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SEMILINEAR EQUATIONS IN HILBERT SPACES
WITH QUASI-POSITIVE NONLINEARITY

CRISTINEL MORTICI

Abstract. The problem is to show that Az + F(z) = 0 has a solution,
where A is linear, maximal monotone and the nonlinearity F' is a quasi-
positive operator of Leray-Schauder type. The existence result is obtained
as a consequence of the properties of the Leray-Schauder degree. Finally,

some applications are given.

1. Introduction

Let H be a real Hilbert space with the inner product denoted by < -,- > and

the corresponding norm

|z =v<z,z>, x€H

Let us consider the semilinear equation
Az + F(z) =0, (1.1)

where A : D(A) C H — H is a densely defined linear operator and N : H — H
is nonlinear. We establish an existence and uniqueness result for the equation (1.1)
under some monotonicity conditions. Moreover, assume that A is maximal monotone.
Equations of the form (1.1) arise in natural way in the theory of elliptic equations or
integro-differential equations.

An operator F' : H — H is called quasi-positive if there exists a € R such

that

< F(z),z>>a||F()|*> , VzeH, z+#0. (1.2)

This notion is close related with the angle-bounded operators. First, the

angle-boundedness concept is defined for linear operators acting from a Banach space
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into its dual, then the definition can be extended to nonlinear operators. For details,

see [7].

2. The Results

We give the following:
Lemma 2.1. If F: H — H is a quasi-positive operator with « > 1/2, then

lo = F(z)| < |lzf| , VzeH, x#0.
Proof. We have:

|z — F(z)|* =< & — F(z),2 — F(z) >=

= ||lz|* =2 < F(x), 2 > + | F(x)|* <

< Jal® = @a =D |F@))* < «|*. O

If A is linear, maximal monotone, then for all A > 0, the operator I + AA is
invertible with continuous inverse (I + AA)~! : H — H and
[(T+x4)71| < 1.

For proof and further properties, see [3].

Now, the equation (1) can be written as
(I+Azx=x—F@)erz=UI+A)" z—- F(x)),

or
zr=Tx)e (I-T)(z)=0, (2.1)
where T = (I + A)~'(I — F).

If F is an operator of Leray-Schauder type, then I — F' is compact and con-
sequently, T is compact, as the product of a continuous operator with a compact
one.

Indeed, if D C H is bounded and (x,),>1 C D, then there exists = such
that (I — F)(zg,) — (I — F)(x), at least on a subsequence. Further, (I + A)~! is
continuous, so Tz, — T'x.

In conclusion, the operator I — 1T is compact perturbation of the identity map
and consequently, the Leray-Schauder degree can be considered.
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Roughly speaking, the degree of ¢ at y, relative to D, denoted d(¢, D, y), is
a measure of the number of the solutions of the equation ¢(z) =y in D.

In an infinite dimensional Banach space X, the Leray-Schauder degree is
defined for compact perturbations of the identity map, also named Leray-Schauder
operators, ¢ € (LS). Some properties of the Leray-Schauder degree are of interest in
our work.

Proposition 2.1. Let ¢ : D C X — X be such that I — ¢ is compact and
let y € X\ ¢(0D). Then the Leray-Schauder degree d(¢, D,y) satisfies the following
properties:

(a) If d(¢, D, y) #0, then y € $(D).

(b) If H € C([0,1]x D, X) is such that I —H(t,-) is compact, for all t € [0,1]
and y € X \ H([0,1] x dD), then the degree

d(H(t,-),D,y) = constant , Vtel0,1].
(¢c) The degree for the identity map I : X — X is

1
0

, ye€D
, y¢D

d(I,D,y) =

For more details, see [4], [5].

Now, we can establish the following existence result:

Theorem 2.1. Let A: D(A) C H — H, 0 € IntD(A), linear, mazimal
monotone and F : H — H be an (LS) - operator such that

< F(z),z>>a||F(@)|® , VYzeH, z+#0,

for some a > 1/2. Then the equation Ax + F(x) = 0 has at least one solution
x € D(A).

Proof. Let B = B(0,7) be such that B C D(A). We have seen that the
equation Az + F(z) = 0 is equivalent with

(1-T)(x) =0,

where T = (I + A)~Y(I — F) is compact.

Let us consider the Leray-Schauder homotopy

H(t,x)=x—tT(z) , z€ B, tel0,1].
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If 0 € H(1,0B), the conclusion follows immediately. In order to use the
invariance to homotopy of the Leray-Schauder degree, we prove that 0 ¢ H([0,1),0B).
Let us suppose by contrary that H (¢, z) = 0, for some x € OB and ¢ € [0, 1). It results

lzll = t |1 T (@)l < [T (@) = |7+ A~ - F)|| <

<[|@+A7H| Nz = F@)] < llo = Fa)]| < ||| -

We must have equalities all over, in particular T'(x) = 0. Hence z = 0 € 9B,

contradiction. This means that 0 ¢ H ([0, 1],0B) and further,
d(H(1,-),B,0) =d(H(0,-),B,0) =

= d(I - T,B,0)=d(I,B,0) = 1.

In conclusion, d(I — T,B,0) # 0, thus the equation (I — T)(z) = 0 and
equivalent, the equation Az + F(x) = 0 has at least one solution in D(4). O

3. An Application

Now, we are in position to show how the theoretical results from the previous
section can be applied to the elliptic boundary value problems.
Let 2 C R"™ be open, bounded and let a;; € C1(Q), 1 <i,j < n be real

valued functions satisfying the ellipticity property

n

3wty >0, VE= (61, .60) R

ij=1
Let us consider the following elliptic problem
"9 ox .
_257] (aij(t)ax) +9(t,z)=0 in 0

=1 (3.1)
u=0 on 0

The particular case g(t,z) = ag(t)z, with ag € C(Q), ag > p > 0, is studied
in [3], using Lax-Milgram theorem. Some existence results are also obtained in [1] and
[2], as a consequence of some general considerations about saddle points. The general
case of problem (3.1) is studied in [6], under the assumption that the nonlinear part
is strongly monotone.
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Here we assume that g satisfies
[ stta®) ez a [ o) ar (3.2)
Q Q
for some a > 1/2. Remark that in case g(t,x) = ao(t)x, the condition (3.2) is fulled

with o < 1/ ||ag]l -
Under the condition (3.2), the problem (3.1) has at least one solution in weak

sense. Indeed, we can apply theorem 2.1 in the following functional background:

H=1L1%*9Q), Az = —g_:la‘zj (Mj(t)g;”i) , D(A) = H*(Q) N HL(Q)

and (Fx)(t) = g(t,x). The problem (3.1) can be written in the abstract form
Az +F(z) =0, x€ D(A)CL*Q).

We have:
- or O
<Ax,x>:/ ajj— - — >0,
Qi;l ]c')xj 5‘:51

and I + A is surjective, e.g. [2], therefore A is maximal monotone.
Finally, if g is compact perturbation of the identity, then the assertion is

proved.
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