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COMMON FIXED POINT THEOREMS FOR MULTIVALUED
OPERATORS ON COMPLETE METRIC SPACES

AUREL MUNTEAN

1. Introduction

The purpose of this paper is to prove a common fixed point theorem for
multivalued operators defined on a complete metric space. Then, as consequences, we
obtain some generalizations of several results proved in [6] for singlevalued operators.

For other results of this type see [1], [2], [3] and [5]. The metric conditions

which appears in Theorem 3.1 generalize some conditions given in [6].
2. Preliminaries

Let X be a nonempty set. We denote:

PX)={ACX|A#2} and Py(X):={AcP(X)|A=A.

If (X, d) is a metric space, B € P(X) and a € A, then

D(a, B) := inf{d(a,b) | b € B}.

Definition 2.1. If T : X — X is a multivalued operator, then an element
z € X isa fized point of T, iff x € T(x).

We denote by Fr:={ze€ X |z e€T(z)} the fired points set of T.

Definition 2.2. Let (T,)ncn- be a sequence of multivalued operators T, :

X — P(X), (V) n e N*. Then we denote by

Com(T):={z € X |z € Tu(z), (V)neN}= () Fr,
neN*

the common fized points set of the sequence (T,)nen-
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Lemma 2.3. (LA.Rus [4]). Let ¢ : RY — R, (k€ N*) be a function and
denote by ¢ : Ry — Ry, the mapping given by  (t) = p(t, t, ..., t), (V)teR,.

Suppose that the following conditions are satisfied:

i) (r<s, rseRY) = pr) <o(s);

it) @ is upper semi-continuous;

ii) P(t) <t, for each t > 0.

Then nlingo Y™ (t) =0, for each t > 0.

In [6], T.Veerapandi and S.A.Kumar gave the following result:

Theorem 2.4. Let X be a Hilbert space, Y € Py(X) and T,:Y —Y,
for n € N, be a sequence of mappings.

We suppose that at least one of the following conditions is satisfied:

i) there exist real numbers a,b,c, satisfying 0<a,b,c<1 and a+2b+

2c¢ <1 such that for each x,y €Y and z #y,

ITi() ~ T )I° <a- o -yl + b(|:c L@ 4y Tj<y>||2)+
C ..
5 (I =TI+l = TP ) for s

it) there exist a real number h satisfying 0 < h < 1 such that for all

+

z,y €Y and x #vy,
1
I73(0) = TP < hemax {llo = ol 5 (1o = TP + Iy - TP ).

1

4(x—:fj<y>|2+||y—n<x>||2)}, for i,

Then, (Tn)nen+ has a unique common fized point.

3. The main results

The first result of this section improve and generalize Theorem 2.4 in the
multivoque case.

Theorem 3.1. Let (X, d) be a complete metric space and S, T : X —
P, (X) multivalued operators.

We suppose that there exists a function o : Rﬁ_ — R4 such that:

i) (r<s, mnseRY) = o(r) <eos);

ii) (t,t,t) <t for each t > 0;
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ii1) @ is continuous;
iv) for each x € X, any u, € S(x) and for all y € X, there exists u, € T(y)

so that we have

(2, uz) + dP(y,uy)  dP(2,uy) +dP(y, uw))
2 ’ 4 '

In these conditions, Fs = Fp = {z*}.

d*(ug, uy) < ¢ (dQ(ﬂzy),

Proof. Let zg € X arbitrarily. Then we can construct a sequence (x,) C X

such that

Tont1 € S(xan) (V)neN
Zont2 € T(Ton+t1)

Denote by d,, := d(x, Tp+1), n € N. We have several steps in our proof.
Step I. Let us prove that the sequence (d,,) is monotone decreasing. Indeed,
we have successively:

d3ns1 = d*(T2n41, Tang2) <
d*(zon, Tont1) + d2($2n+1, Ton+2)
2 9
d*(@2n, Tanta) + d2(l‘2n+179€2n+1)> <
4 ~

a2, + d? don + dopi1)? a2, + d2
<<p(d§n7 2 +2 i (0 +42 +1) ) <max{d§n, el +2 2"“} =3,

from where it follows ds,11 < da2,,. By an analogous method we have da,12 < dopt1-

< @(d2(902n, Ton+1),

Step II. We prove that nh_{rgo d, = 0.

For this purpose, let us define 9 : Ry — Ry, by ¥(t) = ¢(¢,t,t). Obviously,
¥ is monotone increasing and (t) <t, (V)¢ > 0.

By induction, we can prove that d2 < ¢"(d3), (V)n > 1.

Indeed, we have

d? +d?  (dy+dy)?
& <o (@, D08, IOV <o, &, @) = vidh),

If inequality d3, < ?"(d3) is true, then we get successively:

d, +dz, dopn + doni1)?
s < (B, B, (Bt el ) <o, B ) = (i) <

< P (dg)) = > (dp).

By passing to limit as n — oo, if dy > 0 it follows

lim d? < lim ¢"(dj) =0, and hence lim d,, = 0.

n—oo n—oo
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For dy = 0, the sequence (d,) being decreasing it is obviously that

lim d,, = 0.

n—oo

Step III. We'll prove that the sequence (z,,) is Cauchy in X, i.e. for each
€ > 0, there exists k € N such that for each m,n >k, d(xm,,z,) <e.

Suppose, by contradiction, that (x2,) is not Cauchy sequence. Then, there
exists € > 0 such that for each 2k € N there exist 2myg,2n, € N,  2my > 2n; > 2k,
with the property d(zam,,%2n,) > €.

In what follows, let us suppose the numbers 2m(k) and 2n(k) as follows:
2m(k) := inf{2my, € N | 2my, > 2ny, > 2k, d(x2n,,, Tam, —2) < &, d(Tan, , Tam, ) > €}
and 2n(k) := 2ng. Then, (V)2k € N we have:
£ < d(Tan k), Tam(k)) < A(Tan k) Tam(k)—2) + A Zamk)—25 Tam(k)—1)+
+d(T2m (k)15 Tam(k))-
Using step II, we deduce that
Jm d(Ton(k), Tam(k)) = €- (1)
From the triangle inquality, we get:
ld(Z2n (k) Tamk)—1) — AT2n(k), Tamk))| < A T2mk)—15 Tam(k))
and
|d(Z2n (k) +15 Toam(k)—1) — A T2n(k)s T2m(r))| < A To2mk)—1, Tamk)) + AT2n(k)s Tank)+1)-
Using again step III and the relation (1), it follows
kh_{go d(ﬂ?zn(k)axzm(k)—l) =€
kllﬂgo d(Zan(k)+15 Tam(k)—1) = €-
Then, we have successively:
A(Ton(k), Tamk)) < A T2nk), Tank)+1) T AT2nk) 115 Tamk)) < AT2n (k) Tank)+1)+

A (Ton(k), Tank)+1) + A (T2mk)—1, T2m(k))
+ [ oA (Tan (), Tam(k)—1)5 (), Z2nk) 5 (*) ®2
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N|=

d2($2n(k), Tom(k)) + d2(x2m(k)717 Ton(k)+1)
4

Because ¢ is continuous, passing to the limit as k£ — oo, we have:

[N

2 2
€< [90(62, 0, 2)} < [1/1(62)] <&, a contradiction.

Step IV. We prove that Fp # @.
Because (z,) is Cauchy sequence in the complete metric space (X, d) we
obtain that there exists * € X such that lim z, = z*.

n—oo

From wo,41 € S(x2,) we have that there exists u, € T(z*) such that:

d*(Ton+1,un) <

d2(x2nam2n+1) +d2($*7un) d2(l‘2naun) +d2(1'*,x2n+1)> <
2 ’ 4

<e <d2(372n; 33*) )

D R e

= M.

Consequently, we have the following situations:

a. Case M = d*(wa,,2*). In this case, we have
dz(x2n+1> un) g dz(’lj'gn, Z*),

from where
lim d(zont1,u,) < lim d(xo,,z™) =0,
n—oo n—oo

i.e.

lim d(zont1,u,) =0.

n—oo
d2 , d2 *
b. Case M = (@2 x2"+12) +d(@ ’u"). We deduce successively:
d2 , d2 *
A (Tan41,Un) < (@an $2n+12) (a7, un) <

< d?(22n, Ton+1) + [d(@*, Tont1) + d(@2n41, un)]?
—_ 2 )

e, d*(zant1,un)—2-d(x*, Toni1) d(T2n11, Un)—[d*(T2n, Tant1)+d> (2%, 2n41)] <0,

therefore

d(Tant1,Uun) < d(@*, Tont1) + /2 - (2%, Top11) + d2(T2n, Tant1)-
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Passing to the limit in this inequality, as n — oo, we obtain
lim d(zont1,u,) =0.

n—oo

d?(zon, un) + d*(z*, T2n41)

. C M =
c ase 1

. In this case, from the inequal-

ity
d?(wop, up) + d(x*, 29,1 1)
4 )

2
d (x2n+1aun) <
we have, again,

lim d(zont1,u,) =0.

n—oo

Passing to the limit, as n — oo, in inequality
d(x*, up) < d(x, T2n11) + d(T2ny1, Un),

on the basis of the limit nan;O d(x2n41,un) =0, we obtain d(z*,u,) — 0 as n — 0.

Since u, € T(z*), (V)n € N and T(z*) is a closed set, it follows that
x* € T(z*),ie. a* € Fr.

Step V. We'll obtain, now, the conclusion of our theorem. We first prove
that Fg C Fr.

Let z* € Fs. From z* € S(z*) we have that there exists u € T'(z*) such
that

2 (o * 2 (o 2 (% 2 ( k *
d2($*,u)<(p dQ(CIL’*,JT*>7 d(x,a:)+d(m,u)7 d(x,u)—&—d(x,x) .
2 4
If we suppose that d(z*,u) > 0, then we obtain
d*(z*,u)  d?*(a*,u) - d?(z*, u)
2 ’ 4 2 ’

d*(z*,u) < @ (0,

a contradiction. Thus, d(z*,u) = 0, which means that « = z*. It follows that
x* € T(z*) and so Fg C Fr.

We shall prove now the equality Fs = Fr betwen the fixed points set for S
and T.

If we assume that there exists y* € Fp such that y* # a* € Fg, then

we have

d?(z*,2*) + dP(y*,y*) (2%, y") + dQ(y*w*)) _

Pz, y*) <o (dQ(x*,y*), 5 : I

d2 * *
= <d2(~””*vy*)’ 0, (:chy)> SY(d(at,yY) < Pz, y"),
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a contradiction, proving the fact that Fg = Fr € P(X).

In fact, we have obtained, even more, namely that Fs = Fr = {a*}. O

Corollary 3.2. Let (X, d) be a complete metric space and S, T : X — P, (X)
multivalued operators .

We suppose that there exist a,b,c € Ry, a+2b+ 2c < 1, such that for
each x € X, each uy € S(x) and for all y € X, there exists u, € T(y) so that we

have
C
d2(umuuy) <a- d2($,y) +b- [d2($7uz) —+ dQ(yvuy)] + 5 . [dQ(xvuy) + d2<y7uw)]

Then, Fg= Fpr={x*}.

Proof. Applying Theorem 3.1 for the function ¢ :R3 — Ry, o(t1,ta,t3) =
aty; + 2bts + 2ct3, which satisfies the conditions i), ii) and iii) of this theorem, we
obtain the conclusion. [

Remark 3.3. If T and S are singlevalued operators, then Corollary 3.2 is
Theorem 3 from [6].

Corollary 3.4. Let (X, d) be a complete metric space and S, T : X —
P (X) multivalued operators.

We suppose that there exists h €]0,1] such that for each = € X, any
uy € S(x) and for all y € X, there exists u, € T(y) so that we have

(@, u) + d(y,uy)  d*(z,uy) + dP(y, ua) }
2 ’ 1 '

dz(umuy) < h - max {dz(xay) ’

In these conditions, Fs = Fr = {xz*}.

Proof. We apply Theorem 3.1 for the function ¢ : R3 — Ry, ¢(t1,t2,t3) =
h - max{t1,ts,t3}, which satisfies the conditions i), ii) and iii) of this theorem.
O

Remark 3.5. Corollary 3.4 is a generalization for multivalued operators of
Theorem 4 from [6], theorem proved for singlevalued operators in Hilbert spaces.

Remark 3.6. Let (X, d) be a complete metric space and (T},),en be a
sequence of multivalued operators T, : X — Py(X), (V)neN.

If each pair of multivalued operators (T, T, ), for n € N*, satisfies similar
conditions as in Theorem 3.1, then Fr, = Fp, = {z*}, for all n € N*,

We next give a generalization of Theorem 1 of N.Negoescu [2].
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Theorem 3.7. Let (X, d) be a compact metric space, S,T : X — P,y(X)
and ¢ : Ri — Ry.. Suppose that the following conditions are satisfies:

i) (r<s rnseRY) = o) <os);

i) ot t,t)<t, (¥V)t>0;

i) S or T be continuous;

w)  d*(ug,uy) < @(dg(x,y), d(z,ug)-d(y, uy) , d(m,uy)-d(y,uw)),for all
z,yeX, x#y and for all (ug,uy) € S(x) x T(x).

In these conditions:

a. Sor T has a strict fized point;

b. if both S and T have such fized points, then the pair (S, T) has a common
fixed point.

Proof. a. Let S be continuous and we consider the function f(z) :=
D(z, S(x)). Because f is continuous on X, it follows that f takes its minimum
value, i.e. there exists zg € X such that f(xg) =inf{f(z) | z € X}.

We prove that g is a fixed point of S or some z; € S(xp) is a fixed
point of T.

Indeed, we choose:

21 € S(xo) be such that  d(zo,z1) = D(xo, S(x0));

29 € T(z1) besuch that  d(z1,22) = D(z1,T(z1));

x3 € S(x2) besuch that  d(x9,z3) = D(22,S(x2)).

We shall prove that D(zq,S(xo)) =0 or D(z1,T(z1)) =0, i.e. g € S(xo)
or 1 € T(z1). We suppose that D(zg,S(z¢)) > 0 and D(z1,T(z1)) > 0. Hence,

using the inequality iv), we have:

(w1, 02) < <,0<d2(1’0,$1), d(wo,21) - (w1, w2), d(zo, ) d(asl,xn) <

< max {dZ(.To,Il), d(zo, 1) ~d(:171,z2)} = M.

Consequently, we distinguish the following situations:

I. Case M =d?*(zo,z1). In this case, we deduce d(x1,x2) < d(xq,x1).

II. Case M = d(xg,z1) - d(z1,72). In this case, we have d?(zy,z2) <
d(zg,x1) - d(z1,22). Since d(x1,22) = D(x1,T(x1)) > 0, it follows that d(z1,x2) <

80



COMMON FIXED POINT THEOREMS

d(xg,x1). Now,

d?(z3,72) < @(d2($27$1), d(z2,z3) - d(z1,22), d(xe,x2) - d(whws)) <

< max {d2(x1,x2) , d(z9,23)) - d(xl,xg)}.

Analogously, it follows that d?(z2,23) < d?(x1,72) or d?(wq,m3) <
d(zg,x3) - d(x1,x2).

In the second situations, if d(za,x3) = 0, we obtain a contradiction. Thus,
it follows that d(z2,x3) < d(z1,x2).

Similarly, we deduce successively:
D(.’EQ, S(.’Eg)) = d(l’g,xg) < d(.’El,xg) < d(on, (El) = f(xo),

which contradict the minimality of f(xg). Therefore, D(z9,S(z9)) = 0 or
D(z1,T(x1)) =0. So, xg € S(xg) or z1 € T(x1).
b. We assume that there exist v € S(u) and v € T'(v), such that wu # v.

Then, using the hypothesis iv) we get, again, a contradiction:
o) <o (E(w0). dn) - dw0)., Eu)) < Eluo)

So, u=v, meaning that « is a common fixed point of S and T. O
Remark 3.8. If ¢ : R3S — Ry, o(t1,t2,t3) = max{t1,lo,t3}, from
Theorem 3.7, we get a result of Negoescu [2, Theorem 1].

Remark 3.9. We note that Theorem 3.7 is true for S =T:X — P,(X).
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