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A STUDY OF FUNCTORS ASSOCIATED
WITH TOPOLOGICAL GROUPS

AVISHEK ADHIKARI AND P.K. RANA

Abstract. The aim of this paper is to construct functors associated with

topological groups as well as to investigate these functors. More precisely,

we prove that for a given topological groups G there always exists a con-

travariant functor F (G) from the homotopy category of pointed topological

spaces and homotopy classes of base point preserving continuous maps to

the category of groups and homomorphisms. We also prove that

(i) the functor F (G) is natural in G in the sense that if the topo-

logical groups G and H have the same homotopy type then the groups

F (G)(X) and F (H)(X) are isomorphic, for every pointed topological space

X; and

(ii) the functor F (G) is homotopy type invariant in the sense that

if X and Y are two pointed spaces having the same homotopy type then

the groups F (G)(X) are F (G)(Y ) are isomorphic.

Moreover, given two topological groups G and H and a contin-

uous homomorphism α : G → H, we show that there always exists a

natural transformation between the functors F (G) and F (H) associated

with topological groups G and H respectively.

1. Introduction

Throughout this paper we assume that (X, x0) is pointed topological space

and maps are base point preserving continuous maps. For simplicity, we write X in

place of (X, x0).

Now we recall following definitions and statements:

Definition 1.1. A pointed topological space is a nonempty topological space

with a distinguished element.
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Definition 1.2. A pointed topological group is a group G whose underlying

set is equipped with a topology such that:

(i) The multiplication map µ : G×G → G, given by (x, y) 7→ xy, is continuous

if G×G has the product topology;

(ii) The inversion map i : G → G, given by x 7→ x−1, is continuous.

Then (G, e) is a pointed topological space where e is the identity element.

Definition 1.3. Let A ⊂ X and let f0, f1 : X → Y be base point preserving

continuous maps with f0|A = f1|A. We write f0 ' f1rel.A, if there is a continuous

map F : X × I → Y with F : f0 ' f1 and F (a, t) = f0(a) = f1(a), ∀ a ∈ A and all

t ∈ I. Such a map F is called a homotopy relative to A from f0 and f1 and is denoted

by F : f0 ' f1rel.A.

Definition 1.4. If f : X → Y is base point preserving continuous maps, its

homotopy class is the equivalence class [f ] = {g ∈ C(X, Y ) : f ' g}, where C(X, Y )

denotes the set all base point preserving continuous maps from X to Y .

The family of all such homotopy classes is denoted by [X;Y ].

Definition 1.5. A base point preserving continuous map f : X → Y is a

homotopy equivalence if there is a base point preserving continuous map g : Y → X

with g ◦ f ' IX and f ◦ g ' IY . Two spaces X and Y have the same homotopy type

denoted by X ≈ Y if there is a homotopy equivalence f : X → Y .

Definition 1.6. A category C consists of

(a) a class of objects X, Y, Z, . . . denoted by Ob(C);

(b) for each ordered pair of objects X, Y a set of morphisms with domain X

and range Y denoted by C(X, Y );

(c) for each ordered triple of objects X, Y and Z and a pair of morphisms

f : X → Y and g : Y → Z, their composite is denoted by gf : X → Z, satisfying the

following two axioms:

(i) associativity: if f ∈ C(X, Y ), g ∈ C(Y, Z) and h ∈ C(Z,W ), then h(gf) =

(hg)f ∈ C(X, W );

(ii) identity: for each object Y in C there is a morphism IY ∈ C(Y, Y ) such

that if f ∈ C(X, Y ), then IY f = f and if h ∈ C(Y, Z), then hIY = h.
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Definition 1.7. Let C and D be categories. A contravariant functor T from

C to D consists of

(i) an object function which assigns to every object X of C an object T (X)

of D; and

(ii) a morphism function which assigns to every morphism f : X → Y in C,

a morphism T (f) : T (Y ) → T (X) in D such that

(a) T (IX) = IT (X);

(b) T (gf) = T (f)T (g), for g : Y → W in C.

Definition 1.8. Let C and D be categories. Suppose T1 and T2 are both

contravariant functors from C and D. A natural transformation φ from T1 to T2 is a

function from the objects of C to the morphisms of D such that for every morphism

f : X → Y in C the following condition hold:

φ(X)T1(f) = T2(f)φ(Y ).

Lemma 1.9. Homotopy is an equivalence relation on the set C(X, Y ) of all

base point preserving continuous maps from X to Y .

Lemma 1.10. Let fi : X → Y and gi : Y → Z, for i = 0, 1, be continuous.

If f0 ' f1 and g0 ' g1, then g0 ◦ f0 ' g1 ◦ f1; that is [g0 ◦ f0] = [g1 ◦ f1].

In section 2, we construct and investigate functors associated with topological

groups.

2. Functors associated with topological groups

We now construct functors associated with topological groups.

Let (X, x0) be a topological space with base point x0 and (G, e) be a topolog-

ical group with identity e and f : X → G be a continuous map such that f(x0) = e.

Now we construct the set M = set of all base preserving continuous maps

from (X, x0) to (G, e).

Then we have the following Proposition:

Proposition 2.1. Let (X, x0) be a pointed topological space. The set M

of all base point preserving continuous maps from X to G, forms a group under the
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composition ’�’ on M defined by

(f1�f2)(x) = f1(x) · f2(x), ∀ x ∈ X, f1, f2 ∈ M,

where the right hand side multiplication ’·’ is the multiplication defined on the topo-

logical group G.

Proof. First we show that M is nonempty.

Let C : X → G be defined by C(x) = e, ∀ x ∈ X. Then C is a constant map

such that C ∈ M ⇒ M 6= ∅.

Let f1, f2 ∈ M . Then

(f1�f2)(x0) = f1(x0) · f2(x0) = e · e = e,

by definition.

Thus f1�f2 is a base preserving map. Since G be a topological group and

the map, M ×M → M ,

(f1, f2) 7→ f1�f2, ∀ f1, f2 ∈ M,

is continuous and hence f1�f2 is a base point preserving continuous map from X to

G. Hence f1�f2 ∈ M .

Let f1, f2, f3 ∈ M . Then

((f1�f2)�f3)(x) = (f1�f2)(x) · f3(x) =

= (f1(x) · f2(x)) · f3(x) == f1(x) · (f2(x) · f3(x)) =

= f1(x) · (f2�f3)(x) = (f1�(f2�f3))(x).

Thus ((f1�f2)�f3)(x) = (f1�(f2�f3))(x), ∀ x ∈ X.

Hence (f1�f2)�f3 = f1�(f2�f3).

⇒ ’�’ associative.

Now

(f1�C)(x) = f1(x) · C(x) = f1(x) · e = f1(x)

and

(C�f1)(x) = C(x)f1(x) = e · f1(x) = f1(x).
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Thus (f1�C)(x) = (C�f1)(x), ∀ x ∈ X ⇒ f1�C = C�f1.

⇒ C is a identity map from X to G.

Since C is a base point preserving continuous map from X to G and hence

C ∈ M .

Let f1, f2 ∈ M such that (f1�f2)(x) = C(x)

⇒ f1(x) · f2(x) = C(x) ⇒ f1(x) · f2(x) = e.

Also f2(x) · f1(x) = e.

Thus f1(x) · f2(x) = f2(x) · f1(x) = e i.e.

(f1�f2)(x) = (f2�f1)(x) = e, ∀ x ∈ X.

This shows that for each base point preserving continuous map there exists

its inverse in M and hence (M,�) is a group.

We now carries over the composition ’�’ on M to give an operation ’∗’ on

homotopy classes such that

[f ] ∗ [g] = [f�g], ∀ f, g ∈ M

where f�g is defined in Proposition 2.1.

Theorem 2.2. If X be a pointed topological space and G is a topological

group with base point e, then [X;G] is a group.

Proof. Let X be an arbitrary pointed topological space and G be a topolog-

ical group.

Let [X;G] = set of all homotopy classes of base point preserving continuous

maps from X to G i.e. [X;G] = {[f ] such that f : X → G is a base point preserving

continuous map}.

Now we define a composition ’∗’ on [X;G] by the rule:

[f ] ∗ [g] = [f�g], ∀ f, g ∈ M.

f1 ∈ [f ] and g1 ∈ [g] ⇒ f1 ' f and g1 ' g respectively.

⇒ f1�g1 ' f�g, as the composite of two homotopic maps are homotopic.

⇒ [f1�g1] = [f�g], by Lemma 1.10.
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⇒ [f1] ∗ [g1] = [f ] ∗ [g] ⇒ ’∗’ is well defined.

Then by using proposition 2.1, [X;G] is a group under the composition ’∗’.

Theorem 2.3. If f : X → Y is a base point preserving continuous map,

then f induces a homomorphism f∗ : [Y ;G] → [X;G], for each topological group G.

Proof. Define f∗ : [Y ;G] → [X;G] by

f∗([h]) = [h ◦ f ], ∀ [h] ∈ [Y ;G].

h0, h1 : Y → G and h0 ' h1 ⇒ h0 ◦ f ' h1 ◦ f ⇒ [h0 ◦ f ] = [h1 ◦ f ], by

Lemma 1.10 i.e. [h0] = [h1] ⇒ f∗([h0]) = f∗([h1]). ⇒ This map is well defined.

Let [h1], [h2] ∈ [Y ;G].

Now f∗([h1] ∗ [h2]) = f∗([h1�h2]) = [(h1�h2] ◦ f ], by definition. Thus ∀ x ∈

X,

[((h1�h2) ◦ f)(x)] = [(h1�h2)(f(x))] = [h1(f(x)) · h2(f(x))],

by definition of the product in [Y ;G]

= [(h1 ◦ f)(x) · (h2 ◦ f)(x)] = [((h1 ◦ f)�(h2 ◦ f))(x)]

⇒ [(h1�h2) ◦ f ] = [(h1 ◦ f)�(h2 ◦ f)] = [h1 ◦ f ] ∗ [h2 ◦ f ]

= f∗([h1] ∗ f∗([h2]).

Thus f∗([h1] ∗ [h2]) = f∗([h1]) ∗ f∗([h2]) ⇒ f∗ is a group homomorphism.

Theorem 2.4. Let α : G → H is a continuous group homomorphism between

topological groups, then α induces a group homomorphism, α∗ : [X;G] → [X;H].

Proof. Define α∗ : [X;G] → [X;H] by

α∗([f ]) = [α ◦ f ], ∀ f : X → G.

Let f1, f2 : X → G and f1 ' f2 ⇒ α ◦ f1 ' α ◦ f2 i.e. [f1] = [f2] ⇒

[α ◦ f1] = [α ◦ f2] ⇒ α∗([f1]) = α∗([f2]).

Thus this map is well defined.

Let [f1], [f2] ∈ [X;G].

Then α∗([f1] ∗ [f2]) = α∗[(f1�f2)] = [α ◦ (f1�f2)], by definition.
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Thus ∀ x ∈ X,

[(α ◦ (f1�f2))(x)] = [α((f1�f2)(x))] = [α(f1(x) · f2(x))]

= [α(f1(x)) · α(f2(x))] = [(α ◦ f1)(x) · (α ◦ f2)(x)] = [((α ◦ f1)�(α ◦ f2))(x)]

⇒ [α ◦ (f1�f2)] = [(α ◦ f1)�(α ◦ f2)] = [α ◦ f1] ∗ [α ◦ f2] = α∗([f1]) ∗ α∗([f2]).

Thus α∗([f1] ∗ [f2]) = α∗([f1]) ∗ α∗([f2]) ⇒ α∗ is a group homomorphism.

Let Htp denote the category of pointed topological spaces and homotopy

classes of their base point preserving continuous maps and Grp be the category of

groups and their homomorphisms. Then we have the following theorems:

Theorem 2.5. For a given topological group G, there exists a contravariant

functor

F (G) : Htp → Grp.

Proof. Using Theorems 2.2-2.3, define F (G)(X) = [X;G] which is a group

and also for α : X → Y in Htp, α∗ = F (G)(α) : [Y,G] → [X;G] by

α∗([g]) = [g ◦ α], ∀ [g] ∈ [Y ;G].

Let α : X → Y and β : Y → Z be base point preserving continuous maps,

then β ◦ α : X → Z is also a base point preserving continuous map.

Thus (β ◦ α)∗ = F (G)(β ◦ α) : [Z;G] → [X;G] by

(β ◦ α)∗([g]) = [g ◦ (β ◦ α)], ∀ [g] ∈ [Z;G].

Thus ∀ x ∈ X,

[(g ◦ (β ◦ α))(x)] = [g((β ◦ α)(x))]

= [g(β(α(x)))] = [(g ◦ β)(α(x))] = [((g ◦ β) ◦ α)(x)]

⇒ [g ◦ (β ◦ α)] = [(g ◦ β) ◦ α] = α∗([(g ◦ β)]) = α∗(β∗([g])) = (α∗ ◦ β∗)([g]).

Thus ∀ [g] ∈ [Z;G], (β ◦ α)∗ = α∗ ◦ β∗.
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Also, for identity map IX : X → X, I∗X = F (G)(IX) : [X;G] → [X;G]

defined by

I∗X([g]) = [g ◦ IX ] = [g].

Hence F (G) is a contravariant functor.

Given topological groups G and H, ∃ two contravariant functors F (G) and

F (H). Then F (G) and F (H) have the following relation:

Theorem 2.6. Given topological groups G, H and a continuous homomor-

phism α : G → H there exists a natural transformation

α∗ : F (G) → F (H).

Proof. For [g] ∈ [Y ;G] and f : X → Y ,

F (H)(f)(α∗([g])) = F (H)(f)([α ◦ g]) = [(α ◦ g) ◦ f ]

i.e. f∗(α∗([g])) = [(α ◦ g) ◦ f ] ⇒ (f∗ ◦ α∗)([g]) = [(α ◦ g) ◦ f ] and

α∗(f∗([g])) = α∗([g ◦ f ]) = [α ◦ (g ◦ f)]

i.e. (α∗ ◦ f∗)([g]) = [α ◦ (g ◦ f)].

Thus f∗ ◦ α∗ = α∗ ◦ f∗ ⇒ α∗ is a natural transformation.

Lemma 2.7. If two topological groups G and H have the same homotopy

type, then the homotpy equivalence is a homomorphism.

Proof. Since G and H have the same homotopy type then there exist con-

tinuous maps f : G → H, g : H → G such that f(e) = e′, g(e′) = e, g ◦ f ' IG and

f ◦ g ' IH , where IG : G → G and IH : H → H are identity maps. Then f and g are

both homotopy equivalences.

Since G and H are topological groups, ∃ continuous multiplications µ : G ×

G → G and µ′ : H ×H → H such that the square
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G×G
µ - G

H ×H

f × f

?

µ′
- H

f

?

is commutative i.e. µ′ ◦ (f × f) = f ◦ µ.

Now (f ◦ µ)(x, y) = f(µ(x, y)) = f(xy) and

(µ′ ◦ (f × f))(x, y) = µ′((f × f)(x, y))

= µ′(f(x), f(y)) = f(x) · f(y).

Thus f(xy) = f(x) · f(y), ∀ x, y ∈ G ⇒ f is a homomorphism.

Also, g is a homomorphism.

Thus we prove that the homotopy equivalences f and g are continuous group

homomorphisms from G to H and H to G respectively.

Theorem 2.8. If two topological groups G and H are such that G and H have

the same homotopy type, then the groups F (G)(X) and F (H)(X) are isomorphic, for

every pointed topological space X.

Proof. Since the topological groups G and H have the same homotopy type,

then there exist base point preserving continuous maps f : G → H, g : H → G such

that g ◦ f ' IG and f ◦ g ' IH , where IG : G → G and IH : H → H are identity

maps.

Let f∗ : F (G)(X) → F (H)(X) be defined by

f∗([α]) = [f ◦ α], ∀ [α] ∈ F (G)(X).

Using Theorem 2.4 and Lemma 2.7, f∗ is a homomorphism from F (G)(X) to

F (H)(X).

Then f∗ satisfies the following properties:

(i) if f ' g ⇒ f∗ = g∗;

(ii) IG : G → G ⇒ IG∗ = IdF (G)(X);
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(iii) (g ◦ f)∗ = g∗ ◦ f∗

for (g ◦ f)∗ : F (G)(X) → F (G)(X) defined by

(g ◦ f)∗([α]) = [(g ◦ f) ◦ α], ∀ [α] ∈ F (G)(X)

= [g ◦ (f ◦ α)] = g∗([f ◦ α]) = g∗(f∗([α])) = (g∗ ◦ f∗)([α]).

Thus ∀ [α] ∈ F (G)(X), (g ◦ f)∗ = g∗ ◦ f∗.

Since g ◦ f ' IG, we have (g ◦ f)∗ = IG∗, by (i) ⇒ g∗ ◦ f∗ = IdF (G)(X), by

(ii) and (iii) i.e. g∗ ◦ f∗ = Id.

Again since f ◦ g ' IH , we have similarly

f∗ ◦ g∗ = Id.

Since f∗ is a homomorphism and g∗ ◦ f∗ = Id ⇒ f∗ is a monomorphism.

Again since f∗ is a homomorphism and g∗ ◦ f∗ = Id ⇒ f∗ is a epimorphism. Thus

f∗ is an isomorphism and g∗ as its inverse.

Therefore the groups F (G)(X) and F (H)(X) are isomorphic.

Lemma 2.9. Let G be a topological group and X, Y be two pointed topolog-

ical spaces such that X and Y belong to the same homotopy type. Then the groups

F (G)(X) and F (G)(Y ) are isomorphic, where F (G) is a contravariant functor from

Htp to Grp given in Theorem 2.5.

Proof. Let X, Y be two pointed topological spaces having the same homo-

topy type, then ∃ base point preserving continuous maps f : X → Y and g : Y → X

such that f ◦ g ' IY and g ◦ f ' IX , where IX : X → X and IY : Y → Y are identity

maps.

Define f∗ : F (G)(Y ) → F (G)(X) by

g∗([α]) = [α ◦ f ], ∀ [α] ∈ F (G)(Y ).

Using Theorem 2.3 and Theorem 2.5, f∗ is a homomorphism from F (G)(Y )

to F (G)(X).

Then f∗ satisfies the following properties:

(i) if f ' g ⇒ f∗ = g∗;
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(ii) IX : X → X ⇒ I∗X = IdF (G)(X),

for I∗X : F (G)(X) → F (G)(X) defined by

I∗X([α]) = [α ◦ IX ] = [α], ∀ [α] ∈ F (G)(X)

i.e. I∗X = IdF (G)(X)

(iii) (g ◦ f)∗ = f∗ ◦ g∗,

for (g ◦ f)∗ : F (G)(X) → F (G)(X), defined by

(g ◦ f)∗([α]) = [α ◦ (g ◦ f)], ∀ [α] ∈ F (G)(X) = [(α ◦ g) ◦ f ] =

= f∗([α ◦ g]) = f∗(g∗([α])) = (f∗ ◦ g∗)([α]).

Thus ∀ [α] ∈ F (G)(X), (g ◦ f)∗ = f∗ ◦ g∗.

Since g ◦ f ' IX , we have (g ◦ f)∗ = I∗X , by (i) ⇒ f∗ ◦ g∗ = IdF (G)(X), by

(ii) and (iii) i.e. f∗ ◦ g∗ = Id.

Again since f ◦ g ' IY , we have similarly

g∗ ◦ f∗ = Id.

Since f∗ is a homomorphism and g∗ ◦ f∗ = Id ⇒ f∗ is a monomorphism.

Again since f∗ is a homomorphism and f∗ ◦g∗ = Id ⇒ f∗ is a epimorphism.

Therefore f∗ is an isomorphism and g∗ as its inverse.

Thus the groups F (G)(X) and F (G)(Y ) are isomorphic.

Theorem 2.10. For a given topological group G there always exists a con-

travariant functor F (G) : Htp → Grp such that F (G) is homotopy type invariant.

Proof. Using Lemma 2.9, it follows that F (G) is a homotopy type invariant

functor in th sense that if X and Y are the same homotopy type then the groups

F (G)(X) and D(G)(Y ) are isomorphic.
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