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LACUNARY STRONG A-CONVERGENCE WITH RESPECT
TO A MODULUS

TUNAY BILGIN

Abstract. The definition of lacunary strong convergence with respect to a

modulus is extended to a definition of lacunary strong A-convergence with

respect to a modulus when A = (aik) is an infinite matrix of complex num-

bers. We study some connections between lacunary strong A-convergence

with respect to a modulus and lacunary A-statistical convergence.

1. Introduction

The notion of modulus function was introduced by Nakano [11]. We recall

that a modulus f is a function from [0,∞) to [0,∞) such that

(i) f(x) = 0 if and only if x = 0,

(ii) f(x + y) ≤ f(x) + f(y) for x, y ≥ 0,

(iii) f is increasing and

(iv) f is continuous from the right at 0. It follows that f must be continuous

on [0,∞).

Connor [2], Esi [3], Kolk [8], Maddox [9], [10], Öztürk and Bilgin [12], Pehlivan

and Fisher [13], Ruckle [14] and others used a modulus function to construct sequence

spaces.

Following Freedman et al. [4], we call the sequence θ = (kr) lacunary if it is

an increasing sequence of integers such that k0 = 0, hr = kr − kr−1 →∞ as r →∞.

The intervals determined by θ will be denoted by Ir = (kr−1, kr] and qr = kr/kr−1.

These notations will be used throughout the paper. The sequence space of lacunary
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strongly convergent sequences Nθ was defined by Freedman et al. [4], as follows:

Nθ =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

|xi − s| = 0 for some s

}
.

Recently, the concept of lacunary strongly convergence was generalized by

Pehlivan and Fisher [13] as below:

Nθ(f) =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

f(|xi − s|) = 0 for some s

}
.

Let A = (aik) be an infinite matrix of complex numbers. We write Ax =

(Ai(x)) if Ai(x) =
∞∑

k=1

aikxk converges for each i.

The purpose of this paper is to introduce and study a concept of lacunary

strong A-convergence with respect to a modulus.

2. Nθ(A, f) Convergence

Definition. Let A = (aik) be an infinite matrix of complex numbers and f

be a modulus. We define

Nθ(A, f) =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

f(|Ai(x)− s|) = 0 for some s

}
,

N0
θ (A, f) =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

f(|Ai(x)|) = 0

}
.

A sequence x = (xk) is said to be lacunary strong A-convergent to a number

s with respect to a modulus if there is a complex number s such that x ∈ Nθ(A, f).

Note that, if we put f(x) = x, then Nθ(A, f) = Nθ(A) and N0
θ (A, f) = N0

θ (A). If

x ∈ Nθ(A), we say that x is lacunary strong A-convergent to s. If x is lacunary

strong A-convergent to the value s with respect to a modulus f , then we write xi →

s(Nθ(A, f)). If A = I unit matrix, we write Nθ(f) and N0
θ (f) for Nθ(A, f) and

N0
θ (A, f), respectively. Hence Nθ(f) is the same as the space Nθ(f) of Pehlivan and

Fisher [13].

Nθ(A, f) and N0
θ (A, f) are linear spaces. We consider only N0

θ (A, f). Suppose

that x, y ∈ N0
θ (A, f) and a, b are in C, the complex numbers. Then there exist integers
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Ta and Tb such that |a| ≤ Ta and |b| ≤ Tb. We therefore have

h−1
r

∑
i∈Ir

f(|aAi(x) + bAi(y)|) ≤ Tah−1
r

∑
i∈Ir

f(|Ai(x)|) + Tbh
−1
r

∑
i∈Ir

f(|Ai(y)|).

This implies that ax + by ∈ N0
θ (A, f).

Now we give relation between lacunary strong A-convergence and lacunary

strong A-convergence with respect to a modulus.

Theorem 1. Let f be any modulus. Then Nθ(A) ⊆ Nθ(A, f) and N0
θ (A) ⊆

N0
θ (A, f).

Proof. We consider Nθ(A) ⊆ Nθ(A, f) only. Let x ∈ Nθ(A) and ε � 0. We

choose 0 < δ < 1 such that f(u) < ε for every u with 0 ≤ u ≤ δ. We can write

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) = h−1
r

∑
1

f(|Ai(x)− s|) + h−1
r

∑
2

f(|Ai(x)− s|)

where the first summation is over |Ai(x)− s| ≤ δ and the second over |Ai(x)− s| � δ.

By definition of f , we have

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≤ ε + 2f(1)δ−1h−1
r

∑
i∈Ir

|Ai(x)− s|.

Therefore x ∈ Nθ(A, f).

Theorem 2. Let f be any modulus. If lim
t→∞

f(t)
t

= β � 0, then Nθ(A) =

Nθ(A, f).

Proof. If lim
t→∞

f(t)
t

= β � 0, then f(t) ≥ βt for all t � 0. Let x ∈ Nθ(A, f).

Clearly,

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≥ h−1
r

∑
i∈Ir

β|Ai(x)− s| = βh−1
r

∑
i∈I

|Ai(x)− s|,

therefore x ∈ Nθ(A). By using Theorem 1 the proof is complete.

We now give an example to show that Nθ(A) 6= Nθ(A, f) in the case when

β = 0. Consider A = I and the modulus f(x) =
√

x. In the case β = 0, define xi to

be hr at the first term in Ir for every r and xi = 0 otherwise. Then we have

h−1
r

∑
i∈Ir

f(|Ai(x)|) = h−1
r

∑
i∈Ir

√
|xi| = h−1

r

√
|hr| → 0 as r →∞

and so x ∈ Nθ(A, f). But h−1
r

∑
i∈Ir

|Ai(x)| = h−1
r

∑
i∈Ir

|xi| = h−1
r hr → 1 as r →∞

and so x 6∈ Nθ(A).

Theorem 3. Let f be any modulus. Then
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(i) For lim inf qr � 1 we have w(A, f) ⊆ Nθ(A, f).

(ii) For lim sup qr ≺ ∞ we have Nθ(A, f) ⊆ w(A, f).

(iii) w(A, f) = Nθ(A, f) is 1 � lim infr qr ≤ lim supr qr ≺ ∞,

where w(A, f) =

{
x = (xi) : lim

n→∞
n−1

n∑
i=1

f(|Ai(x)− s|) = 0 for some s

}
(see, Esi

[3]).

Proof. (i) Let x ∈ w(A, f) and lim inf qr � 1. There exist δ � 0 such that

qr = (kr/kr−1) ≥ 1 + δ for sufficiently large r. We have, for sufficiently large r, that

(hr/kr) ≥ δ/(1 + δ) and (kr/hr) ≤ (1 + δ)/δ. Then

k−1
r

kr∑
i−1

f(|Ai(x)− s|) ≥ k−1
r

∑
i∈Ir

f(|Ai(x)− s|)

= (hr/kr)h−1
r

∑
i∈Ir

f(|Ai(x)− s|)

≥ δ/(1 + δ)h−1
r

∑
i∈Ir

f(|Ai(x)− s|)

which yields that x ∈ Nθ(A, f).

(ii) If lim sup qr ≺ ∞ then there exists K � 0 such that qr ≺ K for every

r. Now suppose that x ∈ Nθ(A, f) and ε � 0. There exists m0 such that for every

m ≥ m0,

Hm = h−1
m

∑
i∈Im

f(|Ai(x)− x|) ≺ ε.

We can also find T � 0 such that Hm ≤ T for all m. Let n be any integer

with kr ≥ n � kr−1. Now write

n−1
n∑

i=1

f(|Ai(x)− s|) ≤ k−1
r

kr∑
i=1

f(|Ai(x)− s|)

= k−1
r−1

(
m0∑

m=1

+
kr∑

m=m0+1

) ∑
i∈Im

f(|Ai(x)− s|)

= k−1
r−1

m0∑
m=1

∑
i∈Im

f(|Ai(x)− s|) + k−1
r−1

kr∑
m=m0+1

∑
i∈Im

f(|Ai(x)− s|)

≤ k−1
r−1

m0∑
m=1

∑
i∈Im

f(|Ai(x)− s|) + ε(kr − km0)k
−1
r−1

= k−1
r−1(h1H1 + h2H2 + · · ·+ hm0Hm0) + ε(kr − km0)k

−1
r−1

≤ k−1
r−1

(
sup

1≤i≤m0

Hikm0

)
+ εK ≺ k−1

r−1km0T + εK
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from which we deduce that x ∈ w(A, f). (iii) follows from (i) and (ii).

The next result follows from Theorem 2 and 3.

Theorem 4. Let f be any modulus. If lim
t→∞

f(t)
t

= β � 0 and l ≺

lim infr qr ≤ lim supr qr ≺ ∞, then Nθ(A) = w(A, f).

3. Lacunary A-statistical convergence

The notation of statistical convergence was given in earlier works [1], [4],

[6], [15] and [16]. Recently, Fridy and Orhan [7] introduced the concept of lacunary

statistical convergence:

Let θ be a lacunary sequence. Then a sequence x = (xk) is said to be lacunary

statistically convergent to a number s if for every ε � 0, lim
r→∞

h−1
r |Kθ(ε)| = 0, where

|Kθ(ε)| denotes the number of elements in Kθ(ε) = {i ∈ Ir : |xi − s| ≥ ε}. The set

of all lacunary statistical convergent sequences is denoted by Sθ.

Let A = (aik) be an infinire matrix of complex numbers. Then a sequence

x = (xk) is said to be lacunary A-statistically convergent to a number s if for every

ε � 0, lim
r→∞

h−1
r |KAθ(ε)| = 0, where |KAθ(ε)| denotes the number of element in

KAθ(ε) = {i ∈ I : |Ai(x)− s| ≥ ε}. The set of all lacunary A-statistical convergent

sequences is denoted by Sθ(A).

The following Theorem gives the relation between of the lacunary A-statistical

convergence and lacunary strongly A-convergence.

Let I1
r = {i ∈ Ir : |Ai(x)−s| ≥ ε} = KAθ(ε) and I2

r = {i ∈ Ir : |Ai(x)−s| ≺

ε}.

Theorem 5. Let A be a limitation method, then

(i) xi → s(Nθ(A)) implies xi → s(Sθ(A)).

(ii) x is bounded and xi → s(Sθ(A)) implys xi → s(Nθ(A)).

(iii) Sθ(A) = Nθ(A) is x is bounded.

Proof. (i) If ε � 0 and xi → s(Nθ(A)) we can write

h−1
r

∑
i∈Ir

|Ai(x)− s| ≥ h−1
r |KAθ(ε)|ε.

It follows that xi → s(Sθ(A)). Note that in this part of the proof we do not

need the limitation method of A.
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(ii) Suppose that x is lacunary A-statistical convergent to s. Since x

is bounded and A is limitation method, there is a constant T > 0 such that

|Ai(x)− s| ≤ T for all i. Therefore we have, for every ε � 0, that

h−1
r

∑
i∈Ir

|Ai(x)− s| ≤ h−1
r

∑
i∈I1

r

|Ai(x)− s|+ h−1
r

∑
i∈I2

r

|Ai(x)− s| ≤ Th−1
r |KAθ(ε)|+ ε.

Taking the limit as ε → 0, the result follows. (iii) follows from (i) and (ii).

Now we give the relation between of the lacunary A-statistical convergence

and lacunary strongly A-convergence with respect to modulus.

Theorem 6. (i) For any modulus f , xi → s(Nθ(A, f)) implies xi →

s(Sθ(A)).

(ii) f is bounded and xi → s(Sθ(A)) imply xi → s(Nθ(A, f)).

(iii) Sθ(A) = Nθ(A, f) if f is bounded.

Proof. (i) Let f be any modulus. If ε � 0 and xi → s(Nθ(A, f)) we can

write

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≥ h−1
r

∑
i∈I1

r

f(|Ai(x)− s|) � h−1
r |KAθ(ε)|f(ε).

It follows that xi → s(Sθ(A)).

(ii) Suppose that f is bounded. Since f is bounded, there exists an integer

T such that f(x) ≤ T for all x ≥ 0. We see that

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≤ h−1
r

∑
i∈I1

r

f(|Ai(x)− s|) + h−1
r

∑
i∈I2

r

f(|Ai(x)− s|)

≤ Th−1
r |KAθ(ε)|+ f(ε).

Since f is continuous and xi → s(Sθ(A)), it follows from ε → 0 that xi →

s(Nθ(A, f)). (ii) follows from (i) and (ii).

As an example to show that Sθ(A) 6= Nθ(A, f) when f is unbounded, consider

A = I. Since f is unbounded, there exists a positive sequence 0 ≺ y1 ≺ y2 ≺ . . . such

that f(yi) ≥ hi. Define the sequence x = (xi) by putting xki
= yi for i = 1, 2, . . . and

xi = 0 otherwise. We have x ∈ Sθ(A), but x 6∈ Nθ(A, f).

Finally we consider the case when xk → s implies xk → s(Nθ(A, f)).

Lemma 7. ([6]) If lim inf qr � 1 then xi → s(S) implies xi → s(Sθ).

44



LACUNARY STRONG A-CONVERGENCE WITH RESPECT TO A MODULUS

Theorem 8. Let lim inf qr � 1, A is regular and f is bounded. Then xi → s

implies xi → s(Nθ(A, f)).

Proof. Let xi → s. By regularity of A and definition of statistical con-

vergence we have Ai(x) → s(S). Since lim inf qr � 1 it follows lemma 7 that

Ai(x) → s(Sθ) i.e. xi → s(Sθ(A)). Thus, using Theorem 6, we have xi → s(Nθ(A, f)).
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