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SOME HOMEOMORPHISM THEOREMS

FLORICA ALDEA

Abstract. In this paper we give homeomorfism result for operators that

satisfies Borsuk condition.

1. Introduction

Let X be a Banach space and f : X → X be an operator such that Ff 6= ∅.

There are many papers in which using the fixed point theory we obtain the surjectivity

of 1X − f (see: Aldea [1, 2], Browder [4], Danes [8], Danes-Kolomy [9], Deimling [10],

Rus [14, 15, 16].

The aim of this paper is to give an answer to the following question. What conditions

must satisfy f such that 1X − f be a homeomorphism?

Rus proved in [15] that if f is a ϕ contraction then 1X − f is a homeomorphism. In

order to prove this he used a bijectivity and a data dependence results.

Also, it is possible to obtain homeomorphism result using domain invariance

result respective closing range theorem (see: Cramer-Ray [6], Crandall-Pazzy [7],

Dowing-Kirk [11], Zeidler [17]).

Following a similar technique we will give an answer to the mention question in case

that operator f satisfy Borsuk condition.

Definition 1.1. Let X be a Banach space and f : X → X an operator. We say that

f satisfies Borsuk condition (shortly (B)), if there exists η > 0 and ε > 0 such that

for all x1, x2 ∈ X, inequality

||f(x1)− f(x2)|| < η
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implies

||x1 − x2|| < ε.

Now we will give some operators’ classes which satisfy (B) condition.

Remark 1.1. LetX be a Banach space. If f : X → X is near identity (in Campanato

sense [5]), then f satisfies condition (B).

Proof. Because f is near 1X there exists constants λ, k ∈ (0, 1) such that

||x1 − x2 − λ(f(x1)− f(x2))|| ≤ k · ||x1 − x2||, for all x1, x2 ∈ X

(1)

or

(1− k)||x1 − x2|| ≤ λ||f(x1)− f(x2)||, for all x1, x2 ∈ X.

So there are η > 0 and ε

(
=

λ

1− k
η

)
> 0 such that from ||f(x1) − f(x2)|| < η we

have ||x1 − x2|| < ε. We obtain that f verifies condition (B).

Remark 1.2. Let X be Banach space. If f : X → X is dilatation, then f satisfies

(B) condition.

Proof. Because f is dilatation there exists c > 1 such that

c||x1 − x2|| ≤ ||f(x1)− f(x2)||, for all x1, x2 ∈ X

So there are η > 0 and ε
(
=
η

c

)
> 0 such that from ||f(x1) − f(x2)|| < η we have

||x1 − x2|| < ε. We obtain that f verifies condition (B).

Remark 1.3. Let X Banach space. If f : X → X is strong accretive, then f satisfies

condition (B).

Proof. Because f is strong accretive there is k > 1 such that

k||x1 − x2|| ≤ ||f(x1)− f(x2)||, for all x1, x2 ∈ X

So there are η > 0 and ε
(
=
η

k

)
> 0 such that from ||f(x1) − f(x2)|| < η we have

||x1 − x2|| < ε. We obtain that f verifies (B) condition.

Definition 1.2. (Rus, [15]) A function ϕ : R+ → R+ is a comparison function if ϕ

is increasing and ϕn(t) → 0 when n→∞ for all t ∈ R+.
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2. Main result

In what follows, we solve the problem for case of an operator which is sum of

two operators and one of them satisfies condition (B).

Theorem 2.1. (Granas, [12]) Let X be a Banach space and operator F : X → X

be a complete continuous . If operator f : X → X satisfies condition (B) (with

f(x) = x− F (x) for all x ∈ X), then f is surjective.

Theorem 2.2. Let X be a Banach space, F, L : X → X be two continuous operators

with F compact and functions ϕ, ψ : [0,∞) → [0,∞). Suppose that:

(i)

ϕ(||x1 − x2||) ≤ ||f(x1)− f(x2)|| (2)

for all x1, x2 ∈ X with f(x) = 1X(x)− F (x), for all x ∈ X;

(ii)

||L(x1)− L(x2)|| ≤ ψ(||x1 − x2||) (3)

for all x1, x2 ∈ X;

(iii) ϕ(0) = 0, ϕ bijective and ϕ−1 comparison function;

(iv) ψ(0) = 0 and ψ comparison function.

Then 1X − f is bijective.

Proof. First, we prove that FF+L = ∅. In order to apply Theorem 2.1 we will prove

that f verifies condition (B). Let x1, x2 from X such that ||f(x1)−f(x2)|| < η. From

(2) and ϕ bijective we have

ϕ(||x1 − x2||) ≤ ||f(x1)− f(x2)|| < η

||x1 − x2|| ≤ ϕ−1(η) < ϕ−1(η) + 1 = ε

so f verifies condition (B).

From Theorem 2.1 we have that f is surjective. From (2) and (iii) we obtain that

f is injective. Operator f is continuous from hypothesis and continuity of inverse

operator results from inequality (2); so f is homeomorphism.

Let x ∈ X, because f is homeomorphism we define operator

R : X → X; x 7−→ R(x)
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such that

f(R(x)) = L(x) for all x ∈ X.

From (2) and (3) we have that

ϕ(||R(x1)−R(x2)||) ≤ ||f(R(x1))− f(R(x2))|| = ||L(x1)− L(x2)||

≤ ψ(||x1 − x2||)

for all x1, x2 ∈ X. Because ϕ is invertible

||R(x1)−R(x2)|| ≤ (ϕ−1 ◦ ψ)(||x1 − x2||) (4)

for all x1, x2 ∈ X.

Because ϕ−1, ψ are comparison functions we obtain that

||R(x1)−R(x2)|| ≤ ϕ−1(||x1 − x2||) (5)

for all x1, x2 ∈ X. But ϕ−1 is comparison function. From the last statement and (4)

we apply fixed point theorem for ϕ-contractions (see Rus [16]) we have FR = {x∗}.

From the definition of R results

(1X − F )(x∗) = L(x∗) ⇐⇒ FF+L = {x∗}.

Second, we prove that 1X − (F + L) is bijective.

Let y ∈ X.We denote by Ly operator L+y. It is easy to prove that operator Ly verifies

inequality (3), so applying first part of our proof we have that FF+Ly
= {x∗} ⇐⇒

equation F (x) + L(x) + y = x has only one solution. So 1X − (F + L) is bijective.

Theorem 2.3. If we add to the hypotheses of Theorem 2.2 the following:

(v) ϕ(t) ≥ ψ(t) for all t ≥ 0;

(vi) there is the inverse of 1[0,∞) − (ϕ−1 ◦ ψ) and it is continuous.

Then 1X − (F + L) is homeomorphism.

Proof. From Theorem 2.2 we have that operator 1X−(F +G) is bijective, continuity

of its results from the continuity of F and L.

Let xi the unique solution of equations x− F (x)− L(x) = yi, for i = 1, 2.
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From (2) and (3) we have

ϕ(||x1 − x2||) ≤ ||f(x1)− f(x2)|| = ||L(x1)− L(x2) + y1 − y2||

≤ ||L(x1)− L(x2)||+ ||y1 − y2||

≤ ψ(||x1 − x2||) + ||y1 − y2|| =⇒

From (iii) resuts

||x1 − x2|| ≤ (ϕ−1 ◦ ψ)(||x1 − x2||) + ϕ−1(||y1 − y2||)

≤ (ϕ−1 ◦ ψ)(||x1 − x2||) + ||y1 − y2||) ⇐⇒

(1[0,∞) − (ϕ−1 ◦ ψ))(||x1 − x2||) ≤ ||y1 − y2|| =⇒

||x1 − x2|| ≤ (1[0,∞) − (ϕ−1 ◦ ψ))−1(||y1 − y2||) (6)

From last inequality and (vi) we have that

||(1X − (F +L))−1(y1)− (1X − (F +L))−1(y2)|| ≤ (1[0,∞)− (ϕ−1 ◦ψ))−1(||y1− y2||)

Which means that (1X − (F + L))−1 is continuous operator, so 1X − (F + L) home-

omorphism.

Remark 2.1. If X is finite dimensional Banach space, then Theorems 2.1, 2.2 are

true without assumption of compactness on operator F .

Theorem 2.4. (Altman, [3]) Let X be a finite dimensional Banach space, F, L :

X → X two continuous operators and constants c > 0 and k > 0. Suppose that:

(i)

c · ||x1 − x2|| ≤ ||f(x1)− f(x2)|| (7)

for all x1, x2 ∈ X with f(x) = 1X(x)− F (x), for all x ∈ X;

(ii)

||L(x1)− L(x2)|| ≤ k · ||x1 − x2|| (8)

for all x1, x2 ∈ X;

(iii)

K < c.

Then

(a) FF+L = {x∗};
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(b) 1X − (F + L) : X → X is homeomorphism;

(c) Operator (1X − (F + L))−1 : X → X is Lipschitz continuous.

Proof. In order to prove theorem, we apply Theorem 2.2 and 2.3 considering ϕ(t) =

c · t with c > 1 and ψ(t) = k · t with k < 1.

These functions verify assumption (i)-(v) from mentioned theorems.

Function (1[0,∞) − (ϕ−1 ◦ ψ))(t) =
c− k

c
t verifies (vi).

Conclusion (c) of Altman’s theorem results from inequality (6).

References

[1] F. Aldea, Surjectivity via fixed point structures, Seminar on Fixed Point Theory ”Babeş-
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