SEMILINEAR EQUATIONS IN HILBERT SPACES WITH QUASI-POSITIVE NONLINEARITY

CRISTINEL MORTICI

Abstract. The problem is to show that Ax + F(x) = 0 has a solution, where A is linear, maximal monotone and the nonlinearity F is a quasipositive operator of Leray-Schauder type. The existence result is obtained as a consequence of the properties of the Leray-Schauder degree. Finally, some applications are given.

1. Introduction

Let H be a real Hilbert space with the inner product denoted by $<\cdot,\cdot>$ and the corresponding norm

$$||x|| = \sqrt{\langle x, x \rangle} , \quad x \in H.$$

Let us consider the semilinear equation

$$Ax + F(x) = 0, (1.1)$$

where $A : D(A) \subset H \to H$ is a densely defined linear operator and $N : H \to H$ is nonlinear. We establish an existence and uniqueness result for the equation (1.1) under some monotonicity conditions. Moreover, assume that A is maximal monotone. Equations of the form (1.1) arise in natural way in the theory of elliptic equations or integro-differential equations.

An operator $F:H\to H$ is called quasi-positive if there exists $\alpha\in {\bf R}$ such that

$$< F(x), x \ge \alpha ||F(x)||^2 , \quad \forall x \in H, \ x \neq 0.$$
 (1.2)

This notion is close related with the angle-bounded operators. First, the angle-boundedness concept is defined for linear operators acting from a Banach space

CRISTINEL MORTICI

into its dual, then the definition can be extended to nonlinear operators. For details, see [7].

2. The Results

We give the following:

Lemma 2.1. If $F: H \to H$ is a quasi-positive operator with $\alpha > 1/2$, then

$$||x - F(x)|| \le ||x||$$
, $\forall x \in H, x \ne 0.$

Proof. We have:

$$||x - F(x)||^2 = \langle x - F(x), x - F(x) \rangle =$$

= $||x||^2 - 2 \langle F(x), x \rangle + ||F(x)||^2 \leq$
 $\leq ||x||^2 - (2\alpha - 1) ||F(x)||^2 \leq ||x||^2.$

If A is linear, maximal monotone, then for all $\lambda > 0$, the operator $I + \lambda A$ is invertible with continuous inverse $(I + \lambda A)^{-1} : H \to H$ and

 $\left\| (I + \lambda A)^{-1} \right\| \le 1.$

For proof and further properties, see [3].

Now, the equation (1) can be written as

$$(I+A)x = x - F(x) \Leftrightarrow x = (I+A)^{-1}(x - F(x)),$$

or

$$x = T(x) \Leftrightarrow (I - T)(x) = 0, \tag{2.1}$$

where $T = (I + A)^{-1}(I - F)$.

If F is an operator of Leray-Schauder type, then I - F is compact and consequently, T is compact, as the product of a continuous operator with a compact one.

Indeed, if $D \subset H$ is bounded and $(x_n)_{n\geq 1} \subset D$, then there exists x such that $(I - F)(x_{k_n}) \to (I - F)(x)$, at least on a subsequence. Further, $(I + A)^{-1}$ is continuous, so $Tx_{k_n} \to Tx$.

In conclusion, the operator I-T is compact perturbation of the identity map and consequently, the Leray-Schauder degree can be considered.

Roughly speaking, the degree of ϕ at y, relative to D, denoted $d(\phi, D, y)$, is a measure of the number of the solutions of the equation $\phi(x) = y$ in D.

In an infinite dimensional Banach space X, the Leray-Schauder degree is defined for compact perturbations of the identity map, also named Leray-Schauder operators, $\phi \in (LS)$. Some properties of the Leray-Schauder degree are of interest in our work.

Proposition 2.1. Let $\phi : D \subset X \to X$ be such that $I - \phi$ is compact and let $y \in X \setminus \phi(\partial D)$. Then the Leray-Schauder degree $d(\phi, D, y)$ satisfies the following properties:

(a) If $d(\phi, D, y) \neq 0$, then $y \in \phi(D)$.

(b) If $H \in C([0,1] \times D, X)$ is such that $I - H(t, \cdot)$ is compact, for all $t \in [0,1]$ and $y \in X \setminus H([0,1] \times \partial D)$, then the degree

$$d(H(t, \cdot), D, y) = constant , \quad \forall t \in [0, 1].$$

(c) The degree for the identity map $I: X \to X$ is

$$d(I,D,y) = \begin{cases} 1 & , & y \in D \\ 0 & , & y \notin D \end{cases}$$

For more details, see [4], [5].

Now, we can establish the following existence result:

Theorem 2.1. Let $A : D(A) \subset H \to H$, $0 \in IntD(A)$, linear, maximal monotone and $F : H \to H$ be an (LS) - operator such that

$$< F(x), x \ge \alpha ||F(x)||^2 , \quad \forall x \in H, \ x \neq 0,$$

for some $\alpha > 1/2$. Then the equation Ax + F(x) = 0 has at least one solution $x \in D(A)$.

Proof. Let B = B(0, r) be such that $\overline{B} \subset D(A)$. We have seen that the equation Ax + F(x) = 0 is equivalent with

$$(I-T)(x) = 0,$$

where $T = (I + A)^{-1}(I - F)$ is compact.

Let us consider the Leray-Schauder homotopy

$$H(t,x) = x - tT(x) \quad , \quad x \in \overline{B}, \ t \in [0,1].$$

91

CRISTINEL MORTICI

If $0 \in H(1, \partial B)$, the conclusion follows immediately. In order to use the invariance to homotopy of the Leray-Schauder degree, we prove that $0 \notin H([0, 1), \partial B)$. Let us suppose by contrary that H(t, x) = 0, for some $x \in \partial B$ and $t \in [0, 1)$. It results

$$||x|| = t ||T(x)|| \le ||T(x)|| = ||(I+A)^{-1}(I-F)|| \le$$
$$\le ||(I+A)^{-1}|| \cdot ||x-F(x)|| \le ||x-F(x)|| \le ||x||.$$

We must have equalities all over, in particular T(x) = 0. Hence $x = 0 \in \partial B$, contradiction. This means that $0 \notin H([0, 1], \partial B)$ and further,

$$d(H(1,\cdot), B, 0) = d(H(0,\cdot), B, 0) \Rightarrow$$
$$\Rightarrow d(I - T, B, 0) = d(I, B, 0) = 1.$$

In conclusion, $d(I - T, B, 0) \neq 0$, thus the equation (I - T)(x) = 0 and equivalent, the equation Ax + F(x) = 0 has at least one solution in D(A). \Box

3. An Application

Now, we are in position to show how the theoretical results from the previous section can be applied to the elliptic boundary value problems.

Let $\Omega \subset \mathbf{R}^n$ be open, bounded and let $a_{ij} \in C^1(\overline{\Omega}), 1 \leq i, j \leq n$ be real valued functions satisfying the ellipticity property

$$\sum_{i,j=1}^{n} a_{ij}\xi_i\xi_j \ge 0 \ , \quad \forall \xi = (\xi_1, ..., \xi_n) \in \mathbf{R}^n.$$

Let us consider the following elliptic problem

$$\begin{cases} -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(t) \frac{\partial x}{\partial x_{i}} \right) + g(t,x) = 0 & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(3.1)

The particular case $g(t, x) = a_0(t)x$, with $a_0 \in C(\overline{\Omega})$, $a_0 > p > 0$, is studied in [3], using Lax-Milgram theorem. Some existence results are also obtained in [1] and [2], as a consequence of some general considerations about saddle points. The general case of problem (3.1) is studied in [6], under the assumption that the nonlinear part is strongly monotone. Here we assume that g satisfies

$$\int_{\Omega} g(t, x(t)) \cdot x(t) \, dt \ge \alpha \int_{\Omega} g^2(t, x(t)) \, dt, \tag{3.2}$$

for some $\alpha > 1/2$. Remark that in case $g(t, x) = a_0(t)x$, the condition (3.2) is fulled with $\alpha < 1/||a_0||$.

Under the condition (3.2), the problem (3.1) has at least one solution in weak sense. Indeed, we can apply theorem 2.1 in the following functional background:

$$H = L^{2}(\Omega) , \ Ax = -\sum_{i,j=1}^{n} \frac{\partial}{\partial x_{j}} \left(a_{ij}(t) \frac{\partial x}{\partial x_{i}} \right) , \ D(A) = H^{2}(\Omega) \cap H^{1}_{0}(\Omega)$$

and (Fx)(t) = g(t, x). The problem (3.1) can be written in the abstract form

$$Ax + F(x) = 0$$
, $x \in D(A) \subset L^2(\Omega)$.

We have:

$$\langle Ax, x \rangle = \int_{\Omega} \sum_{i,j=1}^{n} a_{ij} \frac{\partial x}{\partial x_j} \cdot \frac{\partial x}{\partial x_i} \ge 0,$$

and I + A is surjective, e.g. [2], therefore A is maximal monotone.

Finally, if g is compact perturbation of the identity, then the assertion is

proved.

References

- H. Amman, Saddle Points and Multiple Solutions of Differential Equations, Math. Z., 169(1979), 127-166.
- H. Amman, On the Unique Solvability of the Semilinear Operator Equations in Hilbert Spaces, J. Math. Pures Appl., 61(1982), 149-175.
- [3] H. Brezis, Analyse Fonctionnelle Theorie et Applications, Masson Editeur, Paris, 1983.
- [4] K. Deimling, Nonlinear Functional Analysis, Springer Verlag, New York, 1985.
 [5] I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Clarendon Press,
- New York, 1995.
 [6] C. Mortici, On the Unique Solvability of the Semilinear Problems with Stongly Monotone Nonlinearities, Libertas Mathematica, 18(1999), 53-57.
- [7] D. Pascali, S. Sburlan, Nonlinear Mappings of Monotone Type, Sijthoff & Noordhoff, Intern. Publ. Alphen aan den Rijn, 1978.

VALAHIA UNIVERSITY OF TARGOVISTE, DEPARTMENT OF MATHEMATICS, BD. UNIRII 18, 0200 TARGOVISTE, ROMANIA