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KELVIN-HELMHOLTZ INSTABILITY OF RIVLIN-ERICKSEN
VISCOELASTIC FLUID IN POROUS MEDIUM

R.C. SHARMA, SUNIL, AND SURESH CHAND

Abstract. Kelvin-Helmholtz instability of Rivlin-Ericksen elastico-

viscous fluid in porous medium is considered. The case of two uniform

streaming fluids separated by a horizontal boundary is considered. It

is found that for the special case when perturbations in the direction of

streaming are ignored, perturbation transverse to the direction of stream-

ing are found to be unnafected by the presence of streaming. In every

other direction, a minimum value of wave-number has been found and the

system is unstable for all wave-numbers greater than this minimum wave

number.

1. Introduction

When two superposed fluids flow one over the other with a relative hor-

izontal velocity, the instability of the plane interface between the two fluids, when it

occurs in this instance, is known as ’Kelvin-Helmholtz instability’. The instability of

the plane interface separating two uniform superposed streaming fluids, under varying

assumptions of hydrodynamics, has been discussed in the celebrated monograph by

Chandrasekhar [1]. The experimental observation of the Kelvin-Helmholtz instability

has been given by Francis [2]. The medium has been assumed to be non-porous.

With the growing importance of viscoelastic fluids in modern technology and

industries and the investigations on such fluids are desirable. The Rivlin-Ericksen

fluid is one such viscoelastic fluid. Many research workers have paid their attention

towards the study of Rivlin-Ericksen fluid. Johri [3] has discussed the viscoelastic

Rivlin-Ericksen incompressible fluid under time-dependent pressure gradient. Sisodia

and Gupta [4] and Srivastava and Singh [5] have studied the unsteady flow of a dusty
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elastico-viscous Rivlin-Ericksen fluid through channel of different cross-sections in the

present of the time dependent pressure gradient. Recently, Sharma and Kumar [6]

have studied the thermal instability of a layer of Rivlin-Ericksen elastico-viscous fluid

acted on by a uniform rotation and found that rotation has a stabilizing effect and

introduces oscillatory modes in the system.

The flow through a porous medium has been of considerable interest in recent

years particularly among geophysical fluid dynamicists. An example in the geophys-

ical context is the recovery of crude oil from the pores of reservoir rocks. A great

number of applications in geophysics may be found in a recent book by Phillips [7].

The gross effect when the fluid slowly percolates through the pores of the rock is

given by Darcy’s law. As a result, the usual viscous term in the equation of motion of

Rivlin-Ericksen fluid is replaced by the resistance term
[
− 1

k1

(
µ + µ′

∂

∂t

)
−→q

]
, where

µ and µ′ are the viscosity and viscoelasticity of the Rivlin-Ericksen fluid, k1 is the

medium permeability and −→q is the Darcian (filter) velocity of the fluid. Generally,

it is accepted that comets consists of a dusty ’snowball’ of a mixture of frozen gases

which, in the process of their journey, changes from solid to gas and vice-versa. The

physical properties of comets, meteorites and interplanetary dust strongly suggest the

importance of porosity in astrophysical contex (McDonnel [8]). The instability of the

plane interface between two uniform superposed and streaming fluids through porous

medium has been investigated by Sharma and Spanos [9]. More recently, Sharma et

al. [10] have studied the thermosolutal convection in Rivlin-Ericksen fluid in porous

medium in the presence of uniform vertical magnetic field.

Keeping in mind the importance of non-Newtonian fluids in modern tech-

nology and industries and various applications mentioned above, Kelvin-Helmholtz

instability of Rivlin-Ericksen viscoelastic fluid in porous medium has been considered

in the present paper.

2. Formulation of the problem and perturbation equations

The initial stationary state, whose stability we wish to examine is that of

an incompressible elastico-viscous Rivlin-Ericksen fluid in which there is a horizontal

streaming in the x-direction with velocity U(z) through a homogeneous, isotropic

porous medium. The character of the equilibrium of this initial state is determined
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by supposing that the system is slightly disturbed and then following its further

evolution.

Let p, ρ, g, v, v′,−→q (U(z), 0, 0) denote, respectively, the pressure, density, ac-

celeration due to gravity, kinematic viscosity, kinematic viscolasticity, and velocity of

Rivlin-Ericksen viscoelastic fluid. This fluid layer is assumed to be flowing through

an isotropic and homogeneous porous medium of porosity ε and medium permeability

k1 and interfacial tension effect is ignored. Then the equations of motion, continuity

and incompressibility for the Rivlin-Ericksen elastico-viscous fluid through a porous

medium are given by

ρ

ε

[
∂−→q
∂t

+
1
ε
(−→q · ∇)−→q

]
= −∇p + ρ−→g − ρ

k1

(
v + v′

∂

∂t

)
−→q , (1)

∇ · −→q = 0, (2)

ε
∂ρ

∂t
+ (−→q · ∇)ρ = 0. (3)

Let δp, δρ and −→u (u, v, w) denote the perturbations in pressure p, density ρ

and velocity −→q (U(z), 0, 0) respectively. Then, the linearized perturbation equations

of fluid layer become

ρ

ε

[
∂−→u
∂t

+
1
ε
(−→q · ∇)−→u +

1
ε
(−→u · ∇)−→q î

]
= −∇δp +−→g δp− ρ

k1

(
v + v′

∂

∂t

)
−→u , (4)

∇ · −→u = 0, (5)[
ε

∂

∂t
+ (−→q · ∇)

]
δp = −w

dρ

dz
. (6)

Analyzing the disturbances into normal modes, we seek solutions whose de-

pendence on x, y and t is of the form

exp[i(kxx + kyy + nt)], (7)

where n is the growth rate, k = (k2
x + k2

y)1/2 is the resultant wave number and kx, ky

are horizontal wave numbers.

Substituting for δρ, Eq.(4) with the help of Eqs.(5),(6) and expression (7)

yields[
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

]
−→u +

ρ

ε2
w(DU )̂i = −∇δp + i−→g w(Dρ)

εn + kxU
, (8)

where î is unit vector in the x-direction and D = d/dz.
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Writing the three component equations of (8) and eliminating u, v and δp

with the help of (5), we obtain

D

[{
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

}
Dw − ikxρ

ε2
(DU)w

]
−

−k2

[
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

]
w = igk2(Dρ)

w

εn + kxU
. (9)

3. Two uniform streaming fluids separated by a horizontal boundary

Consider the case when two superposed streaming fluids of uniform den-

sities ρ1 and ρ2, uniform viscosities µ1 and µ2 and uniform viscoelasticities µ′1 and µ′2

are separated by a horizontal boundary at z = 0. The subscript 1 and 2 distinguish

the lower and the upper fluids respectively.

The density ρ2 of the upper fluid is taken to be less than the density ρ1 of

the lower fluid so that, in the absence of streaming, the configuration is stable, and

the porous medium throughout is assumed to be isotropic and homogeneous. Let the

two fluids be streaming with constant velocities U1 and U2. Then in each of the two

regions of constant ρ, µ, µ′ and U , Eq.(9) reduces to

(D2 − k2)w = 0. (10)

The boundary conditions to be satisfied here are:

(a) Since U is discontinuous at z = 0, the uniqueness of the normal displace-

ment of any point on the interface, according to Eq.(8), implies that

w

εn + kxU
, (11)

must be continuous at an interface.

(b) Integrating Eq.(9) between 0−η and 0+η and passing to the limit η = 0,

we obtain, in view of (11), the jump condition

∆0

[{
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

}
Dw − ikxρ

ε2
(DU)w

]
= igk2∆0(ρ)

(
w

εn + kxU

)
0

(12)

(for z = 0) while the equation valid everywhere else (z 6= 0) is

D

[{
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

}
Dw − ikxρ

ε2
(DU)w

]
−
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−k2

[
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

]
w = igk2(Dρ)

w

εn + kxU
. (13)

Here ∆0(f) = f(z0 + 0)− f(z0− 0) is the jump which a quantity experiences

at the interface z = z0; and the subscript 0 distinguish the value a quantity, known

to be continuous at an interface, takes at the interface z = z0.

The general solution of Eq.(10) is a linear combination of the integrals e+kz

and e−kz. Since
w

εn + kxU
must be continuous on the surface z = 0 and w cannot

increase exponentially on either side of the interface, the solutions appropriate for two

regions are

w1 = A(εn + kxU1)e+kz, (z < 0) (14)

w2 = A(εn + kxU2)e−kz, (z > 0). (15)

Applying the boundary condition (12) to the solutions (14)-(15), we obtain

the dispersion relation [
1 +

ε

k1
(α1v

′
1 + α2v

′
2)

]
n2+

+
[
2kx

ε
(α1U1 + α2U2) +

kx

k1
(α1v

′
1U1 + α2v

′
2U2)−

iε

k1
(α1v1 + α2v2)

]
n+

+
[
k2

ε2
(α1U

2
1 + α2U

2
2 )− ikx

k1
(α1v1U1 + α2v2U2)− gk(α1 − α2)

]
= 0, (16)

where

α1,2 =
ρ1,2

ρ1 + ρ2
, v1,2 =

µ1,2

ρ1,2
, v′1,2 =

µ′1,2

ρ1,2
.

v1

(
=

µ1

ρ1

)
, v′1

(
=

µ′1
ρ1

)
, v2

(
=

µ2

ρ2

)
and v′2

(
=

µ′2
ρ2

)
are the kinematic viscosities and

kinematic viscoelasticities of the lower and upper fluids respectively.

Equation (16) yields

in = −
[
+

ε

k1
(α1v1 + α2v2) +

2ikx

ε
(α1U1 + α2U2) +

ikx

k1
(α1v

′
1U1 + α2v

′
2U2)

]
±

±

{[
ε

k1
(α1v1 + α2v2)

]2

− 4ikxα1α2

k1
(v1 − v2)(U1 − U2)+

+
4k2

xα1α2

εk1
(v′2U1 − v′1U2)(U1 − U2)−

2iεkx

k2
1

[(α2
1v1v

′
1U1 + α2

2v2v
′
2U2)+

+α1α2(v1v
′
2U1 + v′1v2U2) + α1α2(U1 − U2)(v1v

′
2 − v′1v2)]+

+
[
kx

k1
(α1v

′
1U1 + α2v

′
2U2)

]2

+
4α1α2k

2
x

ε2
(U1 − U2)2−
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−4gk(α1 − α2)
[
1 +

ε

k1
(α1v

′
1 + α2v

′
2)

]} 1
2

. (17)

Some cases of interest are now considered.

(a) When kx = 0, equation (17) yields

in = − ε

k1
(α1v1 + α2v2)±

{[
ε

k1
(α1v1 + α2v2)

]2

−

−4gk(α1 − α2)
[
1 +

ε

k1
(α1v

′
1 + α2v

′
2)

]} 1
2

. (18)

Here we assume kinematic viscosities v1, v2 and kinematic viscoelasticities

v′1, v
′
2 of the two fluids to be equal i.e., v1 = v2 = v, v′1 = v′2 = v′. However, any of

the essential features of the problem are not obscured by this simplifying assumption.

Eq.(18), then, becomes

in = −εv

k1
±

[(
εv

k1

)2

+ 4gk(α2 − α1)
{

1 +
εv′

k1

}] 1
2

. (19)

(i) Unstable case

For the potentially unstable configuration (ρ2 > ρ1), it is evident from Eq.(19)

that one of the values of in is positive which means that the perturbations grow with

time and so the system is unstable.

(ii) Stable case

For the potentially stable configuration (ρ2 < ρ1), Eq.(19) yields that both

the values of in are either real, negative or complex conjugates with negative real

parts implying stability of the system.

It is interesting to note from above that for the special case when pertur-

bations in the direction of streaming are ignored (kx = 0), the system is unstable

for potentially unstable configuration and the system is stable for potentially stable

configuration and not depending upon kinematic viscoelasticity, medium porosity and

medium permeability. This is in contrast to the case of Walters’ viscoelastic fluid B′,

where the system can be stable or unstable depending upon kinematic viscoelaticity,

medium porosity and medium permeability (Sharma et al. [11]).

It is also clear from Eq.(18), that for the special case when perturbations in

the direction of streaming are ignored (kx = 0), the perturbation transverse to the

direction of streaming (ky 6= 0) are unaffected by the presence of streaming.
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(b) In every other direction, instability occurs when

α1α2k
2
x

ε2
(U1 − U2)2 > gk(α1 − α2). (20)

The kinematic viscosities v1 and v2 and the kinematic viscoelasticies v′1 and

v′2 of two fluids here are assumed to be equal (let v1 = v2 = v, v′1 = v′2 = v′), but this

simplifying assumption does not obscure any of the essential features of the problem.

Thus for a given difference in velocity (U1 − U2) and for a given direction of

the wave-vector
−→
k , instability occurs for all wave numbers.

k >

[
gε2(α1 − α2)

α1α2(U1 − U2)2 cos2 θ

]
, (21)

where θ is the angle between the direction of
−→
k (kx, ky, 0) and

−→
U (U, 0, 0), i.e. kx =

k cos θ. Hence, for a given velocity differences (U1 − U2), instability occurs for the

least wave number when
−→
k is in the direction of

−→
U and this minimum wave number;

kmin, is given by

kmin =
[

gε2(α1 − α2)
α1α2(U1 − U2)2

]
. (22)

For k > kmin, the system is unstable.
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