SOME HOMEOMORPHISM THEOREMS

FLORICA ALDEA

Abstract

In this paper we give homeomorfism result for operators that satisfies Borsuk condition.

1. Introduction

Let X be a Banach space and $f: X \rightarrow X$ be an operator such that $F_{f} \neq \emptyset$. There are many papers in which using the fixed point theory we obtain the surjectivity of $\mathbf{1}_{X}-f$ (see: Aldea [1, 2], Browder [4], Danes [8], Danes-Kolomy [9], Deimling [10], Rus [14, 15, 16].
The aim of this paper is to give an answer to the following question. What conditions must satisfy f such that $\mathbf{1}_{X}-f$ be a homeomorphism?

Rus proved in [15] that if f is a φ contraction then $\mathbf{1}_{X}-f$ is a homeomorphism. In order to prove this he used a bijectivity and a data dependence results.

Also, it is possible to obtain homeomorphism result using domain invariance result respective closing range theorem (see: Cramer-Ray [6], Crandall-Pazzy [7], Dowing-Kirk [11], Zeidler [17]).

Following a similar technique we will give an answer to the mention question in case that operator f satisfy Borsuk condition.

Definition 1.1. Let X be a Banach space and $f: X \rightarrow X$ an operator. We say that f satisfies Borsuk condition (shortly (B)), if there exists $\eta>0$ and $\varepsilon>0$ such that for all $x_{1}, x_{2} \in X$, inequality

$$
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<\eta
$$

1991 Mathematics Subject Classification. 47H10.
Key words and phrases. homeomorphism, fixed points, Borsuk condition.

```
FLORICA ALDEA
```

implies

$$
\left\|x_{1}-x_{2}\right\|<\varepsilon
$$

Now we will give some operators' classes which satisfy (B) condition.
Remark 1.1. Let X be a Banach space. If $f: X \rightarrow X$ is near identity (in Campanato sense [5]), then f satisfies condition (B).
Proof. Because f is near $\mathbf{1}_{X}$ there exists constants $\lambda, k \in(0,1)$ such that

$$
\begin{equation*}
\left\|x_{1}-x_{2}-\lambda\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right\| \leq k \cdot\left\|x_{1}-x_{2}\right\|, \text { for all } x_{1}, x_{2} \in X \tag{1}
\end{equation*}
$$

or

$$
(1-k)\left\|x_{1}-x_{2}\right\| \leq \lambda\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|, \text { for all } x_{1}, x_{2} \in X
$$

So there are $\eta>0$ and $\varepsilon\left(=\frac{\lambda}{1-k} \eta\right)>0$ such that from $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<\eta$ we have $\left\|x_{1}-x_{2}\right\|<\varepsilon$. We obtain that f verifies condition (B).

Remark 1.2. Let X be Banach space. If $f: X \rightarrow X$ is dilatation, then f satisfies (B) condition.

Proof. Because f is dilatation there exists $c>1$ such that

$$
c\left\|x_{1}-x_{2}\right\| \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|, \text { for all } x_{1}, x_{2} \in X
$$

So there are $\eta>0$ and $\varepsilon\left(=\frac{\eta}{c}\right)>0$ such that from $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<\eta$ we have $\left\|x_{1}-x_{2}\right\|<\varepsilon$. We obtain that f verifies condition (B).

Remark 1.3. Let X Banach space. If $f: X \rightarrow X$ is strong accretive, then f satisfies condition (B).
Proof. Because f is strong accretive there is $k>1$ such that

$$
k\left\|x_{1}-x_{2}\right\| \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|, \text { for all } x_{1}, x_{2} \in X
$$

So there are $\eta>0$ and $\varepsilon\left(=\frac{\eta}{k}\right)>0$ such that from $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<\eta$ we have $\left\|x_{1}-x_{2}\right\|<\varepsilon$. We obtain that f verifies (B) condition.

Definition 1.2. (Rus, [15]) A function $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a comparison function if φ is increasing and $\varphi^{n}(t) \rightarrow 0$ when $n \rightarrow \infty$ for all $t \in \mathbb{R}_{+}$.

2. Main result

In what follows, we solve the problem for case of an operator which is sum of two operators and one of them satisfies condition (B).

Theorem 2.1. (Granas, [12]) Let X be a Banach space and operator $F: X \rightarrow X$ be a complete continuous. If operator $f: X \rightarrow X$ satisfies condition (B) (with $f(x)=x-F(x)$ for all $x \in X)$, then f is surjective.
Theorem 2.2. Let X be a Banach space, $F, L: X \rightarrow X$ be two continuous operators with F compact and functions $\varphi, \psi:[0, \infty) \rightarrow[0, \infty)$. Suppose that:
(i)

$$
\begin{equation*}
\varphi\left(\left\|x_{1}-x_{2}\right\|\right) \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \tag{2}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$ with $f(x)=\mathbf{1}_{X}(x)-F(x)$, for all $x \in X$;
(ii)

$$
\begin{equation*}
\left\|L\left(x_{1}\right)-L\left(x_{2}\right)\right\| \leq \psi\left(\left\|x_{1}-x_{2}\right\|\right) \tag{3}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$;
(iii) $\varphi(0)=0, \varphi$ bijective and φ^{-1} comparison function;
(iv) $\psi(0)=0$ and ψ comparison function.

Then $\mathbf{1}_{X}-f$ is bijective.
Proof. First, we prove that $F_{F+L}=\emptyset$. In order to apply Theorem 2.1 we will prove that f verifies condition (B). Let x_{1}, x_{2} from X such that $\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<\eta$. From (2) and φ bijective we have

$$
\begin{aligned}
\varphi\left(\left\|x_{1}-x_{2}\right\|\right) & \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|<\eta \\
\left\|x_{1}-x_{2}\right\| & \leq \varphi^{-1}(\eta)<\varphi^{-1}(\eta)+1=\varepsilon
\end{aligned}
$$

so f verifies condition (B).
From Theorem 2.1 we have that f is surjective. From (2) and (iii) we obtain that f is injective. Operator f is continuous from hypothesis and continuity of inverse operator results from inequality (2); so f is homeomorphism.

Let $x \in X$, because f is homeomorphism we define operator

$$
R: X \rightarrow X ; x \longmapsto R(x)
$$

FLORICA ALDEA

such that

$$
f(R(x))=L(x) \text { for all } x \in X
$$

From (2) and (3) we have that

$$
\begin{aligned}
\varphi\left(\left\|R\left(x_{1}\right)-R\left(x_{2}\right)\right\|\right) & \leq\left\|f\left(R\left(x_{1}\right)\right)-f\left(R\left(x_{2}\right)\right)\right\|=\left\|L\left(x_{1}\right)-L\left(x_{2}\right)\right\| \\
& \leq \psi\left(\left\|x_{1}-x_{2}\right\|\right)
\end{aligned}
$$

for all $x_{1}, x_{2} \in X$. Because φ is invertible

$$
\begin{equation*}
\left\|R\left(x_{1}\right)-R\left(x_{2}\right)\right\| \leq\left(\varphi^{-1} \circ \psi\right)\left(\left\|x_{1}-x_{2}\right\|\right) \tag{4}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$.
Because φ^{-1}, ψ are comparison functions we obtain that

$$
\begin{equation*}
\left\|R\left(x_{1}\right)-R\left(x_{2}\right)\right\| \leq \varphi^{-1}\left(\left\|x_{1}-x_{2}\right\|\right) \tag{5}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$. But φ^{-1} is comparison function. From the last statement and (4) we apply fixed point theorem for φ-contractions (see Rus [16]) we have $F_{R}=\left\{x^{*}\right\}$. From the definition of R results

$$
\left(\mathbf{1}_{X}-F\right)\left(x^{*}\right)=L\left(x^{*}\right) \Longleftrightarrow F_{F+L}=\left\{x^{*}\right\}
$$

Second, we prove that $\mathbf{1}_{X}-(F+L)$ is bijective.
Let $y \in X$. We denote by L_{y} operator $L+y$. It is easy to prove that operator L_{y} verifies inequality (3), so applying first part of our proof we have that $F_{F+L_{y}}=\left\{x^{*}\right\} \Longleftrightarrow$ equation $F(x)+L(x)+y=x$ has only one solution. So $\mathbf{1}_{X}-(F+L)$ is bijective.
Theorem 2.3. If we add to the hypotheses of Theorem 2.2 the following:
(v) $\varphi(t) \geq \psi(t)$ for all $t \geq 0$;
(vi) there is the inverse of $\mathbf{1}_{[0, \infty)}-\left(\varphi^{-1} \circ \psi\right)$ and it is continuous.

Then $\mathbf{1}_{X}-(F+L)$ is homeomorphism.
Proof. From Theorem 2.2 we have that operator $\mathbf{1}_{X}-(F+G)$ is bijective, continuity of its results from the continuity of F and L.
Let x_{i} the unique solution of equations $x-F(x)-L(x)=y_{i}$, for $i=1,2$.

From (2) and (3) we have

$$
\begin{aligned}
\varphi\left(\left\|x_{1}-x_{2}\right\|\right) & \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|=\left\|L\left(x_{1}\right)-L\left(x_{2}\right)+y_{1}-y_{2}\right\| \\
& \leq\left\|L\left(x_{1}\right)-L\left(x_{2}\right)\right\|+\left\|y_{1}-y_{2}\right\| \\
& \leq \psi\left(\left\|x_{1}-x_{2}\right\|\right)+\left\|y_{1}-y_{2}\right\| \Longrightarrow
\end{aligned}
$$

From (iii) resuts

$$
\begin{align*}
\left\|x_{1}-x_{2}\right\| & \leq\left(\varphi^{-1} \circ \psi\right)\left(\left\|x_{1}-x_{2}\right\|\right)+\varphi^{-1}\left(\left\|y_{1}-y_{2}\right\|\right) \\
& \left.\leq\left(\varphi^{-1} \circ \psi\right)\left(\left\|x_{1}-x_{2}\right\|\right)+\left\|y_{1}-y_{2}\right\|\right) \Longleftrightarrow \\
\left(\mathbf{1}_{[0, \infty)}-\left(\varphi^{-1} \circ \psi\right)\right)\left(\left\|x_{1}-x_{2}\right\|\right) & \leq\left\|y_{1}-y_{2}\right\| \Longrightarrow \\
\left\|x_{1}-x_{2}\right\| & \leq\left(\mathbf{1}_{[0, \infty)}-\left(\varphi^{-1} \circ \psi\right)\right)^{-1}\left(\left\|y_{1}-y_{2}\right\|\right) \tag{6}
\end{align*}
$$

From last inequality and (vi) we have that
$\left\|\left(\mathbf{1}_{X}-(F+L)\right)^{-1}\left(y_{1}\right)-\left(\mathbf{1}_{X}-(F+L)\right)^{-1}\left(y_{2}\right)\right\| \leq\left(\mathbf{1}_{[0, \infty)}-\left(\varphi^{-1} \circ \psi\right)\right)^{-1}\left(\left\|y_{1}-y_{2}\right\|\right)$
Which means that $\left(\mathbf{1}_{X}-(F+L)\right)^{-1}$ is continuous operator, so $\mathbf{1}_{X}-(F+L)$ homeomorphism.

Remark 2.1. If X is finite dimensional Banach space, then Theorems 2.1, 2.2 are true without assumption of compactness on operator F.

Theorem 2.4. (Altman, [3]) Let X be a finite dimensional Banach space, F, L : $X \rightarrow X$ two continuous operators and constants $c>0$ and $k>0$. Suppose that:
(i)

$$
\begin{equation*}
c \cdot\left\|x_{1}-x_{2}\right\| \leq\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \tag{7}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$ with $f(x)=\mathbf{1}_{X}(x)-F(x)$, for all $x \in X$;
(ii)

$$
\begin{equation*}
\left\|L\left(x_{1}\right)-L\left(x_{2}\right)\right\| \leq k \cdot\left\|x_{1}-x_{2}\right\| \tag{8}
\end{equation*}
$$

for all $x_{1}, x_{2} \in X$;
(iii)

$$
K<c
$$

Then
(a) $F_{F+L}=\left\{x^{*}\right\}$;
(b) $\mathbf{1}_{X}-(F+L): X \rightarrow X$ is homeomorphism;
(c) Operator $\left(\mathbf{1}_{X}-(F+L)\right)^{-1}: X \rightarrow X$ is Lipschitz continuous.

Proof. In order to prove theorem, we apply Theorem 2.2 and 2.3 considering $\varphi(t)=$ $c \cdot t$ with $c>1$ and $\psi(t)=k \cdot t$ with $k<1$.

These functions verify assumption (i)-(v) from mentioned theorems.
Function $\left(\mathbf{1}_{[0, \infty)}-\left(\varphi^{-1} \circ \psi\right)\right)(t)=\frac{c-k}{c} t$ verifies (vi).
Conclusion (c) of Altman's theorem results from inequality (6).

References

[1] F. Aldea, Surjectivity via fixed point structures, Seminar on Fixed Point Theory "BabeşBolyai" Univ., 1997, 9-14.
[2] F. Aldea, Surjectivity theorems for normcontraction operators, to appear in Mathematica.
[3] M. Altman, Dilating mappings, implicit functions and fixed point theorems in finitedimensional, Fundamenta Matematicae, LXVIII(1970), 129-141.
[4] F.Browder, Fixed Point Theory and Nonlinear Problems, Bull. Amer. Math. Soc., 9(1983), 1-39.
[5] S. Campanato, A Cordes type condition for nonlinear and variational systems, Rend. Acad. Naz. Sci., 107(1989), 307-321.
[6] W.J. Cramer, W.O. Ray, Solvability of nonlinear operator equations, Pacific J. Math., 95(1981), 37-50.
[7] M. Crandall, A. Pazzy, On the range of accretive operators, Israel J. Math., 27(1977), 235-246.
[8] J. Danes, Surjectivity and fixed point theorems, C. M. U. C., 13(1972), 181-184.
[9] J. Danes, J. Kolomy, Fixed points, surjectivity and invariance of domain theorems for weakly continuous mappings, Boll. U.M.I., 5 (1976), 369-394.
[10] K.Deimling, Nonlinear Functional Analysis, Springer-Verlag, 1985.
[11] D. Dowing, W. Kirk, A generalization of Caristi theorem with application to nonlinear mappings theory, Pacific J. Math., 69(1977), 339-349.
[12] A. Granas, Uber ein Satz von K. Borsuk, Bull. Acad. Polon. Sci., 5(1957), 595-562.
[13] S. Kasahara, Surjectivity and fixed point of nonlinear mappings, Math. Sem. Notes, 2 (1974), 119-126.
[14] I. A. Rus, Generalized contraction, Seminar on fixed point theory, "Babeş-Bolyai" Univ., 1983, 1-131.
[15] I. A. Rus, Ecuaţii diferenţiale, ecuaţii integrale şi sisteme dinamice, Transilvania Press, 1996.
[16] I. A. Rus, Contractii generalizate, to appear.
[17] E. Zeidler, Nonlinear functional analysis and this applications. I. Fixed point theorems, Springer, 1990.

Babeg-Bolyai University, Department of Applied Mathematics, Str. M. Kogalniceanu 1, 3400 Cluj-Napoca, Romania
E-mail address: aldea@math.ubbcluj.ro

