ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN IN n VARIABLES

TIBERIU TRIF

Abstract

In this paper we establish one Chebyshev type and two Ky Fan type inequalities for the weighted identric mean in n variables.

1. Introduction and notation

Let $n \geq 2$ be a given integer, let

$$
A_{n-1}=\left\{\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \mid \lambda_{i} \geq 0, i=1, \ldots, n-1, \lambda_{1}+\cdots+\lambda_{n-1} \leq 1\right\}
$$

be the Euclidean simplex, and let μ be a probability measure on A_{n-1}. For each $i \in\{1, \ldots, n\}$, the i th weight w_{i} associated to μ is defined by

$$
\begin{aligned}
w_{i} & =\int_{A_{n-1}} \lambda_{i} d \mu(\lambda) \quad \text { if } \quad 1 \leq i \leq n-1 \\
w_{n} & =\int_{A_{n-1}}\left(1-\lambda_{1}-\cdots-\lambda_{n-1}\right) d \mu(\lambda)
\end{aligned}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \in A_{n-1}$. Obviously, $w_{i}>0$ for all $i \in\{1, \ldots, n\}$, and $w_{1}+\cdots+w_{n}=1$. We also define

$$
\begin{aligned}
w_{i j} & =\int_{A_{n-1}} \lambda_{i} \lambda_{j} d \mu(\lambda) \quad \text { if } \quad 1 \leq i, j \leq n-1, \\
w_{i n} & =w_{n i}=\int_{A_{n-1}} \lambda_{i}\left(1-\lambda_{1}-\cdots-\lambda_{n-1}\right) d \mu(\lambda) \quad \text { if } \quad 1 \leq i \leq n-1, \\
w_{n n} & =\int_{A_{n-1}}\left(1-\lambda_{1}-\cdots-\lambda_{n-1}\right)^{2} d \mu(\lambda) .
\end{aligned}
$$

Taking into account the Liouville formula (see, for instance, [1])

$$
\begin{gathered}
\int_{A_{n-1}} \lambda_{1}^{p_{1}-1} \cdots \lambda_{n-1}^{p_{n-1}-1} f\left(\lambda_{1}+\cdots+\lambda_{n-1}\right) d \lambda_{1} \cdots d \lambda_{n-1} \\
=\frac{\Gamma\left(p_{1}\right) \cdots \Gamma\left(p_{n-1}\right)}{\Gamma\left(p_{1}+\cdots+p_{n-1}\right)} \int_{0}^{1} x^{p_{1}+\cdots+p_{n-1}-1} f(x) d x
\end{gathered}
$$

1991 Mathematics Subject Classification. 26D15.

TIBERIU TRIF

in the special case $\mu=(n-1)$! we get $w_{i}=1 / n$ for all $i \in\{1, \ldots, n\}$ and

$$
\begin{aligned}
& w_{i i}=\frac{2}{n(n+1)} \quad \text { for all } i \in\{1, \ldots, n\} \\
& w_{i j}=\frac{1}{n(n+1)} \text { for all } \quad i, j \in\{1, \ldots, n\}, i \neq j
\end{aligned}
$$

Next, recall that the identric mean $I\left(x_{1}, x_{2}\right)$ of the positive real numbers x_{1} and x_{2} is defined by

$$
\begin{aligned}
& I\left(x_{1}, x_{2}\right)=\frac{1}{e}\left(\frac{x_{2}^{x_{2}}}{x_{1}^{x_{1}}}\right)^{1 /\left(x_{2}-x_{1}\right)} \quad \text { if } \quad x_{1} \neq x_{2} \\
& I\left(x_{1}, x_{1}\right)=x_{1}
\end{aligned}
$$

It is easily seen that the following integral representation holds:

$$
\begin{equation*}
I\left(x_{1}, x_{2}\right)=\exp \left(\int_{0}^{1} \log \left(t x_{1}+(1-t) x_{2}\right) d t\right) \tag{1.1}
\end{equation*}
$$

Given $\left.X=\left(x_{1}, \ldots, x_{n}\right) \in\right] 0, \infty\left[^{n}\right.$, we set

$$
\lambda \cdot X:=\lambda_{1} x_{1}+\cdots+\lambda_{n-1} x_{n-1}+\left(1-\lambda_{1}-\cdots-\lambda_{n-1}\right) x_{n}
$$

for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \in A_{n-1}$. Starting from (1.1), in [7] it was pointed out that

$$
I(X ; \mu):=\exp \left(\int_{A_{n-1}} \log (\lambda \cdot X) d \mu(\lambda)\right)
$$

can be considered as the weighted identric mean of x_{1}, \ldots, x_{n}. For $\mu=(n-1)$! we obtain the unweighted and symmetric identric mean of x_{1}, \ldots, x_{n}

$$
I(X)=I\left(x_{1}, \ldots, x_{n}\right)=\exp \left((n-1)!\int_{A_{n-1}} \log (\lambda \cdot X) d \lambda_{1} \cdots d \lambda_{n-1}\right)
$$

As in the case of other means, $I(X ; \mu)$ can be generalized as follows: for each real number r we set $X^{r}:=\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)$, and then define

$$
\begin{aligned}
& I_{r}(X ; \mu):=\left(I\left(X^{r} ; \mu\right)\right)^{1 / r} \quad \text { if } \quad r \neq 0, \\
& I_{0}(X ; \mu):=\lim _{r \rightarrow 0} I_{r}(X ; \mu)=x_{1}^{w_{1}} \cdots x_{n}^{w_{n}} \quad(\text { see }[5]) .
\end{aligned}
$$

The means $I_{r}(X ; \mu)$ are special cases of the so-called Stolarsky-Tobey means introduced in [5]: namely $I_{r}(X ; \mu)=E_{r, r}(X ; \mu)$. Consequently, several inequalities (of the Jensen, Minkowski, Hölder, Rennie, and Kantorovich type, respectively) involving the means I_{r} can be obtained as special cases of the results listed in [5]. In Section 2 of 106
this paper we complete these inequalities by proving a Chebyshev type inequality for I_{r}.

Let

$$
A(X ; \mu):=w_{1} x_{1}+\cdots+w_{n} x_{n} \quad \text { and } \quad G(X ; \mu):=x_{1}^{w_{1}} \cdots x_{n}^{w_{n}}
$$

be the weighted arithmetic and geometric mean, respectively, of x_{1}, \ldots, x_{n}. For $\mu=$ $(n-1)$! we obtain the usual arithmetic and geometric mean of x_{1}, \ldots, x_{n}

$$
\begin{aligned}
& A(X)=A\left(x_{1}, \ldots, x_{n}\right)=\frac{x_{1}+\cdots+x_{n}}{n} \\
& G(X)=G\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1} \cdots x_{n}\right)^{1 / n}
\end{aligned}
$$

A famous result due to Ky Fan asserts that if $0<x_{i} \leq 1 / 2$ for all $i \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\frac{G(X ; \mu)}{G(\mathbf{1}-X ; \mu)} \leq \frac{A(X ; \mu)}{A(\mathbf{1}-X ; \mu)}, \tag{1.2}
\end{equation*}
$$

where $1-X:=\left(1-x_{1}, \ldots, 1-x_{n}\right)$. The following refinement of (1.2) has been recently obtained in [7]:

$$
\begin{equation*}
\frac{G(X ; \mu)}{G(\mathbf{1}-X ; \mu)} \leq \frac{I(X ; \mu)}{I(\mathbf{1}-X ; \mu)} \leq \frac{A(X ; \mu)}{A(\mathbf{1}-X ; \mu)} \tag{1.3}
\end{equation*}
$$

In Section 3 of this paper we establish a converse of the left inequality in (1.3) as well as an improvement of the right inequality in (1.3).

2. Chebyshev's inequality for the identric mean in n variables

Theorem 2.1. Let $X=\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}$ and $Y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbf{R}^{n}$ such that $0<x_{1} \leq \cdots \leq x_{n}$ and $0<y_{1} \leq \cdots \leq y_{n}$, and let $X \cdot Y:=\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right)$. Then

$$
\begin{array}{lll}
I_{r}(X ; \mu) I_{r}(Y ; \mu) \leq I_{r}(X \cdot Y ; \mu) & \text { for all } & r>0, \\
I_{r}(X ; \mu) I_{r}(Y ; \mu) \geq I_{r}(X \cdot Y ; \mu) & \text { for all } & r<0 .
\end{array}
$$

Proof. According to Chebyshev's inequality, we have

$$
\left(\lambda \cdot X^{r}\right)\left(\lambda \cdot Y^{r}\right) \leq \lambda \cdot(X \cdot Y)^{r}
$$

for all $r \in \mathbf{R}$ and all $\lambda \in A_{n-1}$, hence

$$
\int_{A_{n-1}} \log \left(\lambda \cdot X^{r}\right) d \mu(\lambda)+\int_{A_{n-1}} \log \left(\lambda \cdot Y^{r}\right) d \mu(\lambda) \leq \int_{A_{n-1}} \log \left(\lambda \cdot(X \cdot Y)^{r}\right) d \mu(\lambda)
$$

TIBERIU TRIF

for all $r \in \mathbf{R}$. Exponentiating both sides yields

$$
I\left(X^{r} ; \mu\right) I\left(Y^{r} ; \mu\right) \leq I\left((X \cdot Y)^{r} ; \mu\right) \quad \text { for all } \quad r \in \mathbf{R} .
$$

This inequality implies the conclusion of the theorem.

Besides the identric mean $I\left(x_{1}, x_{2}\right)$ of the positive real numbers x_{1} and x_{2}, the logarithmic mean of x_{1} and x_{2} is another important special case of the Stolarsky mean of x_{1} and x_{2}. Recall that the logarithmic mean of x_{1} and x_{2} is defined by

$$
\begin{aligned}
& L\left(x_{1}, x_{2}\right)=\frac{x_{1}-x_{2}}{\log x_{1}-\log x_{2}} \quad \text { if } \quad x_{1} \neq x_{2} \\
& L\left(x_{1}, x_{1}\right)=x_{1} .
\end{aligned}
$$

Theorem 2.2. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be positive real numbers.
If $\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)>0$, then

$$
\begin{equation*}
L\left(x_{1}, x_{2}\right) L\left(y_{1}, y_{2}\right)<L\left(x_{1} y_{1}, x_{2} y_{2}\right), \tag{2.1}
\end{equation*}
$$

while if $\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)<0$, then

$$
\begin{equation*}
L\left(x_{1}, x_{2}\right) L\left(y_{1}, y_{2}\right)>L\left(x_{1} y_{1}, x_{2} y_{2}\right) . \tag{2.2}
\end{equation*}
$$

In the proof we shall use the elementary

Lemma 2.3. The following assertions are true:
a) $f_{1}(v)=v \log v-v+1$ is strictly decreasing from $] 0,1[$ onto $] 0,1[$, and strictly increasing from $] 1, \infty[$ onto $] 0, \infty[$.
b) $f_{2}(v)=v \log v-2 v+\log v+2$ is strictly increasing from $] 0, \infty[$ onto $]-\infty, \infty[$.
c) $f_{3}(v)=v^{2}-2 v \log v-1$ is strictly increasing from $] 0,1[$ onto $]-1,0[$.
d) $f_{4}(v)=v \log ^{2} v-(v-1)^{2}$ is strictly increasing from $] 0,1[$ onto $]-1,0[$.

Proof of the Theorem 2.2. Suppose first that $\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)>0$. Due to the symmetry, we may assume that $x_{1}>x_{2}$ and $y_{1}>y_{2}$, so $u:=\frac{x_{1}}{x_{2}}>1, v:=\frac{y_{1}}{y_{2}}>1$. Taking into account the homogeneity of L, inequality (2.1) is equivalent to

$$
\frac{u-1}{\log u} \cdot \frac{v-1}{\log v}<\frac{u v-1}{\log u+\log v},
$$

i. e. to

$$
\begin{equation*}
(u-1)(v-1)(\log u+\log v)-(u v-1) \log u \log v<0 . \tag{2.3}
\end{equation*}
$$

Let $v \in] 1, \infty[$ be fixed, and let $f:] 0, \infty[\rightarrow \mathbf{R}$ be the function defined by

$$
\begin{equation*}
f(u):=(u-1)(v-1)(\log u+\log v)-(u v-1) \log u \log v . \tag{2.4}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
f^{\prime}(u) & =(v-1-v \log v) \log u+\frac{u-1}{u}(v-1-\log v), \\
f^{\prime \prime}(u) & =\frac{v-1-\log v-u(v \log v-v+1)}{u^{2}}
\end{aligned}
$$

Since $v>1$, by virtue of Lemma 2.3 a) and b) we obtain

$$
f^{\prime \prime}(u)<\frac{v-1-\log v-(v \log v-v+1)}{u^{2}}=-\frac{v \log v-2 v+\log v+2}{u^{2}}<0
$$

for all $u \in] 1, \infty\left[\right.$, hence f^{\prime} must be strictly decreasing on $] 1, \infty\left[\right.$. Therefore $f^{\prime}(u)<0$ for $u>1$, because $f^{\prime}(1)=0$. This implies that f is also strictly decreasing on $] 1, \infty[$. Consequently, $f(u)<0$ for $u>1$, because $f(1)=0$. This proves the validity of (2.3).

Suppose now that $\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)<0$, and assume that $x_{1}>x_{2}$ and $y_{1}<y_{2}$. Then we have $u:=\frac{x_{1}}{x_{2}}>1$ and $v:=\frac{y_{1}}{y_{2}}<1$. Depending on u and v, we distinguish the following possible cases:

Case I. $u v=1$.
Then inequality (2.2) is equivalent to $L(u, 1) L(1 / u, 1)>1$. Since $L(1 / u, 1)=$ $L(u, 1) / u$, this transforms into the well-known inequality $L(u, 1)>\sqrt{u}=G(u, 1)$ (see [8]).

Case II. $u v>1$.
Then inequality (2.2) is equivalent to (2.3). Let $v \in] 0,1[$ be fixed, and let $f:] 0, \infty[\rightarrow \mathbf{R}$ be the function defined by (2.4). By virtue of Lemma 2.3 a) and c), for all $u \in] 1 / v, \infty[$ we have

$$
f^{\prime \prime}(u)<\frac{v-1-\log v-\frac{1}{v}(v \log v-v+1)}{u^{2}}=\frac{v^{2}-2 v \log v-1}{u^{2} v}<0
$$

hence f^{\prime} must be strictly decreasing on $] 1 / v, \infty\left[\right.$. But $f^{\prime}(1 / v)=v \log ^{2} v-(v-1)^{2}<$ 0 , according to Lemma 2.3 d), so $f^{\prime}(u)<0$ for $u>1 / v$. This implies that f is
also strictly decreasing on $] 1 / v, \infty[$. Consequently, $f(u)<0$ for $u>1 / v$, because $f(1 / v)=0$. This proves the validity of (2.3).

Case III. $u v<1$.
Then inequality (2.2) is equivalent to

$$
\begin{equation*}
(u-1)(v-1)(\log u+\log v)-(u v-1) \log u \log v>0 . \tag{2.5}
\end{equation*}
$$

Let again $v \in] 0,1[$ be fixed, and let $f:] 0, \infty[\rightarrow \mathbf{R}$ be the function defined by (2.4). Set

$$
\tilde{v}:=\frac{v-1-\log v}{v \log v-v+1}
$$

By Lemma 2.3 a), b), and c) we have $1<\tilde{v}<1 / v$. It is immediately seen that $f^{\prime \prime}(u)>0$ for $\left.u \in\right] 1, \tilde{v}\left[\right.$ and $f^{\prime \prime}(u)<0$ for $\left.u \in\right] \tilde{v}, 1 / v\left[\right.$. Consequently, f^{\prime} is strictly increasing on $] 1, \tilde{v}[$ and strictly decreasing on $] \tilde{v}, 1 / v\left[\right.$. Since $f^{\prime}(1)=0$ and $f^{\prime}(1 / v)=$ $v \log ^{2} v-(v-1)^{2}<0$, it follows that there exists a unique $\left.\bar{v} \in\right] \tilde{v}, 1 / v[$ such that $f^{\prime}(\bar{v})=0, f^{\prime}(u)>0$ for $\left.u \in\right] 1, \bar{v}\left[\right.$, and $f^{\prime}(u)<0$ for $\left.u \in\right] \bar{v}, 1 / v[$. Therefore f is strictly increasing on $] 1, \bar{v}[$ and strictly decreasing on $] \bar{v}, 1 / v[$. Since $f(1)=f(1 / v)=0$, we can conclude that $f(u)>0$ for all $u \in] 1,1 / v[$. This completes the proof of (2.5).

Remark. It would be interesting to study whether Theorem 2.2 can be generalized for n variables (the author does not know the answer).

3. Two inequalities related to (1.3)

In this section, both a converse of the left inequality in (1.3) and a refinement of the right inequality in (1.3) are obtained. They are contained in the following two theorems.

Theorem 3.1. If $\left.\left.X=\left(x_{1}, \ldots, x_{n}\right) \in\right] 0,1 / 2\right]^{n}$, then it holds that

$$
\begin{align*}
& \log \frac{I(X ; \mu)}{I(\mathbf{1}-X ; \mu)}-\log \frac{G(X ; \mu)}{G(\mathbf{1}-X ; \mu)} \tag{3.1}\\
& \quad \leq\left(\sum_{i=1}^{n} w_{i} x_{i}\right)\left(\sum_{i=1}^{n} \frac{w_{i}}{x_{i}\left(1-x_{i}\right)}\right)-\sum_{i=1}^{n} \frac{w_{i}}{1-x_{i}} .
\end{align*}
$$

Theorem 3.2. If $\left.\left.X=\left(x_{1}, \ldots, x_{n}\right) \in\right] 0,1 / 2\right]^{n}$, then it holds that

$$
\begin{align*}
& \log \frac{A(X ; \mu)}{A(\mathbf{1}-X ; \mu)}-\log \frac{I(X ; \mu)}{I(\mathbf{1}-X ; \mu)} \tag{3.2}\\
& \quad \geq \frac{1-2 \bar{x}}{2 \bar{x}^{2}(1-\bar{x})^{2}} \sum_{i, j=1}^{n}\left(w_{i j}-w_{i} w_{j}\right) x_{i} x_{j}
\end{align*}
$$

where $\bar{x}:=\max \left\{x_{1}, \ldots, x_{n}\right\}$.

In the proofs of Theorem 3.1 and Theorem 3.2 we shall use the following lemmas.

Lemma 3.3. Let $J \subseteq \mathbf{R}$ be a nonempty interval, let $X=\left(x_{1}, \ldots, x_{n}\right) \in J^{n}$, and let $\phi: J \rightarrow \mathbf{R}$ be a twice differentiable function such that $\phi^{\prime \prime}(x) \geq 0$ for all $x \in J$. Then it holds that

$$
\begin{align*}
& \sum_{i=1}^{n} w_{i} \phi\left(x_{i}\right)-\int_{A_{n-1}} \phi(\lambda \cdot X) d \mu(\lambda) \tag{3.3}\\
& \quad \leq \sum_{i=1}^{n} w_{i} x_{i} \phi^{\prime}\left(x_{i}\right)-\left(\sum_{i=1}^{n} w_{i} x_{i}\right)\left(\sum_{i=1}^{n} w_{i} \phi^{\prime}\left(x_{i}\right)\right) .
\end{align*}
$$

Proof. The nonnegativity of $\phi^{\prime \prime}$ ensures that

$$
\phi(\lambda \cdot X) \geq \phi\left(x_{i}\right)+\phi^{\prime}\left(x_{i}\right)\left(\lambda \cdot X-x_{i}\right)
$$

for all $i \in\{1, \ldots, n\}$ and all $\lambda \in A_{n-1}$. Integrating over A_{n-1} with respect to μ yields

$$
\phi\left(x_{i}\right)-\int_{A_{n-1}} \phi(\lambda \cdot X) d \mu(\lambda) \leq x_{i} \phi^{\prime}\left(x_{i}\right)-\phi^{\prime}\left(x_{i}\right)\left(w_{1} x_{1}+\cdots+w_{n} x_{n}\right)
$$

for all $i \in\{1, \ldots, n\}$. Multiplying both sides by w_{i} and then summing the obtained inequalities, we get (3.3).

Given the nonempty interval $J \subseteq \mathbf{R}$, to each function $\phi: J \rightarrow \mathbf{R}$ we associate the function $L \phi: J^{n} \rightarrow \mathbf{R}$ defined by

$$
L \phi(X):=\int_{A_{n-1}} \phi(\lambda \cdot X) d \mu(\lambda)-\phi\left(\sum_{i=1}^{n} w_{i} x_{i}\right) \quad X=\left(x_{1}, \ldots, x_{n}\right) \in J^{n}
$$

Lemma 3.4. Suppose that ϕ has a continuous second derivative in J, and let $X=\left(x_{1}, \ldots, x_{n}\right) \in J^{n}, \underline{x}:=\min \left\{x_{1}, \ldots, x_{n}\right\}, \bar{x}:=\max \left\{x_{1}, \ldots, x_{n}\right\}$. Then there
exists a point $\tilde{x} \in[\underline{x}, \bar{x}]$ such that

$$
L \phi(X)=\frac{1}{2} \phi^{\prime \prime}(\tilde{x}) L e_{2}(X),
$$

where $e_{2}(x)=x^{2}$.
Proof. Set $\lambda^{0}:=\left(w_{1}, \ldots, w_{n-1}\right) \in A_{n-1}$ and $x_{0}:=w_{1} x_{1}+\cdots+w_{n} x_{n}$. Obviously, $x_{0}=\lambda^{0} \cdot X$. Next, let $\varphi: A_{n-1} \rightarrow \mathbf{R}$ be the function defined by $\varphi(\lambda):=$ $\phi(\lambda \cdot X)$. For each $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \in A_{n-1}$ there exists $\left.\xi \in\right] 0,1[$ such that

$$
\varphi(\lambda)=\varphi\left(\lambda^{0}\right)+d \varphi\left(\lambda^{0}\right)\left(\lambda-\lambda^{0}\right)+\frac{1}{2} d^{2} \varphi\left(\lambda^{0}+\xi\left(\lambda-\lambda^{0}\right)\right)\left(\lambda-\lambda^{0}\right),
$$

hence

$$
\begin{align*}
& \phi(\lambda \cdot X)=\phi\left(x_{0}\right)+\phi^{\prime}\left(x_{0}\right) \sum_{i=1}^{n-1}\left(x_{i}-x_{n}\right)\left(\lambda_{i}-w_{i}\right) \tag{3.4}\\
& \quad+\frac{1}{2} \phi^{\prime \prime}\left(x_{\xi}\right) \sum_{i, j=1}^{n-1}\left(x_{i}-x_{n}\right)\left(x_{j}-x_{n}\right)\left(\lambda_{i}-w_{i}\right)\left(\lambda_{j}-w_{j}\right)
\end{align*}
$$

where $x_{\xi}:=\left(\lambda^{0}+\xi\left(\lambda-\lambda^{0}\right)\right) \cdot X$. Further, let

$$
m:=\inf \phi^{\prime \prime}([\underline{x}, \bar{x}]) \quad \text { and } \quad M:=\sup \phi^{\prime \prime}([\underline{x}, \bar{x}])
$$

Taking into account that

$$
\sum_{i, j=1}^{n-1}\left(x_{i}-x_{n}\right)\left(x_{j}-x_{n}\right)\left(\lambda_{i}-w_{i}\right)\left(\lambda_{j}-w_{j}\right)=\left(\sum_{i=1}^{n-1}\left(x_{i}-x_{n}\right)\left(\lambda_{i}-w_{i}\right)\right)^{2} \geq 0
$$

from (3.4) we get

$$
\begin{aligned}
& \frac{1}{2} m \sum_{i, j=1}^{n-1}\left(x_{i}-x_{n}\right)\left(x_{j}-x_{n}\right)\left(\lambda_{i}-w_{i}\right)\left(\lambda_{j}-w_{j}\right) \\
& \quad \leq \phi(\lambda \cdot X)-\phi\left(x_{0}\right)-\phi^{\prime}\left(x_{0}\right) \sum_{i=1}^{n-1}\left(x_{i}-x_{n}\right)\left(\lambda_{i}-w_{i}\right) \\
& \quad \leq \frac{1}{2} M \sum_{i, j=1}^{n-1}\left(x_{i}-x_{n}\right)\left(x_{j}-x_{n}\right)\left(\lambda_{i}-w_{i}\right)\left(\lambda_{j}-w_{j}\right)
\end{aligned}
$$

for all $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n-1}\right) \in A_{n-1}$. Integrating over A_{n-1} with respect to μ yields

$$
\begin{aligned}
& \frac{1}{2} m \sum_{i, j=1}^{n-1}\left(w_{i j}-w_{i} w_{j}\right)\left(x_{i}-x_{n}\right)\left(x_{j}-x_{n}\right) \leq L \phi(X) \\
& \quad \leq \frac{1}{2} M \sum_{i, j=1}^{n-1}\left(w_{i j}-w_{i} w_{j}\right)\left(x_{i}-x_{n}\right)\left(x_{j}-x_{n}\right)
\end{aligned}
$$

As a simple computation shows, we have

$$
\sum_{i, j=1}^{n-1}\left(w_{i j}-w_{i} w_{j}\right)\left(x_{i}-x_{n}\right)\left(x_{j}-x_{n}\right)=L e_{2}(X)
$$

hence $\frac{1}{2} m L e_{2}(X) \leq L \phi(X) \leq \frac{1}{2} M L e_{2}(X)$. Now, the continuity of $\phi^{\prime \prime}$ ensures the existence of a point $\tilde{x} \in[\underline{x}, \bar{x}]$ such that $L \phi(X)=\frac{1}{2} \phi^{\prime \prime}(\tilde{x}) L e_{2}(X)$.

Proof of the Theorem 3.1. Inequality (3.1) follows at once from (3.3) if we take $J:=] 0,1 / 2]$ and $\phi: J \rightarrow \mathbf{R}$ to be the function $\phi(x)=\log (1-x)-\log x$, whose second derivative is

$$
\phi^{\prime \prime}(x)=\frac{1-2 x}{x^{2}(1-x)^{2}} \geq 0 \quad \text { for all } x \in J
$$

Proof of the Theorem 3.2. With the same choices for J and ϕ, from Lemma 3.4 we conclude the existence of a point $\tilde{x} \in[\underline{x}, \bar{x}]$ such that

$$
\begin{aligned}
& \log \frac{A(X ; \mu)}{A(\mathbf{1}-X ; \mu)}-\log \frac{I(X ; \mu)}{I(\mathbf{1}-X ; \mu)}=\frac{1-2 \tilde{x}}{2 \tilde{x}^{2}(1-\tilde{x})^{2}} L e_{2}(X) \\
& \quad=\frac{1-2 \tilde{x}}{2 \tilde{x}^{2}(1-\tilde{x})^{2}} \sum_{i, j=1}^{n}\left(w_{i j}-w_{i} w_{j}\right) x_{i} x_{j} \\
& \quad \geq \frac{1-2 \bar{x}}{2 \bar{x}^{2}(1-\bar{x})^{2}} \sum_{i, j=1}^{n}\left(w_{i j}-w_{i} w_{j}\right) x_{i} x_{j},
\end{aligned}
$$

because $\phi^{\prime \prime}$ is decreasing on J.

Remark. For $\mu=(n-1)$!, inequalities (3.1) and (3.2) reduce to

$$
\log \frac{I(X)}{I(\mathbf{1}-X)}-\log \frac{G(X)}{G(\mathbf{1}-X)} \leq \frac{1}{n^{2}}\left(\sum_{i=1}^{n} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}\left(1-x_{i}\right)}\right)-\frac{1}{n} \sum_{i=1}^{n} \frac{1}{1-x_{i}}
$$

and

$$
\log \frac{A(X)}{A(\mathbf{1}-X)}-\log \frac{I(X)}{I(\mathbf{1}-X)} \geq \frac{1-2 \bar{x}}{2 n^{2}(n+1) \bar{x}^{2}(1-\bar{x})^{2}}\left(n \sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right)
$$

respectively.

TIBERIU TRIF

References

[1] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products (prepared by A. Jeffrey), Academic Press, New York, 1980.
[2] A. McD. Mercer, An "error term" for the Ky Fan inequality, J. Math. Anal. Appl. 220 (1998), 774-777.
[3] E. Neuman, Inequalities involving multivariate convex functions, II, Proc. Amer. Math. Soc. 109 (1990), 965-974.
[4] E. Neuman, The weighted logarithmic mean, J. Math. Anal. Appl. 188 (1994), 885-900.
[5] J. E. Pečarić and V. Šimić, Stolarsky-Tobey mean in n variables, Math. Inequal. Appl. 2 (1999), 325-341.
[6] A. O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly 92 (1985), 99-104.
[7] J. Sándor and T. Trif, A new refinement of the Ky Fan inequality, Math. Inequal. Appl. 2 (1999), 529-533.
[8] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87-92.
[9] M. D. Tobey, Two-parameter homogeneous mean value, Proc. Amer. Math. Soc. 18 (1967), 9-14.

Universitatea Babeş-Bolyai, Fac. de Matematică şi Informatică, Str. Kogălniceanu Nr. 1, RO-3400 Cluj-Napoca, Romania E-mail address: ttrif@math.ubbcluj.ro

