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CONTINUITY AND SUPERSTABILITY OF JORDAN MAPPINGS

YOUNG WHAN LEE AND GWANG HUI KIM

Abstract. We show that every strong approximate one-to-one Jordan

functional on an algebra is a Jordan functional and every approximate

one-to-one Jordan functional on a Banach algebra is continuous.

1. Introduction

A linear mapping f from a normed algebra A into a normed algebra B is an

ε-homomorphism if for every a, b in A

‖f(ab)− f(a)f(b)‖ ≤ ε ‖a‖ ‖b‖ .

In [7, Proposition 5.5], Jarosz proved that every ε-homomorphism from a Banach

algebra into a continuous function space C(S) is necessarily continuous, where S is a

compact Hausdorff space. A Jordan functional on a Banach algebra A is a nonzero

linear functional φ such that φ(a2) = φ(a)2 for every a in A. Every Jordan functional

φ on A is multiplicative [2]. We are concerned with linear mappings f on Banach

algebras which are approximate Jordan mappings. A linear mapping f from a normed

algebra A into a normed algebra B is called an ε-approximate Jordan mapping if for

all a in A ∥∥f(a2)− f(a)2
∥∥ ≤ ε ‖a‖2

.

If B is the complex field, then f is called an ε-appoximate Jordan functional. For

ε-appoximate mappings the reader is referred to [3],[4],[5],[6],[9],[10],[11].

A linear mapping f is a strong ε-approximate Jordan mapping if ||f(a2) −

f(a)2|| < ε. Also a continuous linear mapping f between normed algebras is an ε-

near Jordan mapping if ‖f − J‖ ≤ ε for some continuous Jordan mapping J . In this

paper, we prove that every strong ε-approximate one-to-one Jordan functional on an
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algebra is a Jordan functional and every ε-approximate one-to-one Jordan functional

on a Banach algebra is continuous.

2. Main Results

Theorem 1. If f is a strong ε-approximate one-to-one Jordan functional on an

algebra A, then f is a Jordan functional. In particular if A is a Banach algebra, then

f is continuous.

Proof. Since, for every x, y ∈ A, |f
(
(x + y)2

)
− f(x + y)2| ≤ ε, we have |f(xy +

yx)−2f(x)f(y)| ≤ 3ε. If x and y are commute, |f(xy)−f(x)f(y)| ≤ 3ε
2 . Now we use

the method of the proof in [1]. Let c(ε) = 1+
√

1+4ε
2 . Note that c(ε)2 − c(ε) = ε and

c(ε) > 1. Let a ∈ A. If a 6= 0 we may assume that |f(a)| > c(ε) because |f(ta)| > c(ε)

for some t ∈ R and f((ta)2) = f(ta)2 implies f(a2) = f(a)2. Say |f(a)| = c(ε) + p for

some p > 0. Then

|f(a2)| = |f(a)2 − (f(a)2 − f(a2))| ≥ |f(a)2| − |(f(a)2 − f(a2))|

≥ (c(ε) + p)2 − ε > c(ε) + 2p.

By induction, |f(a2n)| > c(ε) + (n + 1)p for all n = 1, 2, 3, · · · . For every x, y, z ∈ A

which they are commute, |f(xyz)− f(xy)f(z)| ≤ 3ε
2 and |f(xyz)− f(x)f(yz)| ≤ 3ε

2 .

So |f(xy)f(z)− f(x)f(yz)| ≤ 3ε. Hence

|f(xy)f(z)− f(x)f(y)f(z)|

≤ |f(xy)f(z)− f(x)f(yz)|+ |f(x)f(yz)− f(x)f(y)f(z)| ≤ 3ε + |f(x)|3ε

2
.

By letting x = a, y = a and z = a2n, we have

|f(a2)− f(a)2| ≤
3ε + |f(a)| 3ε

2

|f(a2n)|
.

Letting n −→ +∞ shows that f(a2) = f(a)2.

Theorem 2. Let f be an ε-approximate Jordan functional on a normed algebra A

with the multiplicative norm. Then for each a ∈ A, either |f(a)| ≤ 1+
√

1+4ε
2 ‖a‖ or

f(a2) = f(a)2.

Proof. Let a ∈ A and c = a
‖a‖ . If |f(a)| > 1+

√
1+4ε
2 ‖a‖ then |f(c2n

)| > c(ε)+(n+1)p

for all n = 1, 2, 3 and for some p, where c(ε) = 1+
√

1+4ε
2 , by the proof of Theorem 1.
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For any natural number m,n,

|f(cncm)− f(cn)f(cm)|

≤ |f((cn + cm)2)− f(cn + cm)2|+ |f((cn)2)− f(cn)2|+ |f((cm)2)− f(cm)2|

≤ ε

2

(
‖cn + cm‖2 + ‖cn‖2 + ‖cm‖2

)
= 3ε.

Then we have

|f(c2)− f(c)2| ≤ 1
|f(c2n)|

(
|f((c2)f(c2n

)− f(c2 + c2n

)|

+|f(c2 · c2n

)− f(c2)f(c2n

)|+ |f(c)||f(c · c2n

)− f(c)f(c2n

)|
)

≤ 6ε + 3|f(c)|ε
|f(c2n)|

−→ 0 as n −→∞.

This shows that f(a2) = f(a)2.

Corollary 3. Let S be a compact Hausdorff space and C(S) the set of all continuous

complex valued functions. If f is an ε-approximate Jordan mapping from a Banach

algebra A with the multiplicative norm into C(S), then for each a ∈ A, either ‖f(a)‖ ≤
1+
√

1+4ε
2 ‖a‖ or f(a2) = f(a)2.

Proof. For every x ∈ S, we can define a linear functional fx : A −→ C by fx(a) =

f(a)(x) for all a ∈ A. Then for every a ∈ A,

|fx(a2)− fx(a)2| ≤
∥∥f(a2)− f(a)2

∥∥ ≤ ε ‖a‖2
.

By Theorem 2, either ‖fx(a)‖ ≤ 1+
√

1+4ε
2 or fx(a2) = fx(a)2 for any a ∈ A. Then we

complte the proof.

In Theorem 2 and Corollary 3 we used the assumption that an algebra A has

the multiplicative norm. It is not known that whether they hold or not without such

condition. With another condition we obtain the following theorem.

Theorem 4. Let f be an ε-approximate Jordan functional on a Banach algebra A

such that f(a) = 0 implies f(a2) = 0 for each a ∈ A. Then f is continuous and

‖f‖ ≤ 1+
√

1+4ε
2 .

Proof. If A does not posses a unit, then we can extened f to A ⊕ (λ1) by putting

f(a
⊕

λ1) = f(a)+λ, and the extended f is still an ε -approximate Jordan functional.

Thus without loss of generality we may assume that A has a unit. Suppose that f

is discontinuous. Then the kernel Ker(f) of f is a dense subset of A. Since the unit
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element 1 is the closure of Ker(f), we can choose c ∈ Ker(f) such that ‖c− 1‖ ≤ 1
3 .

Then c is invertible, and c−1 = 1 +
∑∞

n=1 (1− c)n. And so
∥∥c−1

∥∥ ≤ 1
1−‖c−1‖ ≤

3
2 . Let

b = c
‖c‖ ∈ Ker(f). Then b−1 = ‖c‖ c−1and

∥∥b−1
∥∥ ≤ 2. Put |f(b−1)| = α. Note that

for every x, y ∈ A

|f(xy + yz)− 2f(x)f(y)| ≤ |f((x + y)2)− (f(x + y))2|

+|f(x2)− f(x)2|+ |f(y2)− f(y)2| ≤ 2ε(‖x‖2 + ‖y‖2 + ‖x‖ ‖y‖).

If b−1 is not in Ker(f), then for every a in A with ‖a‖ = 1,

|f(a)| =
1
2α
|2f(a)f(b−1)|

≤ 1
2α

(|2f(a)f(b−1)− f(ab−1 + b−1a)|

+ |f(bb−1ab−1 + b−1ab−1b)− 2f(b−1ab−1)f(b)| ≤ 28ε

α
.

Thus f is bounded and it is a contradiction. Therefore b−1 is in Ker(f). By assump-

tion, b−2 is in Ker(f). Then for every a in A with ‖a‖ = 1,

|f(a)| = 1
2
(|f(a + b−1ab)|+ |f(a + bab−1)|+ |f(b−1ab + bab−1)|)

=
1
2
(|f(a + b−1ab)− 2f(b−1a)f(b)|+ |f(a + bab−1)− 2f(ab−1)f(b)|

+|f(b−1ab + bab−1)− 2f(bab)f(b−2)|) ≤ 35ε.

Thus f is continuous. Since |f(a2)−f(a)2| < ε for every a ∈ A with ‖a‖ = 1,

|f(a2)| − ε ≤ |f(a2)| ≤ ‖f‖ and consequently ‖f‖ ≥ ‖f‖2 − ε. This proves ‖f‖ ≤
1+
√

1+4ε
2 .

Corollary 5. Every ε-approximate one-to-one Jordan functional on a Banach algebra

is continuous and its norm is less than or equal to 1+
√

1+4ε
2 .

Let f be an ε-near Jordan mapping from a Banach algebra A into a Banach

algebra B. Then there exists a Jordan mapping J such that ‖f − J‖ ≤ ε. For every

a in A,∥∥f(a2)− f(a)2
∥∥ ≤

∥∥f(a2)− J(a2)
∥∥ +

∥∥f(a)2 − J(a)2
∥∥

≤ ε ‖a‖2 + ‖f(a)− J(a)‖ ‖f(a)‖+ ‖J(a)‖ ‖f(a)− J(a)‖

≤ (ε + ε ‖f‖+ ε ‖J‖) ‖a‖2
.
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Therefore f is a ε(1 + ‖f‖ + ‖J‖)-approximate Jordan mapping. We are

concerned with it’s converse. By the method of the proof in [8] we obtain the following

theorem.

Theorem 6. For every ε > 0 and K > 0, there exists a positive integer m such that

every ε
m -approximate Jordan mapping with norm less than or equal to K on a finite

demensional Banach algebra A is an ε- near Jordan mapping.

Proof. Let J(A) be the set of all bounded Jordan mapping on a finite dimensional

Banach algebra A,BL(A) the set of all bounded linear mappings on A, and let for

each f in BL(A)

N(f) = inf {‖f − J‖ : J ∈ J(A)},

M = {f ∈ BL(A) : N(f) ≥ ε and ‖f‖ ≤ k}

and

Gn =

{
f ∈ BL(A) : sup

‖a‖≤1

∥∥f(a2)− f(a)2
∥∥ ≥ ε

n

}
.

Since M is a closed and bounded subset of a finite dimensional space BL(A), M is

compact. Since Gn is open for each n and

M ⊂ BL(A) \ J(A) ⊂
∞⋃

n=1

Gn,

there is m such that M ⊂ Gm. If f ∈ BL(A) \Gm, then f ∈ BL(A) \M . Therefore

if f is an ε
m - approximate Jordan mapping then f is an ε- near Jordan mapping.
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