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SEMILINEAR EQUATIONS IN HILBERT SPACES
WITH QUASI-POSITIVE NONLINEARITY

CRISTINEL MORTICI

Abstract. The problem is to show that Ax + F (x) = 0 has a solution,

where A is linear, maximal monotone and the nonlinearity F is a quasi-

positive operator of Leray-Schauder type. The existence result is obtained

as a consequence of the properties of the Leray-Schauder degree. Finally,

some applications are given.

1. Introduction

Let H be a real Hilbert space with the inner product denoted by < ·, · > and

the corresponding norm

‖x‖ =
√

< x, x > , x ∈ H.

Let us consider the semilinear equation

Ax + F (x) = 0, (1.1)

where A : D(A) ⊂ H → H is a densely defined linear operator and N : H → H

is nonlinear. We establish an existence and uniqueness result for the equation (1.1)

under some monotonicity conditions. Moreover, assume that A is maximal monotone.

Equations of the form (1.1) arise in natural way in the theory of elliptic equations or

integro-differential equations.

An operator F : H → H is called quasi-positive if there exists α ∈ R such

that

< F (x), x >≥ α ‖F (x)‖2 , ∀x ∈ H, x 6= 0. (1.2)

This notion is close related with the angle-bounded operators. First, the

angle-boundedness concept is defined for linear operators acting from a Banach space
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into its dual, then the definition can be extended to nonlinear operators. For details,

see [7].

2. The Results

We give the following:

Lemma 2.1. If F : H → H is a quasi-positive operator with α > 1/2, then

‖x− F (x)‖ ≤ ‖x‖ , ∀x ∈ H, x 6= 0.

Proof. We have:

‖x− F (x)‖2 =< x− F (x), x− F (x) >=

= ‖x‖2 − 2 < F (x), x > + ‖F (x)‖2 ≤

≤ ‖x‖2 − (2α− 1) ‖F (x)‖2 ≤ ‖x‖2 . �

If A is linear, maximal monotone, then for all λ > 0, the operator I + λA is

invertible with continuous inverse (I + λA)−1 : H → H and∥∥(I + λA)−1
∥∥ ≤ 1.

For proof and further properties, see [3].

Now, the equation (1) can be written as

(I + A)x = x− F (x) ⇔ x = (I + A)−1(x− F (x)),

or

x = T (x) ⇔ (I − T )(x) = 0, (2.1)

where T = (I + A)−1(I − F ).

If F is an operator of Leray-Schauder type, then I − F is compact and con-

sequently, T is compact, as the product of a continuous operator with a compact

one.

Indeed, if D ⊂ H is bounded and (xn)n≥1 ⊂ D, then there exists x such

that (I − F )(xkn
) → (I − F )(x), at least on a subsequence. Further, (I + A)−1 is

continuous, so Txkn
→ Tx.

In conclusion, the operator I−T is compact perturbation of the identity map

and consequently, the Leray-Schauder degree can be considered.
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Roughly speaking, the degree of φ at y, relative to D, denoted d(φ,D, y), is

a measure of the number of the solutions of the equation φ(x) = y in D.

In an infinite dimensional Banach space X, the Leray-Schauder degree is

defined for compact perturbations of the identity map, also named Leray-Schauder

operators, φ ∈ (LS). Some properties of the Leray-Schauder degree are of interest in

our work.

Proposition 2.1. Let φ : D ⊂ X → X be such that I − φ is compact and

let y ∈ X \ φ(∂D). Then the Leray-Schauder degree d(φ,D, y) satisfies the following

properties:

(a) If d(φ,D, y) 6= 0, then y ∈ φ(D).

(b) If H ∈ C([0, 1]×D,X) is such that I−H(t, ·) is compact, for all t ∈ [0, 1]

and y ∈ X \H([0, 1]× ∂D), then the degree

d(H(t, ·), D, y) = constant , ∀ t ∈ [0, 1].

(c) The degree for the identity map I : X → X is

d(I,D, y) =

 1 , y ∈ D

0 , y /∈ D
.

For more details, see [4], [5].

Now, we can establish the following existence result:

Theorem 2.1. Let A : D(A) ⊂ H → H, 0 ∈ IntD(A), linear, maximal

monotone and F : H → H be an (LS) - operator such that

< F (x), x >≥ α ‖F (x)‖2 , ∀x ∈ H, x 6= 0,

for some α > 1/2. Then the equation Ax + F (x) = 0 has at least one solution

x ∈ D(A).

Proof. Let B = B(0, r) be such that B ⊂ D(A). We have seen that the

equation Ax + F (x) = 0 is equivalent with

(I − T )(x) = 0,

where T = (I + A)−1(I − F ) is compact.

Let us consider the Leray-Schauder homotopy

H(t, x) = x− tT (x) , x ∈ B, t ∈ [0, 1].
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If 0 ∈ H(1, ∂B), the conclusion follows immediately. In order to use the

invariance to homotopy of the Leray-Schauder degree, we prove that 0 /∈ H([0, 1), ∂B).

Let us suppose by contrary that H(t, x) = 0, for some x ∈ ∂B and t ∈ [0, 1). It results

‖x‖ = t ‖T (x)‖ ≤ ‖T (x)‖ =
∥∥(I + A)−1(I − F )

∥∥ ≤
≤

∥∥(I + A)−1
∥∥ · ‖x− F (x)‖ ≤ ‖x− F (x)‖ ≤ ‖x‖ .

We must have equalities all over, in particular T (x) = 0. Hence x = 0 ∈ ∂B,

contradiction. This means that 0 /∈ H([0, 1], ∂B) and further,

d(H(1, ·), B, 0) = d(H(0, ·), B, 0) ⇒

⇒ d(I − T,B, 0) = d(I,B, 0) = 1.

In conclusion, d(I − T,B, 0) 6= 0, thus the equation (I − T )(x) = 0 and

equivalent, the equation Ax + F (x) = 0 has at least one solution in D(A). �

3. An Application

Now, we are in position to show how the theoretical results from the previous

section can be applied to the elliptic boundary value problems.

Let Ω ⊂ Rn be open, bounded and let aij ∈ C1(Ω), 1 ≤ i, j ≤ n be real

valued functions satisfying the ellipticity property

n∑
i,j=1

aijξiξj ≥ 0 , ∀ ξ = (ξ1, ..., ξn) ∈ Rn.

Let us consider the following elliptic problem
−

n∑
i,j=1

∂

∂xj

(
aij(t)

∂x

∂xi

)
+ g(t, x) = 0 in Ω

u = 0 on ∂Ω

(3.1)

The particular case g(t, x) = a0(t)x, with a0 ∈ C(Ω), a0 > p > 0, is studied

in [3], using Lax-Milgram theorem. Some existence results are also obtained in [1] and

[2], as a consequence of some general considerations about saddle points. The general

case of problem (3.1) is studied in [6], under the assumption that the nonlinear part

is strongly monotone.
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Here we assume that g satisfies∫
Ω

g(t, x(t)) · x(t) dt ≥ α

∫
Ω

g2(t, x(t)) dt, (3.2)

for some α > 1/2. Remark that in case g(t, x) = a0(t)x, the condition (3.2) is fulled

with α < 1/ ‖a0‖ .

Under the condition (3.2), the problem (3.1) has at least one solution in weak

sense. Indeed, we can apply theorem 2.1 in the following functional background:

H = L2(Ω) , Ax = −
n∑

i,j=1

∂

∂xj

(
aij(t)

∂x

∂xi

)
, D(A) = H2(Ω) ∩H1

0 (Ω)

and (Fx)(t) = g(t, x). The problem (3.1) can be written in the abstract form

Ax + F (x) = 0 , x ∈ D(A) ⊂ L2(Ω).

We have:

< Ax, x >=
∫

Ω

n∑
i,j=1

aij
∂x

∂xj
· ∂x

∂xi
≥ 0,

and I + A is surjective, e.g. [2], therefore A is maximal monotone.

Finally, if g is compact perturbation of the identity, then the assertion is

proved.
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