x1 ∈ T (x1). We suppose that D(x0, S(x0)) > 0 and D(x1, T (x1)) > 0. Hence,

using the inequality iv), we have:

d2(x1, x2) < ϕ

(
d2(x0, x1) , d(x0, x1) · d(x1, x2) , d(x0, x2) · d(x1, x1)

)
6

6 max
{
d2(x0, x1) , d(x0, x1) · d(x1, x2)

}
:= M.

Consequently, we distinguish the following situations:

I. Case M = d2(x0, x1). In this case, we deduce d(x1, x2) < d(x0, x1).

II. Case M = d(x0, x1) · d(x1, x2). In this case, we have d2(x1, x2) <

d(x0, x1) · d(x1, x2). Since d(x1, x2) = D(x1, T (x1)) > 0, it follows that d(x1, x2) <

80



COMMON FIXED POINT THEOREMS

d(x0, x1). Now,

d2(x3, x2) < ϕ

(
d2(x2, x1) , d(x2, x3) · d(x1, x2) , d(x2, x2) · d(x1, x3)

)
6

6 max
{
d2(x1, x2) , d(x2, x3)) · d(x1, x2)

}
.

Analogously, it follows that d2(x2, x3) < d2(x1, x2) or d2(x2, x3) <

d(x2, x3) · d(x1, x2).

In the second situations, if d(x2, x3) = 0, we obtain a contradiction. Thus,

it follows that d(x2, x3) < d(x1, x2).

Similarly, we deduce successively:

D(x2, S(x2)) = d(x2, x3) < d(x1, x2) < d(x0, x1) = f(x0),

which contradict the minimality of f(x0). Therefore, D(x0, S(x0)) = 0 or

D(x1, T (x1)) = 0. So, x0 ∈ S(x0) or x1 ∈ T (x1).

b. We assume that there exist u ∈ S(u) and v ∈ T (v), such that u 6= v.

Then, using the hypothesis iv) we get, again, a contradiction:

d2(u, v) < ϕ

(
d2(u, v) , d(u, u) · d(v, v) , d2(u, v)

)
6 d2(u, v).

So, u=v, meaning that u is a common fixed point of S and T. �

Remark 3.8. If ϕ : R3
+ → R+, ϕ(t1, t2, t3) = max{t1, t2, t3}, from

Theorem 3.7, we get a result of Negoescu [2, Theorem 1].

Remark 3.9. We note that Theorem 3.7 is true for S = T : X → Pcl(X).
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