SEMILINEAR EQUATIONS IN HILBERT SPACES WITH QUASI-POSITIVE NONLINEARITY

CRISTINEL MORTICI

Abstract

The problem is to show that $A x+F(x)=0$ has a solution, where A is linear, maximal monotone and the nonlinearity F is a quasipositive operator of Leray-Schauder type. The existence result is obtained as a consequence of the properties of the Leray-Schauder degree. Finally, some applications are given

1. Introduction

Let H be a real Hilbert space with the inner product denoted by $\langle\cdot, \cdot\rangle$ and the corresponding norm

$$
\|x\|=\sqrt{\langle x, x\rangle}, \quad x \in H .
$$

Let us consider the semilinear equation

$$
\begin{equation*}
A x+F(x)=0, \tag{1.1}
\end{equation*}
$$

where $A: D(A) \subset H \rightarrow H$ is a densely defined linear operator and $N: H \rightarrow H$ is nonlinear. We establish an existence and uniqueness result for the equation (1.1) under some monotonicity conditions. Moreover, assume that A is maximal monotone. Equations of the form (1.1) arise in natural way in the theory of elliptic equations or integro-differential equations.

An operator $F: H \rightarrow H$ is called quasi-positive if there exists $\alpha \in \mathbf{R}$ such that

$$
\begin{equation*}
<F(x), x>\geq \alpha\|F(x)\|^{2} \quad, \quad \forall x \in H, x \neq 0 \tag{1.2}
\end{equation*}
$$

This notion is close related with the angle-bounded operators. First, the angle-boundedness concept is defined for linear operators acting from a Banach space
into its dual, then the definition can be extended to nonlinear operators. For details, see [7].

2. The Results

We give the following:
Lemma 2.1. If $F: H \rightarrow H$ is a quasi-positive operator with $\alpha>1 / 2$, then

$$
\|x-F(x)\| \leq\|x\| \quad, \quad \forall x \in H, x \neq 0
$$

Proof. We have:

$$
\begin{gathered}
\|x-F(x)\|^{2}=<x-F(x), x-F(x)>= \\
=\|x\|^{2}-2<F(x), x>+\|F(x)\|^{2} \leq \\
\leq\|x\|^{2}-(2 \alpha-1)\|F(x)\|^{2} \leq\|x\|^{2} .
\end{gathered}
$$

If A is linear, maximal monotone, then for all $\lambda>0$, the operator $I+\lambda A$ is invertible with continuous inverse $(I+\lambda A)^{-1}: H \rightarrow H$ and

$$
\left\|(I+\lambda A)^{-1}\right\| \leq 1
$$

For proof and further properties, see [3].
Now, the equation (1) can be written as

$$
(I+A) x=x-F(x) \Leftrightarrow x=(I+A)^{-1}(x-F(x))
$$

or

$$
\begin{equation*}
x=T(x) \Leftrightarrow(I-T)(x)=0 \tag{2.1}
\end{equation*}
$$

where $T=(I+A)^{-1}(I-F)$.
If F is an operator of Leray-Schauder type, then $I-F$ is compact and consequently, T is compact, as the product of a continuous operator with a compact one.

Indeed, if $D \subset H$ is bounded and $\left(x_{n}\right)_{n \geq 1} \subset D$, then there exists x such that $(I-F)\left(x_{k_{n}}\right) \rightarrow(I-F)(x)$, at least on a subsequence. Further, $(I+A)^{-1}$ is continuous, so $T x_{k_{n}} \rightarrow T x$.

In conclusion, the operator $I-T$ is compact perturbation of the identity map and consequently, the Leray-Schauder degree can be considered.

Roughly speaking, the degree of ϕ at y, relative to D, denoted $d(\phi, D, y)$, is a measure of the number of the solutions of the equation $\phi(x)=y$ in D.

In an infinite dimensional Banach space X, the Leray-Schauder degree is defined for compact perturbations of the identity map, also named Leray-Schauder operators, $\phi \in(L S)$. Some properties of the Leray-Schauder degree are of interest in our work.

Proposition 2.1. Let $\phi: D \subset X \rightarrow X$ be such that $I-\phi$ is compact and let $y \in X \backslash \phi(\partial D)$. Then the Leray-Schauder degree $d(\phi, D, y)$ satisfies the following properties:
(a) If $d(\phi, D, y) \neq 0$, then $y \in \phi(D)$.
(b) If $H \in C([0,1] \times D, X)$ is such that $I-H(t, \cdot)$ is compact, for all $t \in[0,1]$ and $y \in X \backslash H([0,1] \times \partial D)$, then the degree

$$
d(H(t, \cdot), D, y)=\text { constant }, \quad \forall t \in[0,1] .
$$

(c) The degree for the identity map $I: X \rightarrow X$ is

$$
d(I, D, y)= \begin{cases}1, & y \in D \\ 0, & y \notin D\end{cases}
$$

For more details, see [4], [5].
Now, we can establish the following existence result:
Theorem 2.1. Let $A: D(A) \subset H \rightarrow H, 0 \in \operatorname{Int} D(A)$, linear, maximal monotone and $F: H \rightarrow H$ be an (LS) - operator such that

$$
<F(x), x>\geq \alpha\|F(x)\|^{2} \quad, \quad \forall x \in H, x \neq 0
$$

for some $\alpha>1 / 2$. Then the equation $A x+F(x)=0$ has at least one solution $x \in D(A)$.

Proof. Let $B=B(0, r)$ be such that $\bar{B} \subset D(A)$. We have seen that the equation $A x+F(x)=0$ is equivalent with

$$
(I-T)(x)=0
$$

where $T=(I+A)^{-1}(I-F)$ is compact.
Let us consider the Leray-Schauder homotopy

$$
H(t, x)=x-t T(x), \quad x \in \bar{B}, t \in[0,1] .
$$

If $0 \in H(1, \partial B)$, the conclusion follows immediately. In order to use the invariance to homotopy of the Leray-Schauder degree, we prove that $0 \notin H([0,1), \partial B)$. Let us suppose by contrary that $H(t, x)=0$, for some $x \in \partial B$ and $t \in[0,1)$. It results

$$
\begin{aligned}
& \|x\|=t\|T(x)\| \leq\|T(x)\|=\left\|(I+A)^{-1}(I-F)\right\| \leq \\
& \leq\left\|(I+A)^{-1}\right\| \cdot\|x-F(x)\| \leq\|x-F(x)\| \leq\|x\| .
\end{aligned}
$$

We must have equalities all over, in particular $T(x)=0$. Hence $x=0 \in \partial B$, contradiction. This means that $0 \notin H([0,1], \partial B)$ and further,

$$
\begin{aligned}
& d(H(1, \cdot), B, 0)=d(H(0, \cdot), B, 0) \Rightarrow \\
& \Rightarrow d(I-T, B, 0)=d(I, B, 0)=1
\end{aligned}
$$

In conclusion, $d(I-T, B, 0) \neq 0$, thus the equation $(I-T)(x)=0$ and equivalent, the equation $A x+F(x)=0$ has at least one solution in $D(A)$.

3. An Application

Now, we are in position to show how the theoretical results from the previous section can be applied to the elliptic boundary value problems.

Let $\Omega \subset \mathbf{R}^{n}$ be open, bounded and let $a_{i j} \in C^{1}(\bar{\Omega}), 1 \leq i, j \leq n$ be real valued functions satisfying the ellipticity property

$$
\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \geq 0, \quad \forall \xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \mathbf{R}^{n}
$$

Let us consider the following elliptic problem

$$
\left\{\begin{array}{cc}
-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(t) \frac{\partial x}{\partial x_{i}}\right)+g(t, x)=0 & \text { in } \Omega \tag{3.1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

The particular case $g(t, x)=a_{0}(t) x$, with $a_{0} \in C(\bar{\Omega}), a_{0}>p>0$, is studied in [3], using Lax-Milgram theorem. Some existence results are also obtained in [1] and [2], as a consequence of some general considerations about saddle points. The general case of problem (3.1) is studied in [6], under the assumption that the nonlinear part is strongly monotone.

Here we assume that g satisfies

$$
\begin{equation*}
\int_{\Omega} g(t, x(t)) \cdot x(t) d t \geq \alpha \int_{\Omega} g^{2}(t, x(t)) d t \tag{3.2}
\end{equation*}
$$

for some $\alpha>1 / 2$. Remark that in case $g(t, x)=a_{0}(t) x$, the condition (3.2) is fulled with $\alpha<1 /\left\|a_{0}\right\|$.

Under the condition (3.2), the problem (3.1) has at least one solution in weak sense. Indeed, we can apply theorem 2.1 in the following functional background:

$$
H=L^{2}(\Omega), A x=-\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{j}}\left(a_{i j}(t) \frac{\partial x}{\partial x_{i}}\right) \quad, \quad D(A)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)
$$

and $(F x)(t)=g(t, x)$. The problem (3.1) can be written in the abstract form

$$
A x+F(x)=0 \quad, \quad x \in D(A) \subset L^{2}(\Omega) .
$$

We have:

$$
<A x, x>=\int_{\Omega} \sum_{i, j=1}^{n} a_{i j} \frac{\partial x}{\partial x_{j}} \cdot \frac{\partial x}{\partial x_{i}} \geq 0
$$

and $I+A$ is surjective, e.g. [2], therefore A is maximal monotone.
Finally, if g is compact perturbation of the identity, then the assertion is proved

References

[1] H. Amman, Saddle Points and Multiple Solutions of Differential Equations, Math. Z., 169(1979), 127-166.
[2] H. Amman, On the Unique Solvability of the Semilinear Operator Equations in Hilbert Spaces, J. Math. Pures Appl., 61(1982), 149-175.
[3] H. Brezis, Analyse Fonctionnelle - Theorie et Applications, Masson Editeur, Paris, 1983.
[4] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, New York, 1985.
[5] I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Clarendon Press, New York, 1995.
[6] C. Mortici, On the Unique Solvability of the Semilinear Problems with Stongly Monotone Nonlinearities, Libertas Mathematica, 18(1999), 53-57.
[7] D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff \& Noordhoff, Intern. Publ. Alphen aan den Rijn, 1978.

Valahia University of Targoviste, Department of Mathematics, Bd. Uniril 18, 0200 Targoviste, ROMANIA

