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ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN
IN n VARIABLES

TIBERIU TRIF

Abstract. In this paper we establish one Chebyshev type and two Ky Fan

type inequalities for the weighted identric mean in n variables.

1. Introduction and notation
Let n > 2 be a given integer, let
An—l :{()\1,...,)\"_1) | )\Z ZO, Z':L.../n*l, A1+"'+)\n_1 S 1}

be the Euclidean simplex, and let x4 be a probability measure on A, _;. For each

i€{1,...,n}, the ith weight w; associated to p is defined by

w;

/ Ndp(h) O 1<i<n—1,
An—l

w, :/ (1= X — e — A ) dpu(N),
An_1

where A = (A1,...,An—1) € An—1. Obviously, w; > 0 for all i« € {1,...,n}, and
wy + -+ +w, = 1. We also define

Anfl
Win — wm:/ )\i(l—)\l—“'—)\n,ﬂdu()\) if lgign—l,
An—l
P / (1= A1 — e — An 1) 2dpu(N).
Apn—1

Taking into account the Liouville formula (see, for instance, [1])

/ /\flfl...)\ﬁi—llflf()\l+...+)\n_1)d/\1...d>\n_1
An_1

F(pl)r(pn—l) /1 pit-+p -1
= 1 n—1 dz,
T(pr+ - +pn1) Jo x f(z)dx
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in the special case p = (n — 1)! we get w; = 1/n forallie {1,...,n} and

2
Wi = m for all iE{l,...,n},
1
Wy = oy o forall 4,je€{l,...,n}, i#j.

Next, recall that the identric mean I(x1,x2) of the positive real numbers x

and x, is defined by

1 @2\ 1/(z2—21)
I(zy,22) = p <x2 ) if x # a9,

1
Ty

I(xy,21) = x1.
It is easily seen that the following integral representation holds:
I(x1,29) = exp (/1 log(txy + (1 — t)sr:g)dt> . (1.1)
0
Given X = (x1,...,2,) € ]0,00[", we set
AMX =M+ 11 F (L= A — - — A1)

for all A= (A1,...,Ap—1) € Ap—1. Starting from (1.1), in [7] it was pointed out that

I(X; ) := exp (/A

can be considered as the weighted identric mean of z1,...,z,. For p = (n — 1)! we

n—1

log(A - X)du(A)>

obtain the unweighted and symmetric identric mean of x1, ..., x,

n—1

I(X)=1I(x1,...,2,) =exp ((n— 1)!/A log()\-X)d/\l-~-d)\n_1> .

As in the case of other means, I(X; 1) can be generalized as follows: for each

real number r we set X" := (z7,...,2%), and then define
L(X;p) = (IXTu)Y" it r#0,
Ip(X;u) = liH(l) I(X;p)=a™ - -apn (see [5]).

The means I,.(X; u) are special cases of the so-called Stolarsky-Tobey means intro-
duced in [5]: namely I.(X; ) = E, . (X; p). Consequently, several inequalities (of the
Jensen, Minkowski, Holder, Rennie, and Kantorovich type, respectively) involving the
means I, can be obtained as special cases of the results listed in [5]. In Section 2 of
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this paper we complete these inequalities by proving a Chebyshev type inequality for
L.
Let

A(X;p) == wizy + -+ weTy and G(X;p) :=a - -xpm

n

be the weighted arithmetic and geometric mean, respectively, of z1,...,x,. For p =
(n — 1)! we obtain the usual arithmetic and geometric mean of x1,..., 2,
x _|_ [ + x
AX) = Ax,...,an) =211
n
G(X) = Glxi,...,xp) = (21 -2n)"/™

A famous result due to Ky Fan asserts that if 0 < z; < 1/2 for all ¢ € {1,...,n},
then
G(X;p) A(X; p)
G1-X;p) — AQ - X;p)’
where 1 — X := (1 — x1,...,1 — x,). The following refinement of (1.2) has been

(1.2)

recently obtained in [7]:

GXp) _ IXp) AKX
Gl—X;p) — 11— X;p) — A1 - X;p)

(1.3)
In Section 3 of this paper we establish a converse of the left inequality in (1.3) as well
as an improvement of the right inequality in (1.3).

2. Chebyshev’s inequality for the identric mean in n variables

Theorem 2.1. Let X = (z1,...,2,) ER" and Y = (y1,...,yn) € R™ such
that 0 < 21 < -+~ < zp and 0 < y; < -+ < yp, and let X - Y = (x1y1,.. ., TnYn).
Then

L(X5 )L (Y5 p) < (X -Yip) o forall r>0,
L(Xsp) I (Yip) > (X -Ysp)  forall r<O.
Proof. According to Chebyshev’s inequality, we have
(A= XT)A- Y7 A (XYY
for all € R and all A € A,,_1, hence

/ log(A - X7)du(\) + / log(A - Y7)du(N) < / log(A - (X - Y)")du(N)
An—1 An—1 An—1
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for all » € R. Exponentiating both sides yields
(X" IY ) <I(X-Y)"; ) forall reR.
This inequality implies the conclusion of the theorem. O

Besides the identric mean I(z1,z2) of the positive real numbers z; and 2,
the logarithmic mean of x; and z- is another important special case of the Stolarsky

mean of 1 and x5. Recall that the logarithmic mean of x1 and x5 is defined by

L($1a$2) = —1 T 1172 if T % xa,
ogx, — log xo

L(a:l,arl) =T1.

Theorem 2.2. Let x1,%2,y1,y2 be positive real numbers.

If (x1 — 22)(y1 — y2) > 0, then
L(zy,x2) L(y1,y2) < L(z1y1, w2y2), (21)
while if (x1 — x2)(y1 — y2) < 0, then

L(z1,22)L(y1,y2) > L(21y1, T2Y2)- (2.2)

In the proof we shall use the elementary

Lemma 2.3. The following assertions are true:

a) f1(v) = vlogv — v + 1 is strictly decreasing from ]0,1[ onto 10,1[, and
strictly increasing from ]1, 00| onto ]0, 00].

b) fa(v) = vlogv — 2v + logv + 2 is strictly increasing from ]0,00[ onto
| — 00, 00].

c) f3(v) =v? —2vlogv — 1 is strictly increasing from |0, 1] onto ] — 1,0].

d) fi(v) =vlog®v — (v —1)? is strictly increasing from ]0,1[ onto ] —1,0].

Proof of the Theorem 2.2. Suppose first that (x1 — x2)(y1 — y2) > 0. Due to
the symmetry, we may assume that 1 > x9 and y; > ys, so u := % >1,v:= % > 1.

Taking into account the homogeneity of L, inequality (2.1) is equivalent to

u—1 v—1 uv — 1

. < s
logu logv  logu + logwv
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i. e. to
(u—1)(v—1)(logu+logv) — (uv — 1) logulogv < 0. (2.3)

Let v € |1, 00[ be fixed, and let f :]0,00[ — R be the function defined by
fu) == (u—1)(v—1)(logu +logv) — (uv — 1) log ulogv. (2.4)

Then we have

u—1

fl(u)=(v—1-wvlogv)logu + (v—1—logw),

() = v—l—logv—u(vlogv—v—&—l).

u?

Since v > 1, by virtue of Lemma 2.3 a) and b) we obtain

() < v—1—logv — (vlogv — v +1) :_vlogv72v+logv+2 <

u? u? 0
for all u € |1, 00[, hence f’ must be strictly decreasing on |1, co[. Therefore f'(u) <0
for u > 1, because f’(1) = 0. This implies that f is also strictly decreasing on |1, co].
Consequently, f(u) < 0 for u > 1, because f(1) = 0. This proves the validity of (2.3).
Suppose now that (7 — 22)(y1 — y2) < 0, and assume that z; > zo and

y1 < y2. Then we have u := ;—; > 1 and v := % < 1. Depending on v and v, we

distinguish the following possible cases:

Case I. uv = 1.
Then inequality (2.2) is equivalent to L(u,1)L(1/u,1) > 1. Since L(1/u,1) =
L(u,1)/u, this transforms into the well-known inequality L(u, 1) > v/u = G(u, 1) (see

[8])-

Case II. uv > 1.
Then inequality (2.2) is equivalent to (2.3). Let v € ]0,1] be fixed, and let
f :]0,00[— R be the function defined by (2.4). By virtue of Lemma 2.3 a) and c),

for all u € ]1/v, 0o[ we have

—1—1logv— L(vlogv —v+1 2 _ ol -1
f”(u)<v gv v2(’U gv —v ):U v20gv <0,

u u=v

hence f’ must be strictly decreasing on |1/v,00[. But f/(1/v) = vlog®v — (v —1)? <
0, according to Lemma 2.3 d), so f'(u) < 0 for v > 1/v. This implies that f is
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also strictly decreasing on |1/v,00[. Consequently, f(u) < 0 for u > 1/v, because

f(1/v) = 0. This proves the validity of (2.3).

Case III. uwv < 1.

Then inequality (2.2) is equivalent to
(u—1)(v—1)(log u + logv) — (uv — 1) logulogv > 0. (2.5)

Let again v € 0, 1] be fixed, and let f :]0,00[— R be the function defined by (2.4).
Set
v—1—1logv

vlogv —v+1°
By Lemma 2.3 a), b), and ¢) we have 1 < ¥ < 1/v. It is immediately seen that
f"(u) > 0 for w € ]1,9[ and f”(u) < 0 for u € |0,1/v[. Consequently, f’ is strictly
increasing on |1, [ and strictly decreasing on |0,1/v[. Since f/(1) =0 and f'(1/v) =
vlog?v — (v — 1)2 < 0, it follows that there exists a unique o € ], 1/v[ such that
f1(©) =0, f'(u) > 0foru €]1,9[, and f'(u) < 0 for u € 7,1/v[. Therefore f is strictly
increasing on ]1,9[ and strictly decreasing on |v,1/v[. Since f(1) = f(1/v) = 0, we

can conclude that f(u) > 0 for all w € |1,1/v]. This completes the proof of (2.5). O

Remark. It would be interesting to study whether Theorem 2.2 can be

generalized for n variables (the author does not know the answer).

3. Two inequalities related to (1.3)

In this section, both a converse of the left inequality in (1.3) and a refinement
of the right inequality in (1.3) are obtained. They are contained in the following two

theorems.

Theorem 3.1. If X = (z1,...,2,) € |0,1/2]", then it holds that

1(X; ) G(X;p)
CE T X B G- X &)
<(Se) (Snts) Bt
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ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN IN n VARIABLES

Theorem 3.2. If X = (z1,...,2,) € |0,1/2]", then it holds that

A(X,u) 1(X; 1)
log — log 3.2
AA- X BT X 32
1-2z
> m Z Wij — wzwy)xz%a
i,5=1
where T := max{x1,...,ZTn }.

In the proofs of Theorem 3.1 and Theorem 3.2 we shall use the following

lemmas.

Lemma 3.3. Let J C R be a nonempty interval, let X = (xq,...,2,) € J",

and let ¢ : J — R be a twice differentiable function such that ¢'(x) > 0 for all x € J.
Then it holds that

Zwmm—A B\ - X)dp(N) (3.3)

< zwz e (z w) (z wmxi)) |
i=1
Proof. The nonnegativity of ¢ ensures that

d(N- X) > d(xi) + ¢ (wi) (N - X — )

forall i € {1,...,n} and all A € A, _;. Integrating over A,_; with respect to
yields

(xs) — /A SO0 X)) < 256 (1) — & (25 (wims + -+« + wpan)

for alli e {1,...,n}. Multiplying both sides by w; and then summing the obtained
inequalities, we get (3.3). O

Given the nonempty interval J C R, to each function ¢ : J — R we associate
the function L¢ : J* — R defined by
Lo(X) ::/ B\ - X)dp( (Z wm) X =(21,...,2,) € J"
Anfl
Lemma 3.4. Suppose that ¢ has a continuous second derivative in J, and let
X =(z1,...,2,) € J", z:=min{x1,...,2, }, T:= max{xy,...,z, }. Then there
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exists a point T € [z, T] such that
.
LH(X) = 5" (B)Les(X),

where ey(z) = 22,

Proof. Set \° := (wq,...,w,_1) € Ap_1 and x¢ = w121 + -+ + WpTp.
Obviously, zo = A - X. Next, let ¢ : A,_1 — R be the function defined by ¢(\) :=
d(A-X). For each A = (A1,...,Ap_1) € A,_1 there exists € ]0, 1] such that

p(A) = p(\%) + dp(A°) (A =A%) + %d%(/\o +EA = A =),

hence
SO X) = pla) + ¢/ (a) Y — ) Ot — ) (3.4)
P20 ) Y (= )y — )~ w) Oy — ),
ij=1

where x¢ := (A% + £(A — A)) - X. Further, let
mi=inf ¢ (7)) and M= supd”(z,a).

Taking into account that

n—1 n—1 2
Z (xi — xn)(x] — xn)()\z — wl)(/\J — wj) = (Z(l‘l — an)(/\Z — wﬂ) Z O,

ij=1

from (3.4) we get

3 s =)o — ) = wi) Oy — )

n—1
< ¢(A - X) = d(xo) — ¢ (20) Z(mi — &n)(Ai — wi)
< 3M S (= ) — ) O~ w) O — )

for all A = (Aq,...,A\n—1) € Ap—1. Integrating over A, _; with respect to p yields

n—1
1
om p (wij —wiw;) (@i —aa)(x; — 2n) < LY(X)
Q=1
1 n—1
<M D (wij — wiw;) (s — xp) (5 — ).
ij=1
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As a simple computation shows, we have

n—1

> (wig — wiwy) (s — xp) (w5 — 2) = Lea(X),

ij=1
hence imLes(X) < Lo(X) < 2MLey(X). Now, the continuity of ¢ ensures the

existence of a point Z € [z, Z] such that Lo(X) = 2¢”(Z)Lea(X). O

Proof of the Theorem 3.1. Inequality (3.1) follows at once from (3.3) if we
take J :=]0,1/2] and ¢ : J — R to be the function ¢(x) = log(l — =) — log z, whose

second derivative is

1-2
¢//($) = 1.2(17_3;)2 Z 0 for all = e J

d

Proof of the Theorem 3.2. With the same choices for J and ¢, from Lemma

3.4 we conclude the existence of a point & € [z, Z] such that

A1) (X 1%
A x I x ey W

1-—2x
:721;2(1_1; 3 Z (wij — ww;)a;x;
3,7=1
1-—2x

> SR > (s — vy
i,j=1

because ¢ is decreasing on J. O

Remark. For = (n — 1)!, inequalities (3.1) and (3.2) reduce to

I(X) G(X = = 1 1
1Og[(l—X) 1OgG( (g&) <Zmll—xz>_n, 1—2a;

=1

and

AX) I(X) 1-2z
PEAI-x) BT X) © 20+ D221 — 7 nZw—(&) ,

respectively.
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