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ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN
IN n VARIABLES

TIBERIU TRIF

Abstract. In this paper we establish one Chebyshev type and two Ky Fan

type inequalities for the weighted identric mean in n variables.

1. Introduction and notation

Let n ≥ 2 be a given integer, let

An−1 = { (λ1, . . . , λn−1) | λi ≥ 0, i = 1, . . . , n− 1, λ1 + · · ·+ λn−1 ≤ 1 }

be the Euclidean simplex, and let µ be a probability measure on An−1. For each

i ∈ { 1, . . . , n }, the ith weight wi associated to µ is defined by

wi =
∫

An−1

λidµ(λ) if 1 ≤ i ≤ n− 1,

wn =
∫

An−1

(1− λ1 − · · · − λn−1)dµ(λ),

where λ = (λ1, . . . , λn−1) ∈ An−1. Obviously, wi > 0 for all i ∈ { 1, . . . , n }, and

w1 + · · ·+ wn = 1. We also define

wij =
∫

An−1

λiλjdµ(λ) if 1 ≤ i, j ≤ n− 1,

win = wni =
∫

An−1

λi(1− λ1 − · · · − λn−1)dµ(λ) if 1 ≤ i ≤ n− 1,

wnn =
∫

An−1

(1− λ1 − · · · − λn−1)2dµ(λ).

Taking into account the Liouville formula (see, for instance, [1])∫
An−1

λp1−1
1 · · ·λpn−1−1

n−1 f(λ1 + · · ·+ λn−1)dλ1 · · · dλn−1

=
Γ(p1) · · ·Γ(pn−1)

Γ(p1 + · · ·+ pn−1)

∫ 1

0

xp1+···+pn−1−1f(x)dx,
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in the special case µ = (n− 1)! we get wi = 1/n for all i ∈ { 1, . . . , n } and

wii =
2

n(n + 1)
for all i ∈ { 1, . . . , n },

wij =
1

n(n + 1)
for all i, j ∈ { 1, . . . , n }, i 6= j.

Next, recall that the identric mean I(x1, x2) of the positive real numbers x1

and x2 is defined by

I(x1, x2) =
1
e

(
xx2

2

xx1
1

)1/(x2−x1)

if x1 6= x2,

I(x1, x1) = x1.

It is easily seen that the following integral representation holds:

I(x1, x2) = exp
(∫ 1

0

log(tx1 + (1− t)x2)dt

)
. (1.1)

Given X = (x1, . . . , xn) ∈ ]0,∞[n, we set

λ ·X := λ1x1 + · · ·+ λn−1xn−1 + (1− λ1 − · · · − λn−1)xn

for all λ = (λ1, . . . , λn−1) ∈ An−1. Starting from (1.1), in [7] it was pointed out that

I(X;µ) := exp

(∫
An−1

log(λ ·X)dµ(λ)

)
can be considered as the weighted identric mean of x1, . . . , xn. For µ = (n − 1)! we

obtain the unweighted and symmetric identric mean of x1, . . . , xn

I(X) = I(x1, . . . , xn) = exp

(
(n− 1)!

∫
An−1

log(λ ·X)dλ1 · · · dλn−1

)
.

As in the case of other means, I(X;µ) can be generalized as follows: for each

real number r we set Xr := (xr
1, . . . , x

r
n), and then define

Ir(X;µ) := (I(Xr;µ))1/r if r 6= 0,

I0(X;µ) := lim
r→0

Ir(X;µ) = xw1
1 · · ·xwn

n (see [5]).

The means Ir(X;µ) are special cases of the so-called Stolarsky-Tobey means intro-

duced in [5]: namely Ir(X;µ) = Er,r(X;µ). Consequently, several inequalities (of the

Jensen, Minkowski, Hölder, Rennie, and Kantorovich type, respectively) involving the

means Ir can be obtained as special cases of the results listed in [5]. In Section 2 of
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this paper we complete these inequalities by proving a Chebyshev type inequality for

Ir.

Let

A(X;µ) := w1x1 + · · ·+ wnxn and G(X;µ) := xw1
1 · · ·xwn

n

be the weighted arithmetic and geometric mean, respectively, of x1, . . . , xn. For µ =

(n− 1)! we obtain the usual arithmetic and geometric mean of x1, . . . , xn

A(X) = A(x1, . . . , xn) =
x1 + · · ·+ xn

n
,

G(X) = G(x1, . . . , xn) = (x1 · · ·xn)1/n.

A famous result due to Ky Fan asserts that if 0 < xi ≤ 1/2 for all i ∈ { 1, . . . , n },

then
G(X;µ)

G(1−X;µ)
≤ A(X;µ)

A(1−X;µ)
, (1.2)

where 1 − X := (1 − x1, . . . , 1 − xn). The following refinement of (1.2) has been

recently obtained in [7]:

G(X;µ)
G(1−X;µ)

≤ I(X;µ)
I(1−X;µ)

≤ A(X;µ)
A(1−X;µ)

. (1.3)

In Section 3 of this paper we establish a converse of the left inequality in (1.3) as well

as an improvement of the right inequality in (1.3).

2. Chebyshev’s inequality for the identric mean in n variables

Theorem 2.1. Let X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , yn) ∈ Rn such

that 0 < x1 ≤ · · · ≤ xn and 0 < y1 ≤ · · · ≤ yn, and let X · Y := (x1y1, . . . , xnyn).

Then

Ir(X;µ)Ir(Y ;µ) ≤ Ir(X · Y ;µ) for all r > 0,

Ir(X;µ)Ir(Y ;µ) ≥ Ir(X · Y ;µ) for all r < 0.

Proof. According to Chebyshev’s inequality, we have

(λ ·Xr)(λ · Y r) ≤ λ · (X · Y )r

for all r ∈ R and all λ ∈ An−1, hence∫
An−1

log(λ ·Xr)dµ(λ) +
∫

An−1

log(λ · Y r)dµ(λ) ≤
∫

An−1

log(λ · (X · Y )r)dµ(λ)
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for all r ∈ R. Exponentiating both sides yields

I(Xr;µ)I(Y r;µ) ≤ I((X · Y )r;µ) for all r ∈ R.

This inequality implies the conclusion of the theorem. �

Besides the identric mean I(x1, x2) of the positive real numbers x1 and x2,

the logarithmic mean of x1 and x2 is another important special case of the Stolarsky

mean of x1 and x2. Recall that the logarithmic mean of x1 and x2 is defined by

L(x1, x2) =
x1 − x2

log x1 − log x2
if x1 6= x2,

L(x1, x1) = x1.

Theorem 2.2. Let x1, x2, y1, y2 be positive real numbers.

If (x1 − x2)(y1 − y2) > 0, then

L(x1, x2)L(y1, y2) < L(x1y1, x2y2), (2.1)

while if (x1 − x2)(y1 − y2) < 0, then

L(x1, x2)L(y1, y2) > L(x1y1, x2y2). (2.2)

In the proof we shall use the elementary

Lemma 2.3. The following assertions are true:

a) f1(v) = v log v − v + 1 is strictly decreasing from ]0, 1[ onto ]0, 1[, and

strictly increasing from ]1,∞[ onto ]0,∞[.

b) f2(v) = v log v − 2v + log v + 2 is strictly increasing from ]0,∞[ onto

]−∞,∞[.

c) f3(v) = v2 − 2v log v − 1 is strictly increasing from ]0, 1[ onto ]− 1, 0[.

d) f4(v) = v log2 v − (v − 1)2 is strictly increasing from ]0, 1[ onto ]− 1, 0[.

Proof of the Theorem 2.2. Suppose first that (x1 − x2)(y1 − y2) > 0. Due to

the symmetry, we may assume that x1 > x2 and y1 > y2, so u := x1
x2

> 1, v := y1
y2

> 1.

Taking into account the homogeneity of L, inequality (2.1) is equivalent to

u− 1
log u

· v − 1
log v

<
uv − 1

log u + log v
,
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i. e. to

(u− 1)(v − 1)(log u + log v)− (uv − 1) log u log v < 0. (2.3)

Let v ∈ ]1,∞[ be fixed, and let f : ]0,∞[→ R be the function defined by

f(u) := (u− 1)(v − 1)(log u + log v)− (uv − 1) log u log v. (2.4)

Then we have

f ′(u) = (v − 1− v log v) log u +
u− 1

u
(v − 1− log v),

f ′′(u) =
v − 1− log v − u(v log v − v + 1)

u2
.

Since v > 1, by virtue of Lemma 2.3 a) and b) we obtain

f ′′(u) <
v − 1− log v − (v log v − v + 1)

u2
= −v log v − 2v + log v + 2

u2
< 0

for all u ∈ ]1,∞[, hence f ′ must be strictly decreasing on ]1,∞[. Therefore f ′(u) < 0

for u > 1, because f ′(1) = 0. This implies that f is also strictly decreasing on ]1,∞[.

Consequently, f(u) < 0 for u > 1, because f(1) = 0. This proves the validity of (2.3).

Suppose now that (x1 − x2)(y1 − y2) < 0, and assume that x1 > x2 and

y1 < y2. Then we have u := x1
x2

> 1 and v := y1
y2

< 1. Depending on u and v, we

distinguish the following possible cases:

Case I. uv = 1.

Then inequality (2.2) is equivalent to L(u, 1)L(1/u, 1) > 1. Since L(1/u, 1) =

L(u, 1)/u, this transforms into the well-known inequality L(u, 1) >
√

u = G(u, 1) (see

[8]).

Case II. uv > 1.

Then inequality (2.2) is equivalent to (2.3). Let v ∈ ]0, 1[ be fixed, and let

f : ]0,∞[→ R be the function defined by (2.4). By virtue of Lemma 2.3 a) and c),

for all u ∈ ]1/v,∞[ we have

f ′′(u) <
v − 1− log v − 1

v (v log v − v + 1)
u2

=
v2 − 2v log v − 1

u2v
< 0,

hence f ′ must be strictly decreasing on ]1/v,∞[. But f ′(1/v) = v log2 v − (v − 1)2 <

0, according to Lemma 2.3 d), so f ′(u) < 0 for u > 1/v. This implies that f is
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also strictly decreasing on ]1/v,∞[. Consequently, f(u) < 0 for u > 1/v, because

f(1/v) = 0. This proves the validity of (2.3).

Case III. uv < 1.

Then inequality (2.2) is equivalent to

(u− 1)(v − 1)(log u + log v)− (uv − 1) log u log v > 0. (2.5)

Let again v ∈ ]0, 1[ be fixed, and let f : ]0,∞[→ R be the function defined by (2.4).

Set

ṽ :=
v − 1− log v

v log v − v + 1
.

By Lemma 2.3 a), b), and c) we have 1 < ṽ < 1/v. It is immediately seen that

f ′′(u) > 0 for u ∈ ]1, ṽ[ and f ′′(u) < 0 for u ∈ ]ṽ, 1/v[. Consequently, f ′ is strictly

increasing on ]1, ṽ[ and strictly decreasing on ]ṽ, 1/v[. Since f ′(1) = 0 and f ′(1/v) =

v log2 v − (v − 1)2 < 0, it follows that there exists a unique v̄ ∈ ]ṽ, 1/v[ such that

f ′(v̄) = 0, f ′(u) > 0 for u ∈ ]1, v̄[, and f ′(u) < 0 for u ∈ ]v̄, 1/v[. Therefore f is strictly

increasing on ]1, v̄[ and strictly decreasing on ]v̄, 1/v[. Since f(1) = f(1/v) = 0, we

can conclude that f(u) > 0 for all u ∈ ]1, 1/v[. This completes the proof of (2.5). �

Remark. It would be interesting to study whether Theorem 2.2 can be

generalized for n variables (the author does not know the answer).

3. Two inequalities related to (1.3)

In this section, both a converse of the left inequality in (1.3) and a refinement

of the right inequality in (1.3) are obtained. They are contained in the following two

theorems.

Theorem 3.1. If X = (x1, . . . , xn) ∈ ]0, 1/2]n, then it holds that

log
I(X;µ)

I(1−X;µ)
− log

G(X;µ)
G(1−X;µ)

(3.1)

≤

(
n∑

i=1

wixi

)(
n∑

i=1

wi

xi(1− xi)

)
−

n∑
i=1

wi

1− xi
.
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Theorem 3.2. If X = (x1, . . . , xn) ∈ ]0, 1/2]n, then it holds that

log
A(X;µ)

A(1−X;µ)
− log

I(X;µ)
I(1−X;µ)

(3.2)

≥ 1− 2x̄

2x̄2(1− x̄)2

n∑
i,j=1

(wij − wiwj)xixj ,

where x̄ := max {x1, . . . , xn }.

In the proofs of Theorem 3.1 and Theorem 3.2 we shall use the following

lemmas.

Lemma 3.3. Let J ⊆ R be a nonempty interval, let X = (x1, . . . , xn) ∈ Jn,

and let φ : J → R be a twice differentiable function such that φ′′(x) ≥ 0 for all x ∈ J .

Then it holds that
n∑

i=1

wiφ(xi)−
∫

An−1

φ(λ ·X)dµ(λ) (3.3)

≤
n∑

i=1

wixiφ
′(xi)−

(
n∑

i=1

wixi

)(
n∑

i=1

wiφ
′(xi)

)
.

Proof. The nonnegativity of φ′′ ensures that

φ(λ ·X) ≥ φ(xi) + φ′(xi)(λ ·X − xi)

for all i ∈ { 1, . . . , n } and all λ ∈ An−1. Integrating over An−1 with respect to µ

yields

φ(xi)−
∫

An−1

φ(λ ·X)dµ(λ) ≤ xiφ
′(xi)− φ′(xi)(w1x1 + · · ·+ wnxn)

for all i ∈ { 1, . . . , n }. Multiplying both sides by wi and then summing the obtained

inequalities, we get (3.3). �

Given the nonempty interval J ⊆ R, to each function φ : J → R we associate

the function Lφ : Jn → R defined by

Lφ(X) :=
∫

An−1

φ(λ ·X)dµ(λ)− φ

(
n∑

i=1

wixi

)
X = (x1, . . . , xn) ∈ Jn.

Lemma 3.4. Suppose that φ has a continuous second derivative in J , and let

X = (x1, . . . , xn) ∈ Jn, x := min {x1, . . . , xn }, x̄ := max {x1, . . . , xn }. Then there
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exists a point x̃ ∈ [x, x̄] such that

Lφ(X) =
1
2
φ′′(x̃)Le2(X),

where e2(x) = x2.

Proof. Set λ0 := (w1, . . . , wn−1) ∈ An−1 and x0 := w1x1 + · · · + wnxn.

Obviously, x0 = λ0 ·X. Next, let ϕ : An−1 → R be the function defined by ϕ(λ) :=

φ(λ ·X). For each λ = (λ1, . . . , λn−1) ∈ An−1 there exists ξ ∈ ]0, 1[ such that

ϕ(λ) = ϕ(λ0) + dϕ(λ0)(λ− λ0) +
1
2
d2ϕ(λ0 + ξ(λ− λ0))(λ− λ0),

hence

φ(λ ·X) = φ(x0) + φ′(x0)
n−1∑
i=1

(xi − xn)(λi − wi) (3.4)

+
1
2
φ′′(xξ)

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj),

where xξ := (λ0 + ξ(λ− λ0)) ·X. Further, let

m := inf φ′′([x, x̄]) and M := sup φ′′([x, x̄]).

Taking into account that

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj) =

(
n−1∑
i=1

(xi − xn)(λi − wi)

)2

≥ 0,

from (3.4) we get

1
2
m

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj)

≤ φ(λ ·X)− φ(x0)− φ′(x0)
n−1∑
i=1

(xi − xn)(λi − wi)

≤ 1
2
M

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj)

for all λ = (λ1, . . . , λn−1) ∈ An−1. Integrating over An−1 with respect to µ yields

1
2
m

n−1∑
i,j=1

(wij − wiwj)(xi − xn)(xj − xn) ≤ Lφ(X)

≤ 1
2
M

n−1∑
i,j=1

(wij − wiwj)(xi − xn)(xj − xn).

112



ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN IN n VARIABLES

As a simple computation shows, we have

n−1∑
i,j=1

(wij − wiwj)(xi − xn)(xj − xn) = Le2(X),

hence 1
2mLe2(X) ≤ Lφ(X) ≤ 1

2MLe2(X). Now, the continuity of φ′′ ensures the

existence of a point x̃ ∈ [x, x̄] such that Lφ(X) = 1
2φ′′(x̃)Le2(X). �

Proof of the Theorem 3.1. Inequality (3.1) follows at once from (3.3) if we

take J := ]0, 1/2] and φ : J → R to be the function φ(x) = log(1− x)− log x, whose

second derivative is

φ′′(x) =
1− 2x

x2(1− x)2
≥ 0 for all x ∈ J.

�

Proof of the Theorem 3.2. With the same choices for J and φ, from Lemma

3.4 we conclude the existence of a point x̃ ∈ [x, x̄] such that

log
A(X;µ)

A(1−X;µ)
− log

I(X;µ)
I(1−X;µ)

=
1− 2x̃

2x̃2(1− x̃)2
Le2(X)

=
1− 2x̃

2x̃2(1− x̃)2

n∑
i,j=1

(wij − wiwj)xixj

≥ 1− 2x̄

2x̄2(1− x̄)2

n∑
i,j=1

(wij − wiwj)xixj ,

because φ′′ is decreasing on J . �

Remark. For µ = (n− 1)!, inequalities (3.1) and (3.2) reduce to

log
I(X)

I(1−X)
− log

G(X)
G(1−X)

≤ 1
n2

(
n∑

i=1

xi

)(
n∑

i=1

1
xi(1− xi)

)
− 1

n

n∑
i=1

1
1− xi

and

log
A(X)

A(1−X)
− log

I(X)
I(1−X)

≥ 1− 2x̄

2n2(n + 1)x̄2(1− x̄)2

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2
 ,

respectively.
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