ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN IN n VARIABLES

TIBERIU TRIF

Abstract. In this paper we establish one Chebyshev type and two Ky Fan type inequalities for the weighted identric mean in n variables.

1. Introduction and notation

Let $n \ge 2$ be a given integer, let

$$A_{n-1} = \{ (\lambda_1, \dots, \lambda_{n-1}) \mid \lambda_i \ge 0, \ i = 1, \dots, n-1, \ \lambda_1 + \dots + \lambda_{n-1} \le 1 \}$$

be the Euclidean simplex, and let μ be a probability measure on A_{n-1} . For each $i \in \{1, \ldots, n\}$, the *i*th weight w_i associated to μ is defined by

$$w_i = \int_{A_{n-1}} \lambda_i d\mu(\lambda) \quad \text{if} \quad 1 \le i \le n-1,$$

$$w_n = \int_{A_{n-1}} (1 - \lambda_1 - \dots - \lambda_{n-1}) d\mu(\lambda),$$

where $\lambda = (\lambda_1, \dots, \lambda_{n-1}) \in A_{n-1}$. Obviously, $w_i > 0$ for all $i \in \{1, \dots, n\}$, and $w_1 + \dots + w_n = 1$. We also define

$$w_{ij} = \int_{A_{n-1}} \lambda_i \lambda_j d\mu(\lambda) \quad \text{if} \quad 1 \le i, j \le n-1,$$

$$w_{in} = w_{ni} = \int_{A_{n-1}} \lambda_i (1 - \lambda_1 - \dots - \lambda_{n-1}) d\mu(\lambda) \quad \text{if} \quad 1 \le i \le n-1,$$

$$w_{nn} = \int_{A_{n-1}} (1 - \lambda_1 - \dots - \lambda_{n-1})^2 d\mu(\lambda).$$

Taking into account the Liouville formula (see, for instance, [1])

$$\int_{A_{n-1}} \lambda_1^{p_1-1} \cdots \lambda_{n-1}^{p_{n-1}-1} f(\lambda_1 + \dots + \lambda_{n-1}) d\lambda_1 \cdots d\lambda_{n-1}$$
$$= \frac{\Gamma(p_1) \cdots \Gamma(p_{n-1})}{\Gamma(p_1 + \dots + p_{n-1})} \int_0^1 x^{p_1 + \dots + p_{n-1}-1} f(x) dx,$$

¹⁹⁹¹ Mathematics Subject Classification. 26D15.

in the special case $\mu = (n-1)!$ we get $w_i = 1/n$ for all $i \in \{1, \ldots, n\}$ and

$$w_{ii} = \frac{2}{n(n+1)}$$
 for all $i \in \{1, ..., n\},$
 $w_{ij} = \frac{1}{n(n+1)}$ for all $i, j \in \{1, ..., n\}, i \neq j.$

Next, recall that the *identric mean* $I(x_1, x_2)$ of the positive real numbers x_1 and x_2 is defined by

$$I(x_1, x_2) = \frac{1}{e} \left(\frac{x_2^{x_2}}{x_1^{x_1}} \right)^{1/(x_2 - x_1)} \quad \text{if} \quad x_1 \neq x_2,$$
$$I(x_1, x_1) = x_1.$$

It is easily seen that the following integral representation holds:

$$I(x_1, x_2) = \exp\left(\int_0^1 \log(tx_1 + (1 - t)x_2)dt\right).$$
 (1.1)

Given $X = (x_1, \ldots, x_n) \in [0, \infty[^n]$, we set

$$\lambda \cdot X := \lambda_1 x_1 + \dots + \lambda_{n-1} x_{n-1} + (1 - \lambda_1 - \dots - \lambda_{n-1}) x_n$$

for all $\lambda = (\lambda_1, \dots, \lambda_{n-1}) \in A_{n-1}$. Starting from (1.1), in [7] it was pointed out that

$$I(X;\mu) := \exp\left(\int_{A_{n-1}} \log(\lambda \cdot X) d\mu(\lambda)\right)$$

can be considered as the weighted identric mean of x_1, \ldots, x_n . For $\mu = (n-1)!$ we obtain the unweighted and symmetric identric mean of x_1, \ldots, x_n

$$I(X) = I(x_1, \dots, x_n) = \exp\left((n-1)! \int_{A_{n-1}} \log(\lambda \cdot X) d\lambda_1 \cdots d\lambda_{n-1}\right).$$

As in the case of other means, $I(X; \mu)$ can be generalized as follows: for each real number r we set $X^r := (x_1^r, \ldots, x_n^r)$, and then define

$$I_{r}(X;\mu) := (I(X^{r};\mu))^{1/r} \quad \text{if} \quad r \neq 0,$$

$$I_{0}(X;\mu) := \lim_{r \to 0} I_{r}(X;\mu) = x_{1}^{w_{1}} \cdots x_{n}^{w_{n}} \quad (\text{see } [5]).$$

The means $I_r(X;\mu)$ are special cases of the so-called Stolarsky-Tobey means introduced in [5]: namely $I_r(X;\mu) = E_{r,r}(X;\mu)$. Consequently, several inequalities (of the Jensen, Minkowski, Hölder, Rennie, and Kantorovich type, respectively) involving the means I_r can be obtained as special cases of the results listed in [5]. In Section 2 of 106 this paper we complete these inequalities by proving a Chebyshev type inequality for I_r .

Let

$$A(X;\mu) := w_1 x_1 + \dots + w_n x_n$$
 and $G(X;\mu) := x_1^{w_1} \cdots x_n^{w_n}$

be the weighted arithmetic and geometric mean, respectively, of x_1, \ldots, x_n . For $\mu = (n-1)!$ we obtain the usual arithmetic and geometric mean of x_1, \ldots, x_n

$$A(X) = A(x_1, \dots, x_n) = \frac{x_1 + \dots + x_n}{n},$$

$$G(X) = G(x_1, \dots, x_n) = (x_1 \cdots x_n)^{1/n}.$$

A famous result due to Ky Fan asserts that if $0 < x_i \le 1/2$ for all $i \in \{1, ..., n\}$, then

$$\frac{G(X;\mu)}{G(1-X;\mu)} \le \frac{A(X;\mu)}{A(1-X;\mu)},$$
(1.2)

where $\mathbf{1} - X := (1 - x_1, \dots, 1 - x_n)$. The following refinement of (1.2) has been recently obtained in [7]:

$$\frac{G(X;\mu)}{G(1-X;\mu)} \le \frac{I(X;\mu)}{I(1-X;\mu)} \le \frac{A(X;\mu)}{A(1-X;\mu)}.$$
(1.3)

In Section 3 of this paper we establish a converse of the left inequality in (1.3) as well as an improvement of the right inequality in (1.3).

2. Chebyshev's inequality for the identric mean in n variables

Theorem 2.1. Let $X = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $Y = (y_1, \ldots, y_n) \in \mathbb{R}^n$ such that $0 < x_1 \leq \cdots \leq x_n$ and $0 < y_1 \leq \cdots \leq y_n$, and let $X \cdot Y := (x_1y_1, \ldots, x_ny_n)$. Then

$$\begin{split} &I_r(X;\mu)I_r(Y;\mu) \leq I_r(X\cdot Y;\mu) \quad & \text{for all} \quad r > 0, \\ &I_r(X;\mu)I_r(Y;\mu) \geq I_r(X\cdot Y;\mu) \quad & \text{for all} \quad r < 0. \end{split}$$

Proof. According to Chebyshev's inequality, we have

$$(\lambda \cdot X^r)(\lambda \cdot Y^r) \le \lambda \cdot (X \cdot Y)^r$$

for all $r \in \mathbf{R}$ and all $\lambda \in A_{n-1}$, hence

$$\int_{A_{n-1}} \log(\lambda \cdot X^r) d\mu(\lambda) + \int_{A_{n-1}} \log(\lambda \cdot Y^r) d\mu(\lambda) \le \int_{A_{n-1}} \log(\lambda \cdot (X \cdot Y)^r) d\mu(\lambda)$$
107

for all $r \in \mathbf{R}$. Exponentiating both sides yields

$$I(X^r;\mu)I(Y^r;\mu) \le I((X \cdot Y)^r;\mu)$$
 for all $r \in \mathbf{R}$.

This inequality implies the conclusion of the theorem.

Besides the identric mean $I(x_1, x_2)$ of the positive real numbers x_1 and x_2 , the logarithmic mean of x_1 and x_2 is another important special case of the Stolarsky mean of x_1 and x_2 . Recall that the *logarithmic mean* of x_1 and x_2 is defined by

$$L(x_1, x_2) = \frac{x_1 - x_2}{\log x_1 - \log x_2} \quad \text{if} \quad x_1 \neq x_2,$$
$$L(x_1, x_1) = x_1.$$

Theorem 2.2. Let x_1, x_2, y_1, y_2 be positive real numbers.

If $(x_1 - x_2)(y_1 - y_2) > 0$, then

$$L(x_1, x_2)L(y_1, y_2) < L(x_1y_1, x_2y_2),$$
(2.1)

while if $(x_1 - x_2)(y_1 - y_2) < 0$, then

$$L(x_1, x_2)L(y_1, y_2) > L(x_1y_1, x_2y_2).$$
(2.2)

In the proof we shall use the elementary

Lemma 2.3. The following assertions are true:

a) $f_1(v) = v \log v - v + 1$ is strictly decreasing from]0,1[onto]0,1[, and strictly increasing from $]1,\infty[$ onto $]0,\infty[$.

b) $f_2(v) = v \log v - 2v + \log v + 2$ is strictly increasing from $]0, \infty[$ onto $] - \infty, \infty[$.

c) $f_3(v) = v^2 - 2v \log v - 1$ is strictly increasing from]0, 1[onto] - 1, 0[. d) $f_4(v) = v \log^2 v - (v - 1)^2$ is strictly increasing from]0, 1[onto] - 1, 0[.

Proof of the Theorem 2.2. Suppose first that $(x_1 - x_2)(y_1 - y_2) > 0$. Due to the symmetry, we may assume that $x_1 > x_2$ and $y_1 > y_2$, so $u := \frac{x_1}{x_2} > 1$, $v := \frac{y_1}{y_2} > 1$. Taking into account the homogeneity of L, inequality (2.1) is equivalent to

$$\frac{u-1}{\log u} \cdot \frac{v-1}{\log v} < \frac{uv-1}{\log u + \log v}$$

108

i. e. to

$$(u-1)(v-1)(\log u + \log v) - (uv-1)\log u \log v < 0.$$
(2.3)

Let $v \in [1, \infty)$ be fixed, and let $f: [0, \infty) \to \mathbf{R}$ be the function defined by

$$f(u) := (u-1)(v-1)(\log u + \log v) - (uv-1)\log u \log v.$$
(2.4)

Then we have

$$f'(u) = (v - 1 - v \log v) \log u + \frac{u - 1}{u} (v - 1 - \log v),$$

$$f''(u) = \frac{v - 1 - \log v - u(v \log v - v + 1)}{u^2}.$$

Since v > 1, by virtue of Lemma 2.3 a) and b) we obtain

$$f''(u) < \frac{v - 1 - \log v - (v \log v - v + 1)}{u^2} = -\frac{v \log v - 2v + \log v + 2}{u^2} < 0$$

for all $u \in [1, \infty[$, hence f' must be strictly decreasing on $[1, \infty[$. Therefore f'(u) < 0for u > 1, because f'(1) = 0. This implies that f is also strictly decreasing on $[1, \infty[$. Consequently, f(u) < 0 for u > 1, because f(1) = 0. This proves the validity of (2.3).

Suppose now that $(x_1 - x_2)(y_1 - y_2) < 0$, and assume that $x_1 > x_2$ and $y_1 < y_2$. Then we have $u := \frac{x_1}{x_2} > 1$ and $v := \frac{y_1}{y_2} < 1$. Depending on u and v, we distinguish the following possible cases:

Case I. uv = 1.

Then inequality (2.2) is equivalent to L(u, 1)L(1/u, 1) > 1. Since L(1/u, 1) = L(u, 1)/u, this transforms into the well-known inequality $L(u, 1) > \sqrt{u} = G(u, 1)$ (see [8]).

Case II. uv > 1.

Then inequality (2.2) is equivalent to (2.3). Let $v \in [0, 1[$ be fixed, and let $f: [0, \infty[\rightarrow \mathbf{R}]$ be the function defined by (2.4). By virtue of Lemma 2.3 a) and c), for all $u \in [1/v, \infty[$ we have

$$f''(u) < \frac{v - 1 - \log v - \frac{1}{v}(v \log v - v + 1)}{u^2} = \frac{v^2 - 2v \log v - 1}{u^2 v} < 0$$

hence f' must be strictly decreasing on $]1/v, \infty[$. But $f'(1/v) = v \log^2 v - (v-1)^2 < 0$, according to Lemma 2.3 d), so f'(u) < 0 for u > 1/v. This implies that f is 109

also strictly decreasing on $]1/v, \infty[$. Consequently, f(u) < 0 for u > 1/v, because f(1/v) = 0. This proves the validity of (2.3).

Case III. uv < 1. Then inequality (2.2) is equivalent to

$$(u-1)(v-1)(\log u + \log v) - (uv-1)\log u \log v > 0.$$
(2.5)

Let again $v \in [0, 1[$ be fixed, and let $f : [0, \infty[\rightarrow \mathbf{R}$ be the function defined by (2.4). Set

$$\tilde{v} := \frac{v - 1 - \log v}{v \log v - v + 1}.$$

By Lemma 2.3 a), b), and c) we have $1 < \tilde{v} < 1/v$. It is immediately seen that f''(u) > 0 for $u \in]1, \tilde{v}[$ and f''(u) < 0 for $u \in]\tilde{v}, 1/v[$. Consequently, f' is strictly increasing on $]1, \tilde{v}[$ and strictly decreasing on $]\tilde{v}, 1/v[$. Since f'(1) = 0 and $f'(1/v) = v \log^2 v - (v - 1)^2 < 0$, it follows that there exists a unique $\bar{v} \in]\tilde{v}, 1/v[$ such that $f'(\bar{v}) = 0, f'(u) > 0$ for $u \in]1, \bar{v}[$, and f'(u) < 0 for $u \in]\bar{v}, 1/v[$. Therefore f is strictly increasing on $]1, \bar{v}[$ and strictly decreasing on $]\bar{v}, 1/v[$. Since f(1) = f(1/v) = 0, we can conclude that f(u) > 0 for all $u \in]1, 1/v[$. This completes the proof of (2.5). \Box

Remark. It would be interesting to study whether Theorem 2.2 can be generalized for n variables (the author does not know the answer).

3. Two inequalities related to (1.3)

In this section, both a converse of the left inequality in (1.3) and a refinement of the right inequality in (1.3) are obtained. They are contained in the following two theorems.

Theorem 3.1. If $X = (x_1, ..., x_n) \in [0, 1/2]^n$, then it holds that

$$\log \frac{I(X;\mu)}{I(1-X;\mu)} - \log \frac{G(X;\mu)}{G(1-X;\mu)}$$

$$\leq \left(\sum_{i=1}^{n} w_i x_i\right) \left(\sum_{i=1}^{n} \frac{w_i}{x_i(1-x_i)}\right) - \sum_{i=1}^{n} \frac{w_i}{1-x_i}.$$
(3.1)

110

ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN IN n VARIABLES

Theorem 3.2. If $X = (x_1, ..., x_n) \in [0, 1/2]^n$, then it holds that

$$\log \frac{A(X;\mu)}{A(1-X;\mu)} - \log \frac{I(X;\mu)}{I(1-X;\mu)}$$

$$\geq \frac{1-2\bar{x}}{2\bar{x}^2(1-\bar{x})^2} \sum_{i,j=1}^n (w_{ij} - w_i w_j) x_i x_j,$$
(3.2)

where $\bar{x} := \max\{x_1, ..., x_n\}.$

In the proofs of Theorem 3.1 and Theorem 3.2 we shall use the following lemmas.

Lemma 3.3. Let $J \subseteq \mathbf{R}$ be a nonempty interval, let $X = (x_1, \ldots, x_n) \in J^n$, and let $\phi : J \to \mathbf{R}$ be a twice differentiable function such that $\phi''(x) \ge 0$ for all $x \in J$. Then it holds that

$$\sum_{i=1}^{n} w_i \phi(x_i) - \int_{A_{n-1}} \phi(\lambda \cdot X) d\mu(\lambda)$$

$$\leq \sum_{i=1}^{n} w_i x_i \phi'(x_i) - \left(\sum_{i=1}^{n} w_i x_i\right) \left(\sum_{i=1}^{n} w_i \phi'(x_i)\right).$$
(3.3)

Proof. The nonnegativity of ϕ'' ensures that

$$\phi(\lambda \cdot X) \ge \phi(x_i) + \phi'(x_i)(\lambda \cdot X - x_i)$$

for all $i \in \{1, ..., n\}$ and all $\lambda \in A_{n-1}$. Integrating over A_{n-1} with respect to μ yields

$$\phi(x_i) - \int_{A_{n-1}} \phi(\lambda \cdot X) d\mu(\lambda) \le x_i \phi'(x_i) - \phi'(x_i)(w_1 x_1 + \dots + w_n x_n)$$

for all $i \in \{1, ..., n\}$. Multiplying both sides by w_i and then summing the obtained inequalities, we get (3.3).

Given the nonempty interval $J \subseteq \mathbf{R}$, to each function $\phi : J \to \mathbf{R}$ we associate the function $L\phi : J^n \to \mathbf{R}$ defined by

$$L\phi(X) := \int_{A_{n-1}} \phi(\lambda \cdot X) d\mu(\lambda) - \phi\left(\sum_{i=1}^n w_i x_i\right) \qquad X = (x_1, \dots, x_n) \in J^n.$$

Lemma 3.4. Suppose that ϕ has a continuous second derivative in J, and let $X = (x_1, \dots, x_n) \in J^n, \ \underline{x} := \min\{x_1, \dots, x_n\}, \ \overline{x} := \max\{x_1, \dots, x_n\}.$ Then there 111

exists a point $\tilde{x} \in [\underline{x}, \overline{x}]$ such that

$$L\phi(X) = \frac{1}{2}\phi''(\tilde{x})Le_2(X),$$

where $e_2(x) = x^2$.

Proof. Set $\lambda^0 := (w_1, \ldots, w_{n-1}) \in A_{n-1}$ and $x_0 := w_1 x_1 + \cdots + w_n x_n$. Obviously, $x_0 = \lambda^0 \cdot X$. Next, let $\varphi : A_{n-1} \to \mathbf{R}$ be the function defined by $\varphi(\lambda) := \phi(\lambda \cdot X)$. For each $\lambda = (\lambda_1, \ldots, \lambda_{n-1}) \in A_{n-1}$ there exists $\xi \in [0, 1[$ such that

$$\varphi(\lambda) = \varphi(\lambda^0) + d\varphi(\lambda^0)(\lambda - \lambda^0) + \frac{1}{2}d^2\varphi(\lambda^0 + \xi(\lambda - \lambda^0))(\lambda - \lambda^0),$$

hence

$$\phi(\lambda \cdot X) = \phi(x_0) + \phi'(x_0) \sum_{i=1}^{n-1} (x_i - x_n)(\lambda_i - w_i)$$

$$+ \frac{1}{2} \phi''(x_{\xi}) \sum_{i,j=1}^{n-1} (x_i - x_n)(x_j - x_n)(\lambda_i - w_i)(\lambda_j - w_j),$$
(3.4)

where $x_{\xi} := (\lambda^0 + \xi(\lambda - \lambda^0)) \cdot X$. Further, let

$$m := \inf \phi''([\underline{x}, \overline{x}])$$
 and $M := \sup \phi''([\underline{x}, \overline{x}])$

Taking into account that

$$\sum_{i,j=1}^{n-1} (x_i - x_n)(x_j - x_n)(\lambda_i - w_i)(\lambda_j - w_j) = \left(\sum_{i=1}^{n-1} (x_i - x_n)(\lambda_i - w_i)\right)^2 \ge 0,$$

from (3.4) we get

$$\frac{1}{2}m\sum_{i,j=1}^{n-1} (x_i - x_n)(x_j - x_n)(\lambda_i - w_i)(\lambda_j - w_j)$$

$$\leq \phi(\lambda \cdot X) - \phi(x_0) - \phi'(x_0)\sum_{i=1}^{n-1} (x_i - x_n)(\lambda_i - w_i)$$

$$\leq \frac{1}{2}M\sum_{i,j=1}^{n-1} (x_i - x_n)(x_j - x_n)(\lambda_i - w_i)(\lambda_j - w_j)$$

for all $\lambda = (\lambda_1, \dots, \lambda_{n-1}) \in A_{n-1}$. Integrating over A_{n-1} with respect to μ yields

$$\frac{1}{2}m\sum_{i,j=1}^{n-1}(w_{ij}-w_iw_j)(x_i-x_n)(x_j-x_n) \le L\phi(X)$$
$$\le \frac{1}{2}M\sum_{i,j=1}^{n-1}(w_{ij}-w_iw_j)(x_i-x_n)(x_j-x_n).$$

112

As a simple computation shows, we have

$$\sum_{i,j=1}^{n-1} (w_{ij} - w_i w_j) (x_i - x_n) (x_j - x_n) = Le_2(X),$$

hence $\frac{1}{2}mLe_2(X) \leq L\phi(X) \leq \frac{1}{2}MLe_2(X)$. Now, the continuity of ϕ'' ensures the existence of a point $\tilde{x} \in [\underline{x}, \overline{x}]$ such that $L\phi(X) = \frac{1}{2}\phi''(\tilde{x})Le_2(X)$.

Proof of the Theorem 3.1. Inequality (3.1) follows at once from (3.3) if we take J := [0, 1/2] and $\phi : J \to \mathbf{R}$ to be the function $\phi(x) = \log(1-x) - \log x$, whose second derivative is

$$\phi''(x) = \frac{1-2x}{x^2(1-x)^2} \ge 0$$
 for all $x \in J$.

Proof of the Theorem 3.2. With the same choices for J and ϕ , from Lemma 3.4 we conclude the existence of a point $\tilde{x} \in [\underline{x}, \overline{x}]$ such that

$$\log \frac{A(X;\mu)}{A(1-X;\mu)} - \log \frac{I(X;\mu)}{I(1-X;\mu)} = \frac{1-2\tilde{x}}{2\tilde{x}^2(1-\tilde{x})^2} Le_2(X)$$
$$= \frac{1-2\tilde{x}}{2\tilde{x}^2(1-\tilde{x})^2} \sum_{i,j=1}^n (w_{ij} - w_i w_j) x_i x_j$$
$$\geq \frac{1-2\bar{x}}{2\bar{x}^2(1-\bar{x})^2} \sum_{i,j=1}^n (w_{ij} - w_i w_j) x_i x_j,$$

because ϕ'' is decreasing on J.

Remark. For $\mu = (n-1)!$, inequalities (3.1) and (3.2) reduce to

$$\log \frac{I(X)}{I(1-X)} - \log \frac{G(X)}{G(1-X)} \le \frac{1}{n^2} \left(\sum_{i=1}^n x_i\right) \left(\sum_{i=1}^n \frac{1}{x_i(1-x_i)}\right) - \frac{1}{n} \sum_{i=1}^n \frac{1}{1-x_i}$$

and

$$\log \frac{A(X)}{A(1-X)} - \log \frac{I(X)}{I(1-X)} \ge \frac{1-2\bar{x}}{2n^2(n+1)\bar{x}^2(1-\bar{x})^2} \left(n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2 \right),$$

respectively.

References

- I. S. Gradshteyn and I. M. Ryzhik, *Table of Integrals, Series, and Products* (prepared by A. Jeffrey), Academic Press, New York, 1980.
- [2] A. McD. Mercer, An "error term" for the Ky Fan inequality, J. Math. Anal. Appl. 220 (1998), 774–777.
- [3] E. Neuman, Inequalities involving multivariate convex functions, II, Proc. Amer. Math. Soc. 109 (1990), 965–974.
- [4] E. Neuman, The weighted logarithmic mean, J. Math. Anal. Appl. 188 (1994), 885–900.
- [5] J. E. Pečarić and V. Šimić, Stolarsky-Tobey mean in n variables, Math. Inequal. Appl. 2 (1999), 325–341.
- [6] A. O. Pittenger, The logarithmic mean in n variables, Amer. Math. Monthly 92 (1985), 99–104.
- [7] J. Sándor and T. Trif, A new refinement of the Ky Fan inequality, Math. Inequal. Appl. 2 (1999), 529–533.
- [8] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92.
- [9] M. D. Tobey, Two-parameter homogeneous mean value, Proc. Amer. Math. Soc. 18 (1967), 9–14.

UNIVERSITATEA BABEȘ-BOLYAI, FAC. DE MATEMATICĂ ȘI ÎNFORMATICĂ, STR. KOGĂLNICEANU NR. 1, RO-3400 CLUJ-NAPOCA, ROMANIA *E-mail address*: ttrif@math.ubbcluj.ro