PROJECTORS WITH RESPECT TO SOME SPECIAL SCHUNCK CLASSES

RODICA COVACI

Abstract. Let π be a set of primes and π' the complement to π in the set of all primes. The paper deals with establishing the projectors with respect to some special Schunck classes: the class \underline{S}_{π} of all solvable π -groups, the class \underline{N} of all finite nilpotent groups and the class $\underline{G}_{\pi'}$ of all π' -groups. A new proof is given for some of W. Gaschütz's results from [7] which show that, in any finite solvable group, the \underline{S}_{π} -projectors are the Hall π -subgroups and the \underline{N} -projectors are the Carter subgroups. Finally, we prove that, in any finite π -solvable group, the $\underline{G}_{\pi'}$ -covering subgroups are exactly the Hall π' -subgroups. Hence, we deduce that, in any finite π -solvable group, the Hall π' -subgroups.

1. Preliminaries

All groups considered in the paper are finite. We denote by π an arbitrary set of primes and by π' the complement to π in the set of all primes.

We remind some useful definitions:

Definition 1.1. a) We call \underline{X} a class of groups if:

 $(1) \{1\} \in \underline{X};$

(2) if $G \in \underline{X}$ and f is an isomorphism of G then $f(G) \in \underline{X}$.

b) A class \underline{X} of groups is a homomorph if \underline{X} is closed under homomorphisms,

i.e. if $G \in \underline{X}$ and N is a normal subgroup of G then $G/N \in \underline{X}$.

c) A group G is primitive if there is a maximal subgroup W of G with

$$core_G W = \{1\},\$$

where

$$core_G W = \cap \{ W^g / g \in G \}.$$

 $1991\ Mathematics\ Subject\ Classification.\ 20 D10.$

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases.}\$ solvable groups, Schunck class, projector.

d) A homomorph \underline{X} is a Schunck class if \underline{X} is primitively closed, i.e. if any group G, all of whose primitive factor groups are in \underline{X} , is itself in \underline{X} .

Definition 1.2. Let \underline{X} be a class of groups, G a group and $H \leq G$.

a) H is <u>X</u>-maximal in G if:

(1) $H \in \underline{X};$

(2) $H \le K \le G, \ K \in \underline{X} \Rightarrow H = K.$

b) H is an <u>X</u>-projector of G if for any normal subgroup N of G, HN/N is <u>X</u>-maximal in G/N.

- c) H is an <u>X</u>-covering subgroup of G if:
- (1) $H \in \underline{X};$
- (2) $H \leq K \leq G, \ K_0 \leq K, \ K/K_0 \in \underline{X} \Rightarrow K = HK_0.$

Definition 1.3. a) A group G is π -solvable if any chief factor of G is either a solvable π -group or a π' -group. If π is the set of all primes, we obtain the notion of solvable group.

b) A class \underline{X} of groups is π -closed if:

$$G/O_{\pi'}(G) \in \underline{X} \Rightarrow G \in \underline{X},$$

where $O_{\pi'}(G)$ denotes the largest normal π' -subgroup of G. We shall call π -homomorph, respectively π -Schunck class a π -closed homomorph, respectively a π -closed Schunck class.

Theorem 1.4. ([6]) Let \underline{X} be a homomorph, G a group and $H \leq K \leq G$. If H is an \underline{X} -covering subgroup of G, then H is an \underline{X} -covering subgroup of K.

The connection between the special subgroups introduced above is given in [7] and in [4] and is resumed in the following theorem:

Theorem 1.5. a) Let \underline{X} be a class of groups, G a group and H a subgroup of G. If H is an \underline{X} -covering subgroup or an \underline{X} -projector of G then H is \underline{X} -maximal in G.

b) Let \underline{X} be a homomorph, G a group and H a subgroup of G. H is an \underline{X} -covering subgroup of G is and only if H is an \underline{X} -projector in any subgroup K with $H \leq K \leq G$. Particularly, any \underline{X} -covering subgroup of G is an \underline{X} -projector of G.

c) Let \underline{X} be a Schunck class, G a finite solvable group, S and \underline{X} -projector of G and $S \leq H \leq G$. Then S is an \underline{X} -projector in H. 22 PROJECTORS WITH RESPECT TO SOME SPECIAL SCHUNCK CLASSES

d) Let \underline{X} be a Schunck class, G a finite solvable group and S a subgroup of G. The following conditions are equivalent:

(1) S is an \underline{X} -projector of G;

(2) S is an \underline{X} -covering subgroup of G.

The following properties of projectors are also of special interest for this paper:

Theorem 1.6. ([7]) Let \underline{X} be a homomorph, G a group and $H \leq G$.

a) H is an \underline{X} -projector of G is and only if:

(1) H is <u>X</u>-maximal in G;

(2) for any minimal normal subgroup M of G, HM/M is an <u>X</u>-projector in G/M.

b) If H is an <u>X</u>-projector of G and N is a normal subgroup of G, then HN/N is an <u>X</u>-projector of G/N. This property holds for <u>X</u>-covering subgroups too.

Theorem 1.7. ([7]) Let \underline{X} be a Schunck class, G a solvable group and B a normal abelian subgroup of G. If:

(1) SB/B is an <u>X</u>-projector of G/B;

(2) S is <u>X</u>-maximal in SB,

then S is an \underline{X} -projector of G.

In [2], [3] and [4], we established for finite π -solvable groups the following result:

Theorem 1.8. ([2]) Let \underline{X} be a π -homomorph.

a) \underline{X} is a Schunck class if and only if any π -solvable group has \underline{X} -covering subgroups.

b) Any two <u>X</u>-covering subgroups of a π -solvable group G are conjugate in G.

Theorem 1.9. ([3], [4]) Let \underline{X} be a π -homomorph. Then \underline{X} is a Schunck class if and only if any π -solvable group has \underline{X} -projectors.

Corollary 1.10. Let \underline{X} be a π -homomorph. The following conditions are equivalent:

(1) \underline{X} is a Schunck class;

(2) any π -solvable group has \underline{X} -covering subgroups;

(3) any π -solvable group has \underline{X} -projectors.

Theorem 1.11. ([3]) If \underline{X} is a π -Schunck class, then any two \underline{X} -projectors of a π -solvable group G are conjugate in G.

Particularly, for π the set of all primes, theorems 1.8-1.11 give well-known results from [7] and [10] referring to finite solvable groups.

2. Projectors with respect to the class \underline{S}_{π}

Denote by \underline{S}_{π} the class of all solvable π -groups. We give a new proof for the following result given by W. Gaschütz in [7]: In any finite solvable group, the \underline{S}_{π} -projectors are exactly the Hall π -subgroups.

A positive integer n is said to be a π -number if for any prime divisor p of n we have $p \in \pi$.

Definition 2.1. a) A finite group G is a π -group if |G| is a π -number.

b) A subgroup S of a group G is a π -subgroup if S is a π -group.

c) A subgroup S of a group G is an Hall π -subgroup if:

(1) S is a π -subgroup;

(2) (|S|, |G:S|) = 1, i.e. |G:S| is a π' -number.

We shall use the following properties of the Hall subgroups ([9]):

Proposition 2.2. If G is a group, S is an Hall π -subgroup of G and H is a subgroup of G such that $S \leq H \leq G$, then S is an Hall π -subgroup of H.

Proposition 2.3. If G is a group, S is an Hall π -subgroup of G and N is a normal subgroup of G, then SN/N is an Hall π -subgroup of G/N.

The Hall subgroups were given in [8]. Ph. Hall studied them for finite solvable groups. In [5], S.A. Čunihin extended this study for finite π -solvable groups.

Theorem 2.4. (Ph. Hall, S.A. Čunihin, [9]) a) Any finite π -solvable group G has Hall π -subgroups and Hall π' -subgroups.

b) If G is a finite π -solvable group, then:

(i) any two Hall π -subgroups of G are conjugate in G;

(ii) any two Hall π' -subgroups of G are conjugate in G.

Particularly, any finite solvable group G has Hall π -subgroups and they are conjugate in G.

In preparation to the main theorem of this section, we prove the following results:

PROJECTORS WITH RESPECT TO SOME SPECIAL SCHUNCK CLASSES

Theorem 2.5. \underline{S}_{π} is a homomorph.

Proof. Let $G \in \underline{S}_{\pi}$ and N be a normal subgroup of G. G being solvable, G/N is also solvable. G being a π -group, from |G/N| divides |G| we obtain that G/N is a $\sqrt{\pi}$ -group too. \Box

Theorem 2.6. If G is a finite solvable group and S is an Hall π -subgroup of G, then S is \underline{S}_{π} -maximal in G.

Proof. By induction on |G|. We verify the two conditions from 1.2.a).

(1) $S \in \underline{S}_{\pi}$. Indeed, S is a π -group and S is solvable being a subgroup of a solvable group.

(2) Let $S \leq H \leq G$ and $H \in \underline{S}_{\pi}$. We prove that S = H. By 2.2, S is an Hall π -subgroup of H. We consider two cases:

a) H = G. Then $G \in \underline{S}_{\pi}$ and G is its own Hall π -subgroup. But S is also an Hall π -subgroup of G. Applying 2.4.b), S and G are conjugate in G, hence S = G = H.

b) $H \neq G$. By the induction, S is \underline{S}_{π} -maximal in H. But $H \in \underline{S}_{\pi}$. Hence S = H. \Box

The main theorem in this section is from [7] and we give here a new proof.

Theorem 2.7. Let G be a finite solvable group and S a subgroup of G. S is an \underline{S}_{π} -projector of G if and only if S is an Hall π -subgroup of G.

Proof. By induction on |G|.

Let S be an \underline{S}_{π} -projector of G. We prove like in [7] that S is an Hall π subgroup of G. Clearly S is a π -subgroup of G. We show that |G:S| is a π' -number. Let M be a minimal normal subgroup of G. G being solvable, we have $|M| = p^k$, where p is a prime. Put S' = SM. By 1.6, S'/M is an \underline{S}_{π} -projector of G/M. Hence, by the induction, S'/M is an Hall π -subgroup of G/M. Two cases are considered:

a) $p \in \pi$. Then $S' \in \underline{S}_{\pi}$. But, by 1.5.a), S is \underline{S}_{π} -maximal in G. So S = S'. Then

|G:S| = |G:S'| = |G/M:S'/M| is a π' -number.

b) $p \notin \pi$. Then $M \cap S = \{1\}$. So |G:S| is a π' -number, because:

$$|G:S| = |G:S'||S':S| = |G/M:S'/M||SM:S|,$$

25

where |G/M: S'M| is a π' -number and $|SM:S| = |M:M \cap S| = |M| = p^k$, where $p \notin \pi$, hence $p \in \pi'$.

The converse has an original proof based on 1.6.a) and 2.6. Let S be an Hall π -subgroup of G. We shall prove that S is an \underline{S}_{π} -projector of G. We use 1.6.a).

(1) S is \underline{S}_{π} -maximal in G, by 2.6.

(2) Let M be a minimal normal subgroup of G. We prove that SM/M is an \underline{S}_{π} -projector of G/M. Indeed, by 2.3, SM/M is an Hall π -subgroup of G/M. Hence, by the induction, we obtain that SM/M is an \underline{S}_{π} -projector of G/M. \Box

Corollary 2.8. \underline{S}_{π} is a Schunck class.

Proof. From 1.9, 2.7 and 2.4. □

Corollary 2.9. Let G be a finite solvable group and S a subgroup of G. The following conditions are equivalent:

(1) S is an Hall π -subgroup of G;

(2) S is an \underline{S}_{π} -projector of G;

(3) S is an \underline{S}_{π} -covering subgroup of G.

Proof. From 2.7, 2.8 and 1.5.d). \Box

3. Projectors with respect to the class \underline{N}

Denote by \underline{N} the class of all finite nilpotent groups. We shall give a new proof for the following W. Gaschütz's result from [7]: In any finite solvable group, the \underline{N} -projectors are exactly the Carte subgroups.

Definition 3.1. Let G be a group and S a subgroup of G. S is a Carter subgroup of G if:

(1) S is nilpotent;

 $(2) N_G(S) = S.$

The following properties given in [1] are important for our considerations:

Proposition 3.2. If G is a group, S is a Carter subgroup of G and H is a subgroup of G such that $S \leq H \leq G$, then S is a Carter subgroup of H.

Proposition 3.3. If G is a group, S is a Carter subgroup of G and N is a normal subgroup of G, then SN/N is a Carter subgroup of G/N.

Theorem 3.4. (R. Carter [1]) Let G be a finite solvable group. Then: a) G has Carter subgroups:

26

b) any two Carter subgroups of G are conjugate in G.

Theorem 3.5. \underline{N} is a Schunck class.

Proof. Obviously \underline{N} is a homomorph. Further, \underline{N} is primitively closed. Indeed, if G is a group such that all primitive factor groups $G/N \in \underline{N}$, we can prove that $G \in \underline{N}$. For this, we use Wieland's criterium for finite groups to be nilpotent: we show that any maximal subgroup W of G is normal in G. Denote by $N = core_G W$. Then G/N is primitive, hence $G/N \in \underline{N}$. But W/N is maximal in G/N. Applying now Wieland's criterium for the nilpotent group G/N, we obtain that W/N is normal in G/N, hence W is normal in G. \Box

Theorem 3.6. If G is a finite solvable group and S is a Carter subgroup of G, then S is <u>N</u>-maximal in G.

Proof. By induction on |G|.

(1) $S \in \underline{N}$, because S is a Carter subgroup.

(2) Let $S \leq H \leq G$ with $H \in \underline{N}$. We prove that S = H. Indeed, we have by 3.2 that S is a Carter subgroup of H. Consider two cases:

a) H = G. Then $G \in \underline{N}$ and so G is its own Carter subgroup. Applying 3.4.b), S and G are conjugate in G. It follows that S = G = H.

b) $H \neq G$. By the induction, S is <u>N</u>-maximal in H. But $H \in \underline{N}$. Hence S = H. \Box

The main result is:

Theorem 3.7. Let G be a finite solvable group and S a subgroup of G. S is an <u>N</u>-projector of G if and only if S is a Carter subgroup of G.

Proof. Let S be an <u>N</u>-projector of G. We prove that S is a Carter subgroup of G like in [7]. Clearly S is nilpotent. In order to show that $N_G(S) = S$, let us suppose that $S \neq N_G(S)$. Then S is maximal in H, where $H \leq N_G(S)$. So S is a normal subgroup in H. Now H solvable and S maximal in H imply $|H : S| = p^k$, with p prime. So H/S is a finite p-group, hence H/S is nilpotent. By 1.5.c), S is an <u>N</u>-projector in H. From S normal in H, follows by 1.6.b) that SS/S is an <u>N</u>-projector in H/S, hence SS/S is <u>N</u>-maximal in $H/S \in \underline{N}$. So S = H, in contradiction with the choice of H.

The converse has an original proof, based on 1.7 and 3.6. Let S be a Carter subgroup of G. We prove that S is an <u>N</u>-projector of G by using 1.7. Let B be

a minimal normal subgroup of G. G being solvable, B is abelian. By 3.5, \underline{N} is a Schunck class. By 3.6 we have that S is \underline{N} -maximal in G and so S is \underline{N} -maximal in SB. Further, because, by 3.3, SB/B is a Carter subgroup of G/B, we can use the induction for G/B and so SB/B is an \underline{N} -projector of G/B. We apply now 1.7 and so S is an \underline{N} -projector of G. \Box

Corollary 3.8. Let G be a finite solvable group and S a subgroup of G. The following conditions are equivalent:

- (1) S is a Carter subgroup of G;
- (2) S is an N-projector of G;
- (3) S is an <u>N</u>-covering subgroup of G.

Proof. From 3.7 and 1.5.d). \Box

4. Projectors with respect to the class $\underline{G}_{\pi'}$

In this section we establish the $\underline{G}_{\pi'}$ -projectors of a finite π -solvable group, proving that they coincide with the Hall π' -subgroups.

Remind that π is an arbitrary set of primes and π' is the complement to π in the set of all primes. Denote by \underline{W}_{π} the class of all finite π -solvable groups and by $\underline{G}_{\pi'}$ the class of all π' -groups. Obviously

$$\underline{G}_{\pi'} \subseteq \underline{W}_{\pi}$$

All groups considered in this section are finite π -solvable groups.

Theorem 4.1. The class $\underline{G}_{\pi'}$ is a π -homomorph.

Proof. Let $G \in \underline{G}_{\pi'}$ and N a normal subgroup of G. Then |G/N|/|G|, hence $G/N \in \underline{G}_{\pi'}$. So $\underline{G}_{\pi'}$ is a homomorph. $\underline{G}_{\pi'}$ is π -closed. Indeed, if $G/O_{\pi'}(G) \in \underline{G}_{\pi'}$, then

$$|G| = |G/O_{\pi'}(G)||O_{\pi'}(G)|$$

is a π' -number and so $G \in \underline{G}_{\pi'}$. \Box

Theorem 4.2. Let G be a finite π -solvable group and H a subgroup of G. H is a $\underline{G}_{\pi'}$ -covering subgroup of G is and only if H is an Hall π' -subgroup of G.

Proof. Let *H* be a $\underline{G}_{\pi'}$ -covering subgroup of *G*. We prove by induction on |G| that *H* is an Hall π' -subgroup of *G*.

(1) *H* is a π' -subgroup of *G*, because $H \in \underline{G}_{\pi'}$.

28

(2) (|H|, |G : H|) = 1. Indeed, let M be a minimal normal subgroup of G. H being a $\underline{G}_{\pi'}$ -covering subgroup of G, HM/M is by 1.6.b) a $\underline{G}_{\pi'}$ -covering subgroup of G/M, hence, by the induction, HM/M is an Hall π' -subgroup of G/M. Being a minimal normal subgroup of the π -solvable group G, M is either a solvable π -group or a π' -group. We consider now two cases:

a) $G/M \in \underline{G}_{\pi'}$. Then, HM/M being $\underline{G}_{\pi'}$ -maximal in G/M (see 1.5.a)), we have HM/M = G/M and so HM = G. Let us suppose now that M is a solvable π -group. Then

$$|G:H|=|HM:H|=|M:H\cap M|/|M|$$

is a π -number. Suppose that M is a π' -group. We know that $G/M = HM/M \in \underline{G}_{\pi'}$. Then |G| = |G/M||M| is a π' -number. So $G \in \underline{G}_{\pi'}$. But H is $\underline{G}_{\pi'}$ -maximal in G. Hence H = G is its own Hall π' -subgroup.

b) $G/M \notin \underline{G}_{\pi'}$. Then $HM/M \neq G/M$, hence $HM \neq G$. By 1.4, H is a $\underline{G}_{\pi'}$ -covering subgroup in HM and it follows, by the induction, that H is a Hall π' -subgroup of HM. Then |HM : H| is a π -number and |G : HM| = |G/M : HM/M| is also a π -number. It follows that

$$|G:H| = |G:HM||HM:H|$$

is a $\pi\text{-number}.$

Conversely, let H be an Hall π' -subgroup of G. We shall prove that H is an $\underline{G}_{\pi'}$ -covering subgroup of G.

(1) $H \in \underline{G}_{\pi'}$ is clear.

(2) $H \leq L \leq G$, $L_0 \leq L$, $L/L_0 \in \underline{G}_{\pi'}$ imply $L = HL_0$. We prove this by induction on |G|. Two cases are considered:

(i) $L \neq G$. By 2.2, H is an Hall π' -subgroup of L. Applying the induction, from $H \leq L = L$, $L_0 \leq L$, $L/L_0 \in \underline{G}_{\pi'}$ follows $L = HL_0$.

(ii) L = G. Again two cases are considered. If $L_0 = 1$, then $G = L \cong L/L_0 \in \underline{G}_{\pi'}$ and G is its own Hall π' -subgroup. By 2.4.b), H and G are conjugate in G. Then

$$L = G = H = HL_0.$$

If $L_0 \neq 1$, we have that there is a minimal normal subgroup M of G such that $M \leq L_0$. From 2.3, HM/M is an Hall π' -subgroup of G/M. We apply the induction 29

for G/M. Then, from

 $HM/M \le G/M = G/M, \ L_0/M \le G/M, \ (G/M)/(L_0/M) \cong G/L_0 = L/L_0 \in \underline{G}_{\pi'},$

it follows that

$$G/M = (HM/M)(L_0/M).$$

Hence $L = G = HML_0 = HL_0$. \Box

Corollary 4.3. The class $\underline{G}_{\pi'}$ is a π -Schunck class.

Proof. Follows from 1.10, 4.1, 4.2 and 2.4.a). \Box

Corollary 4.4. Let G be a finite π -solvable group and $H \leq G$. If H is an Hall π' -subgroup of G, then H is a $\underline{G}_{\pi'}$ -projector in G.

Proof. *H* being a Hall π' -subgroup of *G*, *H* is by 4.2 a $\underline{G}_{\pi'}$ -covering subgroup of *G*. Then, *H* is by 1.5.b) a $\underline{G}_{\pi'}$ -projector in *G*. \Box

The main theorem in this section is the following:

Theorem 4.5. Let G be a finite π -solvable group and H a subgroup of G. H is a $\underline{G}_{\pi'}$ -projector of G if and only if H is an Hall π' -subgroup of G.

Proof. If H is an Hall π' -subgroup of G, then H is by 4.4 a $\underline{G}_{\pi'}$ -projector of G.

Conversely, let H be a $\underline{G}_{\pi'}$ -projector of G. We prove by induction on |G| that H is an Hall π' -subgroup of G.

(1) H is a π' -subgroup of G because, H being $\underline{G}_{\pi'}$ -maximal in G (see 1.5.a)), we have $H \in \underline{G}_{\pi'}$.

(2) |G:H| is a π -number. Indeed, let M be a minimal normal subgroup of G. HM/M is by 1.6.b) a $\underline{G}_{\pi'}$ -projector in G/M, hence by the induction HM/M is an Hall π' -subgroup of G/M. It follows that

$$|G:HM| = |G/M:HM/M|$$

is a π -number. M being a minimal normal subgroup of the π -solvable group G, M is either a solvable π -group or a π' -group.

a) If M is a solvable π -group, then |G:H| = |G:HM||HM:H|, where $|HM:H| = |M:H \cap M|/|M|$ is a π -number. It follows that |G:H| is a π -number.

b) If M is a π' -group, using that HM/M is a π' -group we notice that HM is a π' -group. But H being a $\underline{G}_{\pi'}$ -projector in G, H is by 1.5.a) $\underline{G}_{\pi'}$ -maximal in G. 30 Hence from $H \leq HM \leq G$ and $HM \in \underline{G}_{\pi'}$ follows that H = HM. Then

|G:H| = |G:HM| = |G/M:HM/M|

is a π -number. \square

References

- Carter, R.W., Nilpotent self-normalizing subgroups of soluble groups, Math. Z., 75, 1961, 136-139.
- [2] Covaci, R., Projectors in finite π-solvable groups, Studia Univ. Babeş-Bolyai, Math., XXII, No.1, 1977, 3-5.
- [3] Covaci, R., Some properties of projectors in finite π-solvable groups, Studia Univ. Babeş-Bolyai, Math., XXVI, No.1, 1981, 5-8.
- [4] Covaci, R., Projectors and covering subgroups, Studia Univ. Babes-Bolyai, Math., XXVII, 1982, 33-36.
- [5] Čunihin, S.A., O teoremah tipa Sylowa, Dokl. Akad. Nauk SSSR, 66, 1949, 165-168.
- [6] Gaschütz, W., Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80, No.4, 1963, 300-305.
- [7] Gaschütz, W., Selected topics in the theory of soluble groups, Australian National University, Canberra, Jan.-Feb. 1969.
- [8] Hall, Ph., A note on soluble groups, J. London Math. Soc., 3, 1928, 98-105.
- [9] Huppert, B., Endliche Gruppen I, Berlin New York, Springer-Verlag, 1967.
- [10] Schunck, H., <u>H</u>-Untergruppen in endlichen auflösbaren Gruppen, Math. Z., 97, No.4, 1967, 326-330.

BABEŞ-BOLYAI UNIVERSITY, CLUJ-NAPOCA, MIHAIL KOGALNICEANU, NR.1