ON SEPARABLE EXTENSIONS OF GROUP GRADED ALGEBRAS

ILUŞCA BONTA

Abstract. We study extension $A \to B$ of *G*-graded \mathcal{O} -algebra, when *G* is a finite group. Such extensions occur when we consider blocks of normal subgroups and the associated graded source algebra, and we prove a refinement of a lifting theorem by B. Külshammer, T. Okuyama and A. Watanabe.

1. G-graded interior algebras

1.1. Let G be a finite group and let \mathcal{O} be a complete discrete valuation ring with residue field $k = \mathcal{O}/J(\mathcal{O})$ of characteristic p > 0. Let $A = \bigoplus_{g \in G} A_g$ and $B = \bigoplus_{g \in G} B_g$ be two G-graded \mathcal{O} -algebras, and recall that the \mathcal{O} -algebra homomorphism $f: A \to B$ is called G-graded if $f(A_g) \subseteq B_g$ for all $g \in G$.

If $M = \bigoplus_{x \in G} M_x$ is a G-graded (A, A)-bimodule, we shall consider the \mathcal{O} -submodule

$$M^A = \{ m \in M \mid am = ma \text{ for all } a \in A \}.$$

We say that B is a G-graded A-interior \mathcal{O} -algebra if B is a G-graded (A, A)bimodule and (xa)y = x(ay) for all $a \in A$, $x, y \in B$. Observe that in this case, the map $\beta : A \to B$, $\beta(a) = a1_B = 1_B a$ is a unitary homomorphism of G-graded \mathcal{O} -algebras. Conversely, given a unitary homomorphism $\beta : A \to B$ of G-graded \mathcal{O} -algebras, then B becomes a G-graded A-interior \mathcal{O} -algebra in an obvious way.

Let *B* be a *G*-graded *A*-interior \mathcal{O} -algebra. It is well-known that $B \otimes_A B$ is a *G*-graded (B, B)-bimodule, where if $x \in B_g$ and $y \in B_h$ then, by definition $x \otimes_A y \in (B \otimes_A B)_{gh}$. Remark that the multiplication map

$$\mu \colon B \otimes_A B \to B, \qquad \mu(x \otimes_A y) = xy$$

for $x, y \in B$ is a homomorphism of G-graded (B, B)-bimodules.

Lemma 1.2. Let B be a G-graded A-interior O-algebra and let $\mu : B \otimes_A B \to B$ denote the map of G-graded (B, B)-bimodules satisfying $\mu(x \otimes y) = xy$ for $x, y \in G$. Then the following statements are equivalent:

(1) There exists a homomorphism $\nu : B \to B \otimes_A B$ of G-graded (B, B)bimodules such that $\mu \circ \nu = 1_B$.

(2) There exists an element $w = \sum_{j=1}^{k} x_j \otimes y_j \in (B \otimes_A B)^B$ where x_j, y_j are homogeneous elements such that $\sum_{j=1}^{k} x_j y_j = 1_B$.

Proof. If (1) holds, let $\nu: B \to B \otimes_A B$ be a map of *G*-graded (B, B)-bimodules such that $\mu \circ \nu = \mathrm{id}_B$, and let $w = \nu(1_B)$.

Then $w \in (B \otimes_A B)^B$ and $\mu(w) = \mu(\nu(1_B)) = 1_B$. Since w has the form $w = \sum_{j=1}^k x_j \otimes y_j$ and each x_j, y_j is a sum of homogeneous elements, we may clearly assume that x_j, y_j are homogeneous, so (2) holds.

Conversely, assume that (2) holds. Since $\mu(w) = \sum_{j=1}^{k} x_j y_j = 1 \in B_1$, it follows that if $x_j \in B_g$, then $y_j \in B_{g^{-1}}$, so $w \in (B \otimes_A B)_1$. Then the map

$$\nu \colon B \to B \otimes_A B, \ \nu(x) = xw = wx$$

is a homomorphism of G-graded (B, B)-bimodules, as for $x_g \in B_g$, we have $\nu(x_g) = x_g w \in (B \otimes_A B)_g$. Moreover, for all $x \in B \ \mu(\nu(x)) = x\mu(\nu(1)) = x\mu(w) = x \mathbf{1}_B = x$.

1.3. We say B is a separable G-graded A-interior \mathcal{O} -algebra, if the equivalent condition of Lemma 1.2 are satisfied.

This discussion is motivated by the following situation considered in [3] and [4].

Let H be a finite group, N a normal subgroup of H and let G = H/N. Then the group algebra $\mathcal{O}H$ can be regarded as a G-graded algebra, and $\mathcal{O}N$ is also an H-algebra. Let $b \in Z(\mathcal{O}N)$ be a block independent, and assume that b is G-invariant, that is, $b \in Z(\mathcal{O}H)$. Then the algebra $B = b\mathcal{O}H$ is a strongly G-graded \mathcal{O} -algebra. Note that $\beta = \{b\}$ is a point of N on B_1 and $\alpha = \{b\}$ is a point of H on B_1 . 20 Let P_{γ} be a defect pointed group of H_{α} . Recall that if

$$\operatorname{Br}_P^{B_1} \colon B_1^P \to B_1^P / (\sum_{Q < P} \operatorname{Tr} B_1^Q + J(\mathcal{O}) B_1^P)$$

is the Brauer map, then there is a primitive idempotent $i \in B_1^P$ such that $Br_P^{B_1}(i) \neq 0$, and γ is the point of B_1^P containing *i*. The interior $\mathcal{O}P$ -algebra $A := iBi = i\mathcal{O}Hi$ is called a *source algebra* of *B*. By [4, Proposition 3.2], *A* is a strongly *G*-graded algebra and the structural map $\mathcal{O}P \to A$, $u \mapsto iu = ui$ is a homomorphism of *G*-graded algebras in a natural way (the degree of $u \in P$ is $uN \in G$).

Lemma 1.4. With the above notations, the algebra A is a separable G-graded $\mathcal{O}P$ -interior \mathcal{O} -algebra.

Proof. By [5, Lemma 14.1] there are elements $a, b \in B_1^P$ such that $1_B = \text{Tr}_P^H(aib)$. Consider the element

$$v = \sum_{h \in [H/P]} hai \otimes ibh^{-1} \in \mathcal{O}H \otimes_{\mathcal{O}P} \mathcal{O}H,$$

where [H/P] is a set of representatives for the left cosets of P in H. Then as in [2, Lemma 4], vh = hv for all $h \in G$ and $\sum_{h \in [H/P]} haibt^{-1} = \operatorname{Tr}_P^H(aib) = 1_B$. It follows that the element $w = ivi \in (A \otimes_{\mathcal{O}P} A)^A$ satisfies $\mu(w) = i = 1_A$, hence by Lemma 1.2, A is a separable G-graded $\mathcal{O}P$ -interior algebra.

2. The lifting theorem

The following result is a generalization to the case of G-graded algebras of [2, Theorem 3].

Theorem 2.1. Let B be a separable G-graded A-interior \mathcal{O} -algebra, let I be an Ggraded ideal in an arbitrary G-graded A-interior \mathcal{O} -algebra C such that $I \subseteq J(I)$, and let $\rho: B \to C/I$ be a unitary homomorphism of G-graded A-interior \mathcal{O} -algebras.

Suppose that there exist a map of G-graded (A, A)-bimodules $\tau_0 \colon B \to C$ such that $\tau_0(x) + I = \rho(x)$ for $x \in B$. Then there exists a homomorphism of G-graded A-interior O-algebras $\tau \colon B \to C$ such that $\tau(x) + I = \rho(x)$ for $x \in B$.

Moreover τ is unitary and unique up to conjugation with elements in $1 + I_1^A$. 21

ILUŞCA BONTA

Proof. Since B is a separable G-graded A-interior \mathcal{O} -algebra there exists an element $w = \sum_{j=1}^{k} x_j \otimes y_j \in (B \otimes_A B)^B$ with $x_j, y_j \in B$ homogeneous elements such that $\sum_{j=1}^{k} x_j y_j = 1_B$.

The construction τ is given in [1, Theorem 3]. We only have to verify that τ is grade-preserving.

Consider the map of (A, A)-bimodules

$$\theta: B \otimes_A B \to I^{2^n}, \quad \theta(x \otimes y) = \tau_n(xy) - \tau_n(x)\tau_n(y)$$

for $x, y \in B$. If $x_g \in B_g$ and $y_h \in B_h$ we have $x_g y_h \in B_{gh}$ because B is a Ggraded A-algebra. We know that τ_n is a G-graded map of (A, A)-bimodules, so $\tau(x_g y_h) \in C_{gh}$ and $\tau(x_g) \in C_g, \tau(y_h) \in C_h$ (hence $\tau(x_g)\tau(y_h) \in C_g C_h \subseteq C_{gh}$). Finally, $\tau_n(x_g y_h) - \tau_n(x_g)\tau_n(y_h) \in C_{gh}$, so $\theta(x \otimes y) \in I^{2^n} \cap C_{gh}$. This means that θ G-graded.

Consider the map of (A, A)-bimodules

$$\lambda \colon B \otimes_A B \otimes_A B \to I^{2^n}, \qquad \lambda(x \otimes y \otimes z) = \theta(x \otimes y)\tau_n(z).$$

If $x_g \in B_g$, $y_h \in B_h$ and $z_l \in B_l$ we have $x_g y_h \in B_{gh}$ and $z_l \in B_l$. Since θ and τ_n are *G*-graded, we have $\theta(x_g \otimes y_h) \in I^{2^n} \cap C_{gh}$ and $\tau_n(z_l) \in I^{2^n} \cap C_l$. It follows that $\theta(x_g \otimes y_h) \tau_n(z_l)$ belongs to $(I^{2^n} \cap C_{gh})(I^{2^n} \cap C_l) \subseteq I^{2^n} \cap C_{ghl}$, hence $\lambda(x_g \otimes y_h \otimes z_l) \in I^{2^n} \cap C_{ghl}$. Then

$$\eta: B \to I^{2^n}, \quad \eta(x) = \lambda(x \otimes w) = \sum_{j=1}^k \theta(x \otimes x_j) \tau_n(y_j)$$

is a map of G-graded (A, A)-bimodules with

$$\tau_n(x)\eta(y) - \eta(xy) + \eta(x)\tau_n(y) + I^{2^{n+1}} = \tau_n(xy) - \tau_n(x)\tau_n(y) + I^{2^{n+1}}.$$

If $x_g \in B_g$ then $x_g \otimes w \in B \otimes_A B$, and since λ is *G*-graded, we obtain $\lambda(x_g \otimes w) \in I^{2^n} \cap C_g$. It follows that η is *G*-graded. We get a map of (A, A)-bimodules

$$\tau_{n+1} \colon B \to C, \quad \tau_{n+1}(x) = \tau_n(x) + \eta(x)$$

22

with $\tau_{n+1}(x) + I^{2^n} = \tau_n(x) + I^{2^n}$ and $\tau_{n+1}(x)\tau_{n+1}(y) + I^{2^{n+1}} = \tau_{n+1}(xy) + I^{2^{n+1}}$ for $x, y \in B$. Since τ_n and η are *G*-graded, if $x_g \in B_g$ we have $\tau_n(x_g) \in C_g$ and $\eta(x_g) \in I^{2^n} \cap C_g$, so $\tau_n(x_g) + \eta(x_g) \in C_g$. Consequently τ_{n+1} is *G*-graded.

We have constructed the sequence $(\tau_n)_{n=0}^{\infty}$. Since $I \subseteq J(C)$ the map

$$\tau: B \to C, \quad \tau(x) = \lim_{n \to \infty} \tau_n(x)$$

is a well-defined unitary homomorphism of G-graded A-interior \mathcal{O} -algebras such that $\tau(x) + I = \tau_0(x) + I = \rho(x)$ for $x \in B$.

Finally, suppose that $\tau': B \to C$ is another homomorphism of *G*-graded *A*-interior \mathcal{O} -algebras such that $\tau'(x) + I = \rho(x)$ for $x \in B$. Then

$$\delta \colon B \to I, \quad \delta(x) = \tau(x) - \tau'(x)$$

is a map of G-graded (A, A)-bimodules such that $\delta(xy) = \tau(x)\delta(y) + \delta(x)\tau'(y)$ for $x, y \in B$ and clearly δ is grade-preserving.

We consider the map of (A, A)-bimodules

$$\Phi: B \otimes_A B \to I, \quad \Phi(x \otimes y) = \tau(x)\delta(y)$$

for $x, y \in B$ and let $a = \Phi(w) = \sum_{j=1}^{k} \tau(x_j)\delta(y_j) \in I_1^A$. If $x_g \in B_g$ and $y_h \in B_h$ then, since τ and δ are *G*-graded we have $\tau(x_g)\delta(y_h) \in C_g(I \cap C_h) \subseteq I \cap C_{gh}$, hence Φ is *G*-graded too. Because *B* is a separable *G*-graded *A*-interior *O*-algebra, there exists an element $w = \sum_{j=1}^{k} x_j \otimes y_j \in (B \otimes_A B)^B$ where x_j, y_j are homogeneous elements such that $\sum_{j=1}^{k} x_j y_j = 1_B$ imply $w \in (B \otimes_A B)_1$. We have that Φ is a map of *G*-graded (A, A)-bimodules. Therefore, if $x_j \in B_g$ and $y_j \in B_{g^{-1}}$ then $\tau(x_j) \in C_g$ and $\delta(y_j) \in I \cap C_{g-1}$, so $\tau(x_j)\delta(y_j) \in I^A \cap C_1 = I_1^A$.

References

- F. Castano Iglesias, J.Gómez Torrecillas and C.Năstăsescu, Separable functors in graded rings, J. Pure Appl. Algebra 127(1998), 219-230.
- B. Külshammer, T. Okuyama and A. Watanabe, A lifting theorem with applications to blocks and source algebras, Preprint 1999.
- [3] B. Külshammer and L.Puig, Extensions of nilpotent blocks, Invent. Math. 102(1990), 17-71.
- [4] A. Marcus, Twisted Group Algebras, Normal Subgroups and Derived Equivalences, Algebras and Representation Theory 4(2001),25-54.
- [5] J. Thévenaz, G-Algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.

ILUŞCA BONTA

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

Received: 13.06.2001