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LACUNARY STRONG A-CONVERGENCE WITH RESPECT
TO A MODULUS

TUNAY BILGIN

Abstract. The definition of lacunary strong convergence with respect to a
modulus is extended to a definition of lacunary strong A-convergence with
respect to a modulus when A = (a;x) is an infinite matrix of complex num-
bers. We study some connections between lacunary strong A-convergence

with respect to a modulus and lacunary A-statistical convergence.

1. Introduction

The notion of modulus function was introduced by Nakano [11]. We recall
that a modulus f is a function from [0, c0) to [0, 00) such that

(i) f(z) =0 if and only if x = 0,

(i) f(z +y) < f(x) + f(y) for 2,y >0,

(iii) f is increasing and

(iv) f is continuous from the right at 0. It follows that f must be continuous
on [0, 00).

Connor [2], Esi [3], Kolk [8], Maddox [9], [10], Oztiirk and Bilgin [12], Pehlivan
and Fisher [13], Ruckle [14] and others used a modulus function to construct sequence
spaces.

Following Freedman et al. [4], we call the sequence 6 = (k,) lacunary if it is
an increasing sequence of integers such that kg =0, h, = k. — k,_1 — 00 as r — 0.

The intervals determined by 6 will be denoted by I, = (k._1,k,] and ¢, = k. /kr—_1.

These notations will be used throughout the paper. The sequence space of lacunary
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strongly convergent sequences Ny was defined by Freedman et al. [4], as follows:

Ngz{x:(mi): lim h;12|mi—s|:0f0rsomes}.

icl,
Recently, the concept of lacunary strongly convergence was generalized by

Pehlivan and Fisher [13] as below:

No(f) = {J; = (z) : Tli_}rgohr_l Z f(Jz; — s]) = 0 for some s} .

icl,.

Let A = (a;;) be an infinite matrix of complex numbers. We write Az =
o0

(4;(2)) if Aj(x) = Z a;r ) converges for each i.

k=1
The purpose of this paper is to introduce and study a concept of lacunary

strong A-convergence with respect to a modulus.

2. Ny(A, f) Convergence

Definition. Let A = (a;x) be an infinite matrix of complex numbers and f

be a modulus. We define

No(A, f) = {:v = (x;) : Thlrgohjl Z f(JAi(x) — s]) = 0 for some s} ,

i€l

NY(A, ) = { = (zi): lm byt Y F(Ai(@) = o} .

icl,

A sequence x = (z) is said to be lacunary strong A-convergent to a number
s with respect to a modulus if there is a complex number s such that © € Ny(A4, f).
Note that, if we put f(z) = z, then Np(A, f) = Ng(A) and N§ (A4, f) = NJ(A). If
x € Ny(A), we say that x is lacunary strong A-convergent to s. If z is lacunary
strong A-convergent to the value s with respect to a modulus f, then we write z; —
s(Ng(A, f)). If A = I unit matrix, we write Np(f) and NQ(f) for Nyp(A, f) and
NJ(A, f), respectively. Hence Ny(f) is the same as the space Ny(f) of Pehlivan and
Fisher [13].

Ny(A, f) and NJ(A, f) are linear spaces. We consider only N§ (A4, f). Suppose
that z,y € N§ (A, f) and a, b are in C, the complex numbers. Then there exist integers
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T, and T} such that |a| < T, and |b] < Tp. We therefore have
het Y Fladi(@) + bAi(w))) < Tahit Y- F(1A@)]) + Toh " Y (1 Ai(y)])
iel, icl, icl,
This implies that az + by € NJ (A, f).
Now we give relation between lacunary strong A-convergence and lacunary
strong A-convergence with respect to a modulus.
Theorem 1. Let f be any modulus. Then Ng(A) C No(A, f) and NJ(A) C
NO(A, £).
Proof. We consider Ny(A) C Ny(A, f) only. Let z € Ny(A) and € > 0. We
choose 0 < § < 1 such that f(u) < e for every u with 0 < u < 6. We can write
ht Y f(Ai(z) = sl) = IZf |Ai(x) = s) + b D f(lAi(z) = s])
i€l 2
where the first summation is over |A;(x) — s| < 0 and the second over |A;(x) —s| > 0.
By definition of f, we have
ht D F(Ai) = ) e+ 2f(1)5 T h Y [ Ai() — ).

i€l i€l
Therefore € Ny (A, f).
Theorem 2. Let f be any modulus. If tllglo@ = [ > 0, then Ny(4) =
No(A, f).
Proof. If tlg& @ = 0> 0, then f(t) > Ot for all t = 0. Let x € Ny(A, f).
Clearly,
Bt D0 F(1Aie) = s)) 2 bt Y Bl Ay (@) = s| = pht Y |Ai()
i€l, i€l icl
therefore x € Ny(A). By using Theorem 1 the proof is complete.
We now give an example to show that Ng(A) # Ny(A, f) in the case when
B =0. Consider A =TI and the modulus f(z) = /z. In the case § = 0, define z; to
be h, at the first term in I,. for every r and x; = 0 otherwise. Then we have
het S F(A@)) =kt Y0 Vil = b el = 0 as 1 — oo
i€l icl,
and so x € Ng(A, f). But h7' 30 [Ai(z)] = hy' Y. |wil = hythy — Tasr — o0
and so x & Ny(A).
Theorem 3. Let [ be any modulus. Then
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(i) For liminf ¢, > 1 we have w(A, f) C Ng(A4, f).

(i) For limsup ¢, < 0o we have Ng(A, f) Cw(A4, f).

(iii) w(A, f) = No(A4, f) is 1 > liminf, ¢, < limsup, ¢, < oo,
where w(A, f) = {x = (x;) : nh—>nolo n~! ifﬂAl(x) —s]) =0 for some s} (see, Esi
13])-

Proof. (i) Let z € w(A, f) and liminf g, > 1. There exist 0 > 0 such that
qr = (kr/kr—1) > 1+ ¢ for sufficiently large r. We have, for sufficiently large r, that
(hy/kr) > 6/(1+6) and (k-/h,) < (1+§)/6. Then

lzfm J—s) = kY F(lAe) - s)

i€l
= (he/k)h Y F(JAi(x) — s])
el
> /(L4 6)h D f(|Ai(z) - s])
iel,

which yields that € Ny(A4, f).
(ii) If limsup g, < oo then there exists K > 0 such that ¢, < K for every
r. Now suppose that © € Ny(4, f) and € > 0. There exists mg such that for every

mZmOa

H’m m Z f |A —Jf|) =€

1€lm
We can also find T > 0 such that H,, < T for all m. Let n be any integer

with k. > n > k._1. Now write

n k.
n! Zf(lAi(z) —sl) <k Zf(\Ai(z) —sl)
mo k.
S (B 8 )me =)

m=mo+1/ ‘€Il
—anZﬂA ) = sl) + k! Z > f(1Aiw) = s))
m=14i€l,, m=mo+1i€l,,
gk—lz D FlAi(@) = s]) + e(kr = kg )k
m=14€l,,

= kr__ll(}hHl +hoHy + -+ hipg Hiny) + (ki — k’mo)kr_—ll

<kl ( sup Hkm> +eK <k kT +eK

1<i<mo
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from which we deduce that = € w(A, f). (iii) follows from (i) and (ii).

The next result follows from Theorem 2 and 3.

Theorem 4. Let f be any modulus. If tliglo @ =0 > 0andl <
liminf, ¢, < limsup,. ¢, < oo, then Ny(A) = w(A, f).

3. Lacunary A-statistical convergence

The notation of statistical convergence was given in earlier works [1], [4],
[6], [15] and [16]. Recently, Fridy and Orhan [7] introduced the concept of lacunary
statistical convergence:

Let 6 be a lacunary sequence. Then a sequence x = (xy) is said to be lacunary
statistically convergent to a number s if for every € > 0, Tlingo hi Y| Ky(g)| = 0, where
| Ko ()| denotes the number of elements in Kg(e) = {i € I, : |z; — s| > €}. The set
of all lacunary statistical convergent sequences is denoted by Sp.

Let A = (a;r) be an infinire matrix of complex numbers. Then a sequence
x = (x) is said to be lacunary A-statistically convergent to a number s if for every
e > 0, rlggo h YK Ag(e)] = 0, where |KAgy(e)| denotes the number of element in
KAgp(e)={ieI: |Aij(x)—s| > e}. The set of all lacunary A-statistical convergent
sequences is denoted by Sg(A).

The following Theorem gives the relation between of the lacunary A-statistical
convergence and lacunary strongly A-convergence.

Let I} ={iel.: |Ai(x)—s| >e} = KAg(e) and I = {i € I, : |A;(z)—s| <
e}

Theorem 5. Let A be a limitation method, then

(i) x; — s(Ng(A)) implies x; — s(Sp(4)).

(i) x is bounded and x; — s(Sp(A)) implys z; — s(Np(A)).

(i3) Sg(A) = Ng(A) is x is bounded.

Proof. (i) If ¢ = 0 and z; — s(Ng(A)) we can write

hit Y0 1Ai(x) = s| = hi 'K Ag(e)e.
icl,

It follows that z; — s(Sp(A)). Note that in this part of the proof we do not
need the limitation method of A.
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(ii) Suppose that z is lacunary A-statistical convergent to s. Since x
is bounded and A is limitation method, there is a constant 77 > 0 such that

|A;(z) — s| < T for all i. Therefore we have, for every e > 0, that

het S O Ai) = sl < hTU Y [Ai(@) = s| 4+ bt Y |Ai(w) = s| < Th K Ag(e)| + .
iel, i€l i€ I2

Taking the limit as € — 0, the result follows. (iii) follows from (i) and (ii).

Now we give the relation between of the lacunary A-statistical convergence
and lacunary strongly A-convergence with respect to modulus.

Theorem 6. (i) For any modulus f, x; — s(Ng(A,f)) implies z; —
s(Sp(A)).

(ii) f is bounded and x; — s(Sp(A)) imply x; — s(Ng(A, f)).

(iii) Sg(A) = No(A, f) if [ is bounded.

Proof. (i) Let f be any modulus. If € > 0 and z; — s(Ng(A4, f)) we can

write
he' ST F(A) = ) = bt > F([Ai(w) = s]) = by K Ag(e)| f(e).
i€l K

It follows that x; — s(Sp(A)).
(ii) Suppose that f is bounded. Since f is bounded, there exists an integer
T such that f(z) < T for all z > 0. We see that

Wt YO F(Ae) = sl < Rt F(Aue) = s+ it Y S (1 Au() — s)

i€l iel} €12

Thi 'K Ag(e)| + f(e).

IN

Since f is continuous and x; — s(Sp(A)), it follows from ¢ — 0 that z; —
s(Np(A, f)). (ii) follows from (i) and (ii).

As an example to show that Sy(A) # Ny(A, f) when f is unbounded, consider
A = 1. Since f is unbounded, there exists a positive sequence 0 < y; < y2 < ... such
that f(y;) > h;. Define the sequence x = (z;) by putting xy, = y; fori =1,2,... and
x; = 0 otherwise. We have z € Sy(A), but x & Ny(A, f).

Finally we consider the case when x; — s implies x — s(Np(A4, f)).

Lemma 7. ([6]) If iminf g, > 1 then x; — s(S) implies x; — s(Sp).
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Theorem 8. Let liminf g, = 1, A is reqular and f is bounded. Then x; — s

implies z; — s(Np(A, f)).

Proof. Let x; — s. By regularity of A and definition of statistical con-

vergence we have A;(z) — s(S). Since liminfg,. > 1 it follows lemma 7 that

Ai(z) — s(Sp) i.e. ;i — s(Sg(A)). Thus, using Theorem 6, we have z; — s(Ny(A4, f)).
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