LACUNARY STRONG A-CONVERGENCE WITH RESPECT TO A MODULUS

TUNAY BILGIN

Abstract

The definition of lacunary strong convergence with respect to a modulus is extended to a definition of lacunary strong A-convergence with respect to a modulus when $A=\left(a_{i k}\right)$ is an infinite matrix of complex numbers. We study some connections between lacunary strong A-convergence with respect to a modulus and lacunary A-statistical convergence.

1. Introduction

The notion of modulus function was introduced by Nakano [11]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that
(i) $f(x)=0$ if and only if $x=0$,
(ii) $f(x+y) \leq f(x)+f(y)$ for $x, y \geq 0$,
(iii) f is increasing and
(iv) f is continuous from the right at 0 . It follows that f must be continuous on $[0, \infty)$.

Connor [2], Esi [3], Kolk [8], Maddox [9], [10], Öztürk and Bilgin [12], Pehlivan and Fisher [13], Ruckle [14] and others used a modulus function to construct sequence spaces.

Following Freedman et al. [4], we call the sequence $\theta=\left(k_{r}\right)$ lacunary if it is an increasing sequence of integers such that $k_{0}=0, h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$ and $q_{r}=k_{r} / k_{r-1}$. These notations will be used throughout the paper. The sequence space of lacunary

Key words and phrases. lacunary sequence, modulus function, statistical convergence
strongly convergent sequences N_{θ} was defined by Freedman et al. [4], as follows:

$$
N_{\theta}=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}}\left|x_{i}-s\right|=0 \text { for some } s\right\}
$$

Recently, the concept of lacunary strongly convergence was generalized by Pehlivan and Fisher [13] as below:

$$
N_{\theta}(f)=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|x_{i}-s\right|\right)=0 \text { for some } s\right\}
$$

Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers. We write $A x=$ $\left(A_{i}(x)\right)$ if $A_{i}(x)=\sum_{k=1}^{\infty} a_{i k} x_{k}$ converges for each i.

The purpose of this paper is to introduce and study a concept of lacunary strong A-convergence with respect to a modulus.

2. $N_{\theta}(A, f)$ Convergence

Definition. Let $A=\left(a_{i k}\right)$ be an infinite matrix of complex numbers and f be a modulus. We define

$$
\begin{gathered}
N_{\theta}(A, f)=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right)=0 \text { for some } s\right\}, \\
N_{\theta}^{0}(A, f)=\left\{x=\left(x_{i}\right): \lim _{r \rightarrow \infty} h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)\right|\right)=0\right\}
\end{gathered}
$$

A sequence $x=\left(x_{k}\right)$ is said to be lacunary strong A-convergent to a number s with respect to a modulus if there is a complex number s such that $x \in N_{\theta}(A, f)$. Note that, if we put $f(x)=x$, then $N_{\theta}(A, f)=N_{\theta}(A)$ and $N_{\theta}^{0}(A, f)=N_{\theta}^{0}(A)$. If $x \in N_{\theta}(A)$, we say that x is lacunary strong A-convergent to s. If x is lacunary strong A-convergent to the value s with respect to a modulus f, then we write $x_{i} \rightarrow$ $s\left(N_{\theta}(A, f)\right)$. If $A=I$ unit matrix, we write $N_{\theta}(f)$ and $N_{\theta}^{0}(f)$ for $N_{\theta}(A, f)$ and $N_{\theta}^{0}(A, f)$, respectively. Hence $N_{\theta}(f)$ is the same as the space $N_{\theta}(f)$ of Pehlivan and Fisher [13].
$N_{\theta}(A, f)$ and $N_{\theta}^{0}(A, f)$ are linear spaces. We consider only $N_{\theta}^{0}(A, f)$. Suppose that $x, y \in N_{\theta}^{0}(A, f)$ and a, b are in C, the complex numbers. Then there exist integers
T_{a} and T_{b} such that $|a| \leq T_{a}$ and $|b| \leq T_{b}$. We therefore have

$$
h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|a A_{i}(x)+b A_{i}(y)\right|\right) \leq T_{a} h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)\right|\right)+T_{b} h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(y)\right|\right) .
$$

This implies that $a x+b y \in N_{\theta}^{0}(A, f)$.
Now we give relation between lacunary strong A-convergence and lacunary strong A-convergence with respect to a modulus.

Theorem 1. Let f be any modulus. Then $N_{\theta}(A) \subseteq N_{\theta}(A, f)$ and $N_{\theta}^{0}(A) \subseteq$ $N_{\theta}^{0}(A, f)$.

Proof. We consider $N_{\theta}(A) \subseteq N_{\theta}(A, f)$ only. Let $x \in N_{\theta}(A)$ and $\varepsilon \succ 0$. We choose $0<\delta<1$ such that $f(u)<\varepsilon$ for every u with $0 \leq u \leq \delta$. We can write

$$
h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right)=h_{r}^{-1} \sum_{1} f\left(\left|A_{i}(x)-s\right|\right)+h_{r}^{-1} \sum_{2} f\left(\left|A_{i}(x)-s\right|\right)
$$

where the first summation is over $\left|A_{i}(x)-s\right| \leq \delta$ and the second over $\left|A_{i}(x)-s\right| \succ \delta$. By definition of f, we have

$$
h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right) \leq \varepsilon+2 f(1) \delta^{-1} h_{r}^{-1} \sum_{i \in I_{r}}\left|A_{i}(x)-s\right| .
$$

Therefore $x \in N_{\theta}(A, f)$.
Theorem 2. Let f be any modulus. If $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\beta \succ 0$, then $N_{\theta}(A)=$ $N_{\theta}(A, f)$.

Proof. If $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\beta \succ 0$, then $f(t) \geq \beta t$ for all $t \succ 0$. Let $x \in N_{\theta}(A, f)$. Clearly,

$$
h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right) \geq h_{r}^{-1} \sum_{i \in I_{r}} \beta\left|A_{i}(x)-s\right|=\beta h_{r}^{-1} \sum_{i \in I}\left|A_{i}(x)-s\right|,
$$

therefore $x \in N_{\theta}(A)$. By using Theorem 1 the proof is complete.
We now give an example to show that $N_{\theta}(A) \neq N_{\theta}(A, f)$ in the case when $\beta=0$. Consider $A=I$ and the modulus $f(x)=\sqrt{x}$. In the case $\beta=0$, define x_{i} to be h_{r} at the first term in I_{r} for every r and $x_{i}=0$ otherwise. Then we have

$$
h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)\right|\right)=h_{r}^{-1} \sum_{i \in I_{r}} \sqrt{\left|x_{i}\right|}=h_{r}^{-1} \sqrt{\left|h_{r}\right|} \rightarrow 0 \text { as } r \rightarrow \infty
$$

and so $x \in N_{\theta}(A, f)$. But $h_{r}^{-1} \sum_{i \in I_{r}}\left|A_{i}(x)\right|=h_{r}^{-1} \sum_{i \in I_{r}}\left|x_{i}\right|=h_{r}^{-1} h_{r} \rightarrow 1$ as $r \rightarrow \infty$ and so $x \notin N_{\theta}(A)$.

Theorem 3. Let f be any modulus. Then
(i) For $\lim \inf q_{r} \succ 1$ we have $w(A, f) \subseteq N_{\theta}(A, f)$.
(ii) For $\lim \sup q_{r} \prec \infty$ we have $N_{\theta}(A, f) \subseteq w(A, f)$.
(iii) $w(A, f)=N_{\theta}(A, f)$ is $1 \succ \liminf _{r} q_{r} \leq \lim \sup _{r} q_{r} \prec \infty$, where $w(A, f)=\left\{x=\left(x_{i}\right): \lim _{n \rightarrow \infty} n^{-1} \sum_{i=1}^{n} f\left(\left|A_{i}(x)-s\right|\right)=0\right.$ for some $\left.s\right\}$ (see, Esi [3]).

Proof. (i) Let $x \in w(A, f)$ and $\lim \inf q_{r} \succ 1$. There exist $\delta \succ 0$ such that $q_{r}=\left(k_{r} / k_{r-1}\right) \geq 1+\delta$ for sufficiently large r. We have, for sufficiently large r, that $\left(h_{r} / k_{r}\right) \geq \delta /(1+\delta)$ and $\left(k_{r} / h_{r}\right) \leq(1+\delta) / \delta$. Then

$$
\begin{aligned}
k_{r}^{-1} \sum_{i-1}^{k_{r}} f\left(\left|A_{i}(x)-s\right|\right) & \geq k_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right) \\
& =\left(h_{r} / k_{r}\right) h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right) \\
& \geq \delta /(1+\delta) h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right)
\end{aligned}
$$

which yields that $x \in N_{\theta}(A, f)$.
(ii) If $\lim \sup q_{r} \prec \infty$ then there exists $K \succ 0$ such that $q_{r} \prec K$ for every r. Now suppose that $x \in N_{\theta}(A, f)$ and $\varepsilon \succ 0$. There exists m_{0} such that for every $m \geq m_{0}$,

$$
H_{m}=h_{m}^{-1} \sum_{i \in I_{m}} f\left(\left|A_{i}(x)-x\right|\right) \prec \varepsilon .
$$

We can also find $T \succ 0$ such that $H_{m} \leq T$ for all m. Let n be any integer with $k_{r} \geq n \succ k_{r-1}$. Now write

$$
\begin{gathered}
n^{-1} \sum_{i=1}^{n} f\left(\left|A_{i}(x)-s\right|\right) \leq k_{r}^{-1} \sum_{i=1}^{k_{r}} f\left(\left|A_{i}(x)-s\right|\right) \\
=k_{r-1}^{-1}\left(\sum_{m=1}^{m_{0}}+\sum_{m=m_{0}+1}^{k_{r}}\right) \sum_{i \in I_{m}} f\left(\left|A_{i}(x)-s\right|\right) \\
=k_{r-1}^{-1} \sum_{m=1}^{m_{0}} \sum_{i \in I_{m}} f\left(\left|A_{i}(x)-s\right|\right)+k_{r-1}^{-1} \sum_{m=m_{0}+1}^{k_{r}} \sum_{i \in I_{m}} f\left(\left|A_{i}(x)-s\right|\right) \\
\leq k_{r-1}^{-1} \sum_{m=1}^{m_{0}} \sum_{i \in I_{m}} f\left(\left|A_{i}(x)-s\right|\right)+\varepsilon\left(k_{r}-k_{m_{0}}\right) k_{r-1}^{-1} \\
=k_{r-1}^{-1}\left(h_{1} H_{1}+h_{2} H_{2}+\cdots+h_{m_{0}} H_{m_{0}}\right)+\varepsilon\left(k_{r}-k_{m_{0}}\right) k_{r-1}^{-1} \\
\leq k_{r-1}^{-1}\left(\sup _{1 \leq i \leq m_{0}} H_{i} k_{m_{0}}\right)+\varepsilon K \prec k_{r-1}^{-1} k_{m_{0}} T+\varepsilon K
\end{gathered}
$$

from which we deduce that $x \in w(A, f)$. (iii) follows from (i) and (ii).
The next result follows from Theorem 2 and 3 .
Theorem 4. Let f be any modulus. If $\lim _{t \rightarrow \infty} \frac{f(t)}{t}=\beta \succ 0$ and $l \prec$ $\liminf _{r} q_{r} \leq \lim \sup _{r} q_{r} \prec \infty$, then $N_{\theta}(A)=w(A, f)$.

3. Lacunary A-statistical convergence

The notation of statistical convergence was given in earlier works [1], [4], [6], [15] and [16]. Recently, Fridy and Orhan [7] introduced the concept of lacunary statistical convergence:

Let θ be a lacunary sequence. Then a sequence $x=\left(x_{k}\right)$ is said to be lacunary statistically convergent to a number s if for every $\varepsilon \succ 0, \lim _{r \rightarrow \infty} h_{r}^{-1}\left|K_{\theta}(\varepsilon)\right|=0$, where $\left|K_{\theta}(\varepsilon)\right|$ denotes the number of elements in $K_{\theta}(\varepsilon)=\left\{i \in I_{r}:\left|x_{i}-s\right| \geq \varepsilon\right\}$. The set of all lacunary statistical convergent sequences is denoted by S_{θ}.

Let $A=\left(a_{i k}\right)$ be an infinire matrix of complex numbers. Then a sequence $x=\left(x_{k}\right)$ is said to be lacunary A-statistically convergent to a number s if for every $\varepsilon \succ 0, \lim _{r \rightarrow \infty} h_{r}^{-1}\left|K A_{\theta}(\varepsilon)\right|=0$, where $\left|K A_{\theta}(\varepsilon)\right|$ denotes the number of element in $K A_{\theta}(\varepsilon)=\left\{i \in I:\left|A_{i}(x)-s\right| \geq \varepsilon\right\}$. The set of all lacunary A-statistical convergent sequences is denoted by $S_{\theta}(A)$.

The following Theorem gives the relation between of the lacunary A-statistical convergence and lacunary strongly A-convergence.

Let $I_{r}^{1}=\left\{i \in I_{r}:\left|A_{i}(x)-s\right| \geq \varepsilon\right\}=K A_{\theta}(\varepsilon)$ and $I_{r}^{2}=\left\{i \in I_{r}:\left|A_{i}(x)-s\right| \prec\right.$ $\varepsilon\}$.

Theorem 5. Let A be a limitation method, then
(i) $x_{i} \rightarrow s\left(N_{\theta}(A)\right)$ implies $x_{i} \rightarrow s\left(S_{\theta}(A)\right)$.
(ii) x is bounded and $x_{i} \rightarrow s\left(S_{\theta}(A)\right)$ implys $x_{i} \rightarrow s\left(N_{\theta}(A)\right)$.
(iii) $S_{\theta}(A)=N_{\theta}(A)$ is x is bounded.

Proof. (i) If $\varepsilon \succ 0$ and $x_{i} \rightarrow s\left(N_{\theta}(A)\right)$ we can write

$$
h_{r}^{-1} \sum_{i \in I_{r}}\left|A_{i}(x)-s\right| \geq h_{r}^{-1}\left|K A_{\theta}(\varepsilon)\right| \varepsilon .
$$

It follows that $x_{i} \rightarrow s\left(S_{\theta}(A)\right)$. Note that in this part of the proof we do not need the limitation method of A.
(ii) Suppose that x is lacunary A -statistical convergent to s. Since x is bounded and A is limitation method, there is a constant $T>0$ such that $\left|A_{i}(x)-s\right| \leq T$ for all i. Therefore we have, for every $\varepsilon \succ 0$, that
$h_{r}^{-1} \sum_{i \in I_{r}}\left|A_{i}(x)-s\right| \leq h_{r}^{-1} \sum_{i \in I_{r}^{1}}\left|A_{i}(x)-s\right|+h_{r}^{-1} \sum_{i \in I_{r}^{2}}\left|A_{i}(x)-s\right| \leq T h_{r}^{-1}\left|K A_{\theta}(\varepsilon)\right|+\varepsilon$.
Taking the limit as $\varepsilon \rightarrow 0$, the result follows. (iii) follows from (i) and (ii).
Now we give the relation between of the lacunary A-statistical convergence and lacunary strongly A-convergence with respect to modulus.

Theorem 6. (i) For any modulus $f, x_{i} \rightarrow s\left(N_{\theta}(A, f)\right)$ implies $x_{i} \rightarrow$ $s\left(S_{\theta}(A)\right)$.
(ii) f is bounded and $x_{i} \rightarrow s\left(S_{\theta}(A)\right)$ imply $x_{i} \rightarrow s\left(N_{\theta}(A, f)\right)$.
(iii) $S_{\theta}(A)=N_{\theta}(A, f)$ if f is bounded.

Proof. (i) Let f be any modulus. If $\varepsilon \succ 0$ and $x_{i} \rightarrow s\left(N_{\theta}(A, f)\right)$ we can write

$$
h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right) \geq h_{r}^{-1} \sum_{i \in I_{r}^{1}} f\left(\left|A_{i}(x)-s\right|\right) \succ h_{r}^{-1}\left|K A_{\theta}(\varepsilon)\right| f(\varepsilon) .
$$

It follows that $x_{i} \rightarrow s\left(S_{\theta}(A)\right)$.
(ii) Suppose that f is bounded. Since f is bounded, there exists an integer T such that $f(x) \leq T$ for all $x \geq 0$. We see that

$$
\begin{aligned}
h_{r}^{-1} \sum_{i \in I_{r}} f\left(\left|A_{i}(x)-s\right|\right) & \leq h_{r}^{-1} \sum_{i \in I_{r}^{1}} f\left(\left|A_{i}(x)-s\right|\right)+h_{r}^{-1} \sum_{i \in I_{r}^{2}} f\left(\left|A_{i}(x)-s\right|\right) \\
& \leq T h_{r}^{-1}\left|K A_{\theta}(\varepsilon)\right|+f(\varepsilon)
\end{aligned}
$$

Since f is continuous and $x_{i} \rightarrow s\left(S_{\theta}(A)\right)$, it follows from $\varepsilon \rightarrow 0$ that $x_{i} \rightarrow$ $s\left(N_{\theta}(A, f)\right)$. (ii) follows from (i) and (ii).

As an example to show that $S_{\theta}(A) \neq N_{\theta}(A, f)$ when f is unbounded, consider $A=I$. Since f is unbounded, there exists a positive sequence $0 \prec y_{1} \prec y_{2} \prec \ldots$ such that $f\left(y_{i}\right) \geq h_{i}$. Define the sequence $x=\left(x_{i}\right)$ by putting $x_{k_{i}}=y_{i}$ for $i=1,2, \ldots$ and $x_{i}=0$ otherwise. We have $x \in S_{\theta}(A)$, but $x \notin N_{\theta}(A, f)$.

Finally we consider the case when $x_{k} \rightarrow s$ implies $x_{k} \rightarrow s\left(N_{\theta}(A, f)\right)$.
Lemma 7. ([6]) If $\lim \inf q_{r} \succ 1$ then $x_{i} \rightarrow s(S)$ implies $x_{i} \rightarrow s\left(S_{\theta}\right)$.

Theorem 8. Let $\lim \inf q_{r} \succ 1, A$ is regular and f is bounded. Then $x_{i} \rightarrow s$ implies $x_{i} \rightarrow s\left(N_{\theta}(A, f)\right)$.

Proof. Let $x_{i} \rightarrow s$. By regularity of A and definition of statistical convergence we have $A_{i}(x) \rightarrow s(S)$. Since $\liminf q_{r} \succ 1$ it follows lemma 7 that $A_{i}(x) \rightarrow s\left(S_{\theta}\right)$ i.e. $x_{i} \rightarrow s\left(S_{\theta}(A)\right)$. Thus, using Theorem 6 , we have $x_{i} \rightarrow s\left(N_{\theta}(A, f)\right)$.

References

[1] Connor, J.S., The statisical and strong p-Cesaro convergence of sequences, Analysis, 8(1988), 47-63.
[2] Connor, J.S., On strong matrix summalibity with respect to a modulus and statistical convergence, Canad. Math. Bull. 32(1989), 194-198.
[3] Esi, A., The A-statistical and strongly (A-p)-Cesaro convergence of sequences, Pure and Appl. Math. Sci., Vol.XLIII, No.1-2(1996), 89-93.
[4] Fast, H., Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
[5] Freedman, A.R., Sember, J.J., Raphel, M., Some Cesaro-type summability spaces, Proc. London Math. Soc. 37(3)(1978), 508-520.
[6] Frydy, J., On statistical convergence, Analysis, 5(1985), 301-313.
[7] Frydy, J., Orhanc, C., Lacunary statistical convergence, Pacific J. Math. 160(1993), 45-51.
[8] Kolk, E., On strong boundedness and summability with respect to a sequence moduli, Tartu Ül. Toimetised 960(1993), 41-50.
[9] Maddox, I.J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc. 100(1986), 161-166.
[10] Maddox, I.J., Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Camb. Phil. Soc., 101(1987), 523-527.
[11] Nakano, H., Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[12] Öztürk, E., Bilgin, T., Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 25(6)(1994), 621-625.
[13] Pehlivan, S., Fisher, B., On some sequence spaces, Indian J. Pure Appl. Math. 25(10)(1994), 1067-1071.
[14] Ruckle, W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[15] Salat, T., On statistically convergent sequences of real numbers, Math. Slovaca, 2(1980), 139-150.
[16] Schoenberg, I.J., The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(1959), 261-375.

Department of Mathematics, University of 100.Yil, Van Turkey

