A GENERALIZED INVERSION FORMULA AND SOME APPLICATIONS

EMIL O. BURTON

Abstract

In this paper we shall establish a general result involving Dirichlet product of arithmetical functions, which provides information on the subtle properties of the integers.

1. Introduction and preliminaries

The Möbius function $\mu(n)$ is defined as follows:

$$
\mu(1)=1, \quad \mu\left(q_{1} \cdot q_{2} \cdots q_{k}\right)=(-1)^{k}
$$

if all the primes $q_{1}, q_{2}, \ldots, q_{k}$ are different; $\mu(n)=0$ if n has a squared factor. The Möbius inversion formula is a remarkable tool in numerous problems involving integers and there are other inversion formulas involving $\mu(n)$. In particular, we obtain the following well-known theorem:

If

$$
G(x)=\sum_{n=1}^{\lfloor x\rfloor} F\left(\frac{x}{n}\right)
$$

for all positive $x,(x \geq 1)$, then

$$
F(x)=\sum_{n=1}^{\lfloor x\rfloor} \mu(n) G\left(\frac{x}{n}\right)
$$

and conversely.
Many of these inversion formulas can be written in the form of a single formula which generalizes them all

2. The main result

First of all, we establish the following theorem:

EMIL O. BURTON

Theorem 1. Given arithmetical functions $\alpha, \beta, u: \mathbb{N}^{*} \rightarrow \mathbb{C}$ such that

$$
\alpha * \beta=u, \quad u(n)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n \geq 2\end{cases}
$$

let $h: A \times \mathbb{N}^{*} \rightarrow A$ be a function, such that:
a) $h(x, 1)=x$ for all $x \in A$, where $A \subset \mathbb{C}, A \neq \emptyset$.
b) $h(h(x, n), k)$ is constant for x constant and $n k=$ constant, where $x \in A$ and $n, k \in \mathbb{N}^{*}$.

Let $F, G: \mathbb{C} \rightarrow \mathbb{C}$ be functions such that $F(x)=G(x)=0$ for all $x \in \mathbb{C} \backslash A$. Suppose that the both series:

$$
\sum_{n, k \in \mathbb{N}^{*}} \alpha(n) \beta(k) G(h(h(x, n), k)), \quad \sum_{n, k \in \mathbb{N}^{*}} \beta(n) \alpha(k) F(h(h(x, n), k))
$$

converge absolutely.
Then, for all $x \in A$, we have

$$
\begin{equation*}
F(x)=\sum_{n \in \mathbb{N}^{*}} \beta(n) G(h(x, n)) \tag{1}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
G(x)=\sum_{n \in \mathbb{N}^{*}} \alpha(n) F(h(x, n)) . \tag{2}
\end{equation*}
$$

Proof. Suppose that (1) is true. It follows that

$$
\begin{aligned}
& \sum_{n \in \mathbb{N}^{*}} \alpha(n) F(h(x, n))=\sum_{n \in \mathbb{N}^{*}} \alpha(n) \sum_{k \in \mathbb{N}^{*}} \beta(k) G(h(h(x, n), k))= \\
&=\sum_{n \in \mathbb{N}^{*}} \sum_{k \in \mathbb{N}^{*}} \alpha(n) \beta(k) G(h(h(x, n), k)) .
\end{aligned}
$$

An absolutely convergent series can be rearranged in an arbitrary way without affecting the sum. We have

$$
\alpha(1) \beta(1)=1, \quad G(h(h(x, 1), 1))=G(h(x, 1))=G(x) .
$$

We can arrange the terms as follows:

$$
\sum_{\substack{n, k, d \in \mathbb{N}^{*} \\ n k=d \neq 1}} \alpha(n) \beta(k) G(h(h(x, n), k))=\sum_{d \in \mathbb{N}^{*}, d \neq 1} G(h(h(x, n), k)) \sum_{\substack{n, k \in \mathbb{N}^{*} \\ n k=d, d \neq 1}} \alpha(n) \beta(k)=0,
$$

because $\alpha * \beta=u$.

Therefore

$$
\sum_{n \in \mathbb{N}^{*}} \alpha(n) F(h(x, n))=G(x) .
$$

Conversely, (2) implies (1) and hence the theorem is proved.

3. Examples

1) Letting $A=[0, \infty), h: A \times \mathbb{N}^{*} \rightarrow A$,

$$
\begin{gathered}
h(x, n)=\frac{x}{n}, \quad h(x, 1)=\frac{x}{1}=x \text { for all } x \in A \\
h(h(x, n), k)=h\left(\frac{x}{n}, k\right)=\frac{x}{n k}=\mathrm{constant}
\end{gathered}
$$

for $n k=$ constant and $x=$ constant .
Consider the mappings $F, G:[0, \infty) \rightarrow \mathbb{C}$ such that $F(x)=G(x)=0$ for all $x \in[0,1)$. We deduce from theorem 1 , that

$$
F(x)=\sum_{n \leq x} \beta(n) G\left(\frac{x}{n}\right)
$$

and

$$
G(x)=\sum_{n \leq x} \alpha(n) F\left(\frac{x}{n}\right)
$$

are equivalent. Moreover, if we let $\alpha(n)=1$ for all $n \in \mathbb{N}^{*}$, we deduce that

$$
F(x)=\sum_{n \leq x} \mu(n) G\left(\frac{x}{n}\right)
$$

and

$$
G(x)=\sum_{n \leq x} F\left(\frac{x}{n}\right)
$$

are equivalent for all positive $x,(x \geq 1)$.
2) Let us denote by $\bar{P}(x)$ the number of the integers $k \in \mathbb{N}^{*}$ such that $k \leq x$, $k \neq a^{b}$ for all $a, b \in \mathbb{N}^{*}, b \geq 2$. It is known that

$$
\sum_{2^{n} \leq x} \bar{P}\left(x^{1 / n}\right)=\lfloor x-1\rfloor .
$$

We deduce from theorem 1 that

$$
\sum_{2^{n} \leq x} \mu(n)\left\lfloor x^{1 / n}-1\right\rfloor=\bar{P}(x) .
$$

EMIL O. BURTON

3) The number $Q(x)$ of squarefree numbers not exceeding x satisfies

$$
\sum_{x / n^{2} \geq 1} Q\left(x / n^{2}\right)=\lfloor x\rfloor .
$$

If we use theorem 1 , we have

$$
\sum_{x / n^{2} \geq 1} \mu(n)\left\lfloor\frac{x}{n^{2}}\right\rfloor=Q(x)
$$

4) If $|z|<1$, we have

$$
\frac{z}{1-z}=\sum_{n \in \mathbb{N}^{*}} z^{n} .
$$

Letting $A=U(0,1), h(z, n)=z^{n}, F(z)=z, G(z)=\frac{z}{1-z}, \alpha(n)=1$, $\beta(n)=\mu(n)$ for all $n \in \mathbb{N}^{*}$, we have:

$$
\begin{gathered}
\sum_{n, k \in \mathbb{N}^{*}} \beta(n) \alpha(k) F(h(h(z, n), k))=\sum_{n, k \in \mathbb{N}^{*}} \mu(n) z^{n k} \\
\sum_{\substack{n, k, d \in \mathbb{N}^{*} \\
n k=d=c o n s t}}\left|\mu(n) z^{n k}\right| \leq \sum_{\substack{n, k, d \in \mathbb{N}^{*} \\
n k=d=c o n s t}}\left|z^{n k}\right|=\sum_{d \in \mathbb{N}^{*}} \sum_{n k=d}|z|^{n k} \leq \sum_{d \in \mathbb{N}^{*}} d|z|^{d}
\end{gathered}
$$

(because $\sum_{n k=d}|z|^{n k} \leq d|z|^{d}$).
It is possible to apply Cauchy's test:

$$
\lim _{d \rightarrow \infty} \sqrt[d]{d|z|^{d}}=\lim _{d \rightarrow \infty} \sqrt[d]{d} \cdot|z|=|z|<1
$$

It follows that series $\sum_{n, k \in \mathbb{N}^{*}} \beta(n) \alpha(k) F(h(h(z, n), k))$ converges absolutely for all $z \in U(0,1)$. We can also show that $\sum_{n, k \in \mathbb{N}^{*}} \alpha(n) \beta(k) G(h(h(z, n), k))$ converges absolutely. We deduce from theorem 1 that

$$
\frac{z}{1-z}=\sum_{n \in \mathbb{N}^{*}} z^{n}
$$

and

$$
z=\sum_{n \in \mathbb{N}^{*}} \mu(n) \frac{z^{n}}{1-z^{n}}
$$

are equivalent for all $z \in U(0,1)$.

References

[1] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, Clarendon Press, 1984.
[2] H.M. Stark, An introduction to number theory, Chicago, Markham, 1970.
[3] K. Prachar, Primzahlverteilung, Berlin, Springer, 1957.
[4] E. Burton, On some convergent series, Smarandache Function Journal, Number Theory Publishing, Vol.7/1996.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

