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SOME REMARKS ON GROUPS OF POINTWISE SYMMETRIES OF
THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS

GALINA BANARU

Abstract. A necessary and sufficient condition for a third-order ordinary

differential equation to possess a five-dimensional group of pointwise sym-

metries is established.

1. Introduction

The investigation of symmetries groups of differential equations in general

(and of ordinary differential equations in particular) is one of the most important

problems of differential equations geometry. The author of the present article studies

third-order ordinary differential equations. Before that [1] the author obtained a

complete solution of the problem in the case when such an equation has a seven-

dimensional or a six-dimensional group of pointwise symmetries: the corresponding

criteria have been obtained. (We recall [2] that seven is the maximum of the possible

dimension of the pointwise symmetries group of a third-order ordinary differential

equation). The present work is devoted to the analysis of the problem in the case

when the dimension of the pointwise symmetries group is equal to five.

2. Preliminaries

We consider a third-order ordinary differential equation

y′′′ = f(x, y, y′, y′′) (1)

given on a plane where the pseudo-group of point analytical transformations of coor-

dinates acts:

x̃ = ϕ1(x, y); ỹ = ϕ2(x, y).
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The equation (1) is bound in an invariant way (concerning the given transforma-

tions) with such a geometrical object as a fiber space with a connection. The Cartan

structural equations of the above-mentioned fiber space looks as follows:

Dω1 = ω1 ∧ ω1
1 + Ω1

Dω2 = ω1 ∧ ω2
1 + ω2 ∧ ω2

2

Dω2
1 = ω2

1 ∧ (ω2
2 − ω1

1) + ω1 ∧ ω2
11 + ω2 ∧ ω1

11

Dω2
11 = ω2

11 ∧ (ω2
2 − 2ω1

1) + ω2
1 ∧ ω1

11 + Ω2
11 (2)

Dω1
1 = ω1 ∧ ω1

11 + Ω1
1

Dω2
2 = ω1 ∧ ω1

11 + Ω2
2

Dω1
11 = ω1

1 ∧ ω1
11 + Ω1

11.

The torsion-curvature forms of the equations (2) looks as follows:

Ω1 =
1
2
(aω2

1 + bω2
11) ∧ ω2

Ω2
11 =

1
2
(cω1 − eω2

1) ∧ ω2

Ω1
1 =

1
2
(gω1 + hω2

1 + kω2
11) ∧ ω2 +

1
2
bω2

11 ∧ ω2
1 (3)

Ω2
2 =

1
2
[3gω1 + (3h− 2m)ω2

1 + (3k − 2a)ω2
11] ∧ ω2 +

1
2
bω2

1 ∧ ω2
11

Ω1
11 = (

1
2
e+ g)ω1 ∧ ω2

1 +
1
2
[nω1 + rω2

1 + (h+m)ω2
11] ∧ ω2 + (

1
2
a− k)ω2

1 ∧ ω2
11.

The coefficients

a, b, c, e, g, h, k,m, n, r (4)

being present in the torsion-curvature forms make up a complete system of differential

invariants of the equation (1). They completely characterize the equation (1)and,

thus, determine its geometry. The differentials of the invariants are as follows:

da+ 2a(ω1
1 − ω2

2)− bω1
11 = hω1 + ...

db+ b(3ω1
1 − 2ω2

2) = (k − a)ω1 + ...

dc− 3cω1
1 = σ1

de− e(ω1
1 + ω2

2) = σ2 (5)

dg − g(ω1
1 + ω2

2) = σ3
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dh+ h(ω1
1 − 2ω2

2) + (a− k)ω1
11 = σ4

dk + 2k(ω1
1 − ω2

2) = σ5

dm+m(ω1
1 − 2ω2

2) = (r + bc)ω1 + ...

dn− n(2ω1
1 + ω2

2)− (g + e)ω1
11 = σ6

dr − 2rω2
2 −mω1

11 = σ7.

The right parts of all equalities are linear combinations of the main forms of the

second-order tangent element: ω1, ω2, ω2
1 , ω

2
11. We denote such combinations by the

symbols σi, σ, σ̃. From the given relations it is seen that the differential invariants

of the equation (1) are either relative invariants or become relative invariants when

some relative invariants vanish.

3. The main result

Now, we consider the invariant c. According to (5),

dc− 3cω1
1 = σ1. (6)

Thus, c is one of the invariants that is relative from the beginning. For this reason for

c, as well as for any relative invariant, two different cases are possible: c = 0 and c 6= 0.

From the multitude of third-order ordinary differential equations we select those for

which the invariant c is different from zero and all others differential invariants vanish:

a = b = e = g = h = k = m = n = r = 0. (7)

Let us do the canonization c
k= 1. In extracted particular case according to

(6), the differential form ω1
1 will be a linear combination of the main forms of the

second-order tangent element:

ω1
1 = tω1 + t1ω

2 + t2ω
2
1 + t3ω

2
11, (8)

where t, t1, t2, t3 are some new invariants. Having an exterior differentiation of the

equality (8), we shall find the relations for differentials of these invariants:

dt = σ8; dt1 − t1ω2
2 = σ9;

dt2 − t2ω2
2 = σ10; dt3 − t3ω2

2 = σ11. (9)
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The obtained relations show that the coefficients t1, t2 t3 are relative invariants and

t is an absolute invariant.

The exterior differentiation of (8) will give us another useful equality:

ω1
11 = pω1 + p1ω

2 + p2ω
2
1 + p3ω

2
11. (10)

(Here p, p1, p2 p3 are new invariants of the equation (1) we are interested in). Having

an exterior differentiation of (10), we get:

dp = σ12; dp1 − p1ω
2
2 = σ13;

dp2 − p2ω
2
2 = σ14; dp3 − p3ω

2
2 = σ15. (11)

Therefore, p1, p2, p3 are relative invariants and p is an absolute invariant.

Let us select the case when all the ”new” relative invariants vanish:

t1 = t2 = t3 = p1 = p2 = p3 = 0. (12)

In this case the equalities (8) and (10) will look as follows: ω1
1 = tω1; ω1

11 = pω1, and

the Cartan structural equations (2) will be written down as follows:

Dω1 = Dω2
2 = 0

Dω2 = ω1 ∧ ω2
1 + ω2 ∧ ω2

2

Dω2
1 = ω2

1 ∧ (ω2
2 − tω1) + ω1 ∧ (ω2

11 − pω2) (13)

Dω2
2 = ω2

11 ∧ (ω2
2 − 2tω1) + ω1 ∧ (

1
2
ω2 − pω2

1).

Having an exterior differentiation of (13), we shall be convinced that (13) are structure

equations of a some transformations group. The dimension of this group is equal to

five. For the equation (1) that we are interested in the group mentioned is a group of

pointwise symmetries (in the selected particular case). So, we have proved

Proposition I. If c 6= 0 and equalities (7) and (12) are fulfilled, then the equation

(1) has a five-dimensional group of pointwise symmetries. The structure equations of

this group looks as (13).

It turns out that the inverse statement is also true.

Proposition II. If the equation (1) has a five-dimensional group of pointwise sym-

metries, then c 6= 0 and equalities (7) and (12) are fulfilled.
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Proof. Assume the equation (1) possesses a five-dimensional group of point-

wise symmetries. Then among its differential invariants in (4) there is at least one that

is different from zero. Otherwise [1], the symmetries group is the seven-dimensional

group g2,6(3) (using the Cartan’s terminology [3]).

Let I be one of the relative invariants of the equation (1). Then its differential

satisfies the equality:

dI + I(s1ω1
1 + s2ω

2
2) = r1ω

1 + r2ω
2 + r3ω

2
1 + r4ω

2
11. (14)

We assume that I 6= 0. Canonizing I k= 1, from (14) we obtain:

s1ω
1
1 + s2ω

2
2 = r1ω

1 + r2ω
2 + r3ω

2
1 + r4ω

2
11. (15)

Having an exterior differentiation of this equality, as one of differential results we

obtain the relation:

dr1 − r1ω1
1 + (s1 + s2)ω1

11 = σ.

The invariant r1 (like the others invariants of the equation (1)) must be a constant in

the case when (2) are the structure equations of the symmetries group of (1). Under

this condition the last equality looks as follows:

−r1ω1
1 + (s1 + s2)ω1

11 = σ. (16)

Now, we assume that the invariant s2 is different from zero and express the differential

form ω2
2 . Substituting the relation for ω2

2 in (2), we obtain:

Dω2 = ω1 ∧ ω2
1 + ω2 ∧ (−s1

s2
ω1 + σ̃).

We have an exterior differentiation of this equality. Among others we obtain the

following relation:

−s1
s2

= 1, or s1 + s2 = 0.

As seen from (5), among the relative invariants only the invariant k satisfies this

condition. But being different from zero, the invariant k does not suit us for the

reason that if we admit that the equation (1) has not any other invariants different

from zero, then the symmetries group will be the six-dimensional group g4,2. If at

least one invariant is different from zero, then according to (15) and (16) the forms
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ω1
1 , ω

2
2 , ω

1
11 will turn out to be dependent on ω1, ω2, ω2

1 , ω
2
11 and, thus, the symmetries

group can not have a dimension more than four.

Hence, all the relative invariants from (4) for which s2 6= 0 must vanish.

Therefore

b = e = g = k = m = 0⇒ a = k = 0.

Moreover, the coefficients h, n, become relative invariants for which s2 6= 0. If we

consider this fact as mentioned before, we can come to conclusion that h = n = r = 0.

Only the invariant I = c satisfies the condition s2 = 0. Therefore, c 6= 0.

In this case, as it is mentioned before, the forms ω1
1 and ω1

11 are expressed in

a linear way though the main forms of the second order tangent element. If we admit

that any of invariants t1, t2, t3, p1, p2, p3, are different from zero, then owing to (9)

and (11) the form ω2
2 will also be dependent on ω1, ω2, ω2

1 , ω
2
11, and so the symmetries

group can not have a dimension more then four.

That’s why, in the case we are interested in t1 = t2 = t3 = p1 = p2 = p3 = 0.

The Proposition II is proved completely.

Proposition III. The structure equations (13) determine the transformations group

g5,5.

Proof. We substitute

ω1 = Θ2; ω2 = Θ1; ω2
2 = Θ1

1 + tΘ2;

ω2
1 = Θ1

2 + tΘ1; ω2
11 = −Θ1

22 + tΘ1
2 + pΘ1.

According to the substitution, the equations (13) may be written down as follows:

DΘ2 = DΘ1
1 = 0

DΘ1 = Θ1 ∧Θ1
1 + Θ2 ∧Θ1

2

DΘ1
2 = Θ1

22 ∧Θ2 + Θ1
2 ∧Θ1

1 (17)

DΘ1
22 = Θ2 ∧ ((2p− t2)Θ1

2 −
1
2
Θ1) + Θ1

22 ∧Θ1
1.

Now, we use the structural equations of the group g5,5 for the third-order ordinary

differential equation [3]:

DΘ1 = Θ1 ∧Θ1
1 + Θ2 ∧Θ1

2
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DΘ2 = 0

DΘ1
1 = 0

DΘ1
2 = Θ1

22 ∧Θ2 + Θ1
2 ∧Θ1

1

DΘ1
22 = Θ2 ∧ (m2Θ1

2 +m3Θ1) + Θ1
22 ∧Θ1

1.

It is quite evident that (17) are structure equations of g5,5, in addition, m2 =

2p− t2;m3 = − 1
2 . The Proposition III have been proved.

Remark. In our case the finite transformations of the group look as follows:

x̃ = c1x+ ψ(y);

ỹ = y + c2,

where ψ(y) is the general solution of the equation

ψ′′′ − (t2 − 2p)ψ′ +
1
2
ψ = 0.

Taking together all the proved statements, we state the following result:

Theorem. Third-order ordinary differential equations have a five-dimensional group

of pointwise symmetries if and only if c 6= 0, and conditions (7) and (12) are fulfilled.

In addition, the only possible group of pointwise symmetries is (with the precision to

an isomorphism) the group g5,5.
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