ON A CERTAIN FAMILIES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

M.K. AOUF, H.M. HOSSEN AND A.Y. LASHIN

Abstract

We introduce the subclass $T_{j}(n, m, \lambda, \alpha)$ of analytic functions with negative coefficients defined by Salagean operators D^{n} and D^{n+m}. In this paper we give some properties of functions in the class $T_{j}(n, m, \lambda, \alpha)$ and obtain numerous sharp results including (for example) coefficient estimates, distortion theorems, closure theorems and modified Hadamard products of several functions belonging to the class $T_{j}(n, m, \lambda, \alpha)$. We also obtain radii of close-to-convexity, starlikeness, and convexity for functions belonging to the class $T_{j}(n, m, \lambda, \alpha)$ and consider integral operators associated with functions belonging to the class $T_{j}(n, m, \lambda, \alpha)$.

1. Introduction

Let $A(j)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad(j \in N=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. For a function $f(z)$ in $A(j)$, we define

$$
\begin{gather*}
D^{0} f(z)=f(z) \tag{1.2}\\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N) \tag{1.4}
\end{equation*}
$$

The differential operator D^{n} was introduced by Salagean [5]. With the help of the differential operator D^{n}, we say that a function $f(z)$ belonging to $A(j)$ is in

Key words and phrases. analytic, Salagean operator, modified Hadamard product.
the class $S_{j}(n, m, \lambda, \alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}\right\}>\alpha \quad\left(n, m \in N_{0}=N \cup\{0\}\right) \tag{1.5}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and $\lambda(0 \leq \lambda \leq 1)$, and for all $z \in U$. The operator D^{n+m} was studied by Sekine [7] and Aouf and Salagean [2].

Let $T(j)$ denote the subclass of $A(j)$ consisting of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0 ; j \in N\right) . \tag{1.6}
\end{equation*}
$$

Further, we define the class $T_{j}(n, m, \lambda, \alpha)$ by

$$
\begin{equation*}
T_{j}(n, m, \lambda, \alpha)=S_{j}(n, m, \lambda, \alpha) \cap T(j) . \tag{1.7}
\end{equation*}
$$

We note that by specializing the parameters j, n, m, λ and α, we obtain the following subclasses studied by various authors:
(i) $T_{j}(n, 1, \lambda, \alpha)=P(j, \lambda, \alpha, n), T_{j}(n, m, 0, \alpha)=P(j, \alpha, n)$ and

$$
T_{j}(n, 1,1, \alpha)=P(j, \alpha, n+1)(\text { Aouf and Srivastava }[3]) ;
$$

(ii) $T_{j}(0,1, \lambda, \alpha)=P(j, \lambda, \alpha)($ Altintas $[1])$;
(iii) $T_{j}(0,0,0, \alpha)=T_{\alpha}(j)$ and $T_{j}(0,1,1, \alpha)=T_{j}(1,0,1, \alpha)=C_{\alpha}(j)$ (Chatterjea [4] and Srivastava et al. [9]);
(v) $T_{j}(n, m, 1, \alpha)=T_{j}(n, m, \alpha)$, where $T_{j}(n, m, \alpha)$ represents the class of functions $f(z) \in T(j)$ satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n+m} f(z)\right)^{\prime}}{D^{n+m} f(z)}\right\}>\alpha \quad\left(n, m \in N_{0} ; 0 \leq \alpha<1 ; z \in U\right) \tag{1.8}
\end{equation*}
$$

(iv) $T_{1}(0,0,0, \alpha)=T^{*}(\alpha)$ and $T_{1}(0,1,1, \alpha)=T_{1}(1,0,1, \alpha)=C(\alpha)$ (Silver$\operatorname{man}[8]$).

2. Coefficient estimates and other properties of the class $T_{j}(n, m, \lambda, \alpha)$

Theorem 1. Let the function $f(z)$ be defined by (1.6). Then $f(z) \in$ $T_{j}(n, m, \lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

The result is sharp.

Proof. Assume that the inequality (2.1) holds true. Then we find that

$$
\begin{aligned}
& \left|\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}-1\right| \leq \\
& \leq \frac{\sum_{k=j+1}^{\infty} k^{n}(k-1)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}|z|^{k-1}}{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}|z|^{k-1}} \leq \\
& \leq \frac{\sum_{k=j+1}^{\infty} k^{n}(k-1)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}}{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}} \leq 1-\alpha .
\end{aligned}
$$

This show that the values of the function

$$
\begin{equation*}
\Phi(z)=\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)} \tag{2.2}
\end{equation*}
$$

lie in a circle which is centered at $w=1$ and whose radius is $1-\alpha$. Hence $f(z)$ satisfies the condition (1.5).

Conversely, assume that the function $f(z)$ is in the class $T_{j}(n, m, \lambda, \alpha)$. Then we have

$$
\begin{align*}
& \operatorname{Re}\left\{\frac{(1-\lambda) z\left(D^{n} f(z)\right)^{\prime}+\lambda z\left(D^{n+m} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda D^{n+m} f(z)}\right\}= \\
= & \operatorname{Re}\left\{\frac{1-\sum_{k=j+1}^{\infty} k^{n+1}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}}{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} z^{k-1}}\right\}>\alpha, \tag{2.3}
\end{align*}
$$

for some $\alpha(0 \leq \alpha<1), \lambda(0 \leq \lambda \leq 1), n, m \in N_{0}$ and for all $z \in U$. Choose values of z on the real axis so that $\Phi(z)$ given by (2.2) is real. Upon clearing the denominator in (2.3) and letting $z \rightarrow 1^{-}$through real values, we can see that

$$
\begin{equation*}
1-\sum_{k=j+1}^{\infty} k^{n+1}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \geq \alpha\left\{1-\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}\right\} . \tag{2.4}
\end{equation*}
$$

Thus we have the inequality (2.1).
Finally, the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} z^{k} \quad(k \geq j+1 ; j \in N) \tag{2.5}
\end{equation*}
$$

is an extremal function for the assertion of Theorem 1.
Corollary 1. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} \quad(k \geq j+1) . \tag{2.6}
\end{equation*}
$$

The equality in (2.6) is attained for the function $f(z)$ given by (2.5).
Theorem 2. Let $0 \leq \alpha_{1} \leq \alpha_{2}<1,0 \leq \lambda \leq 1, j \in N$ and $n, m \in N_{0}$. Then

$$
\begin{equation*}
T_{j}\left(n, m, \lambda, \alpha_{1}\right) \supseteq T_{j}\left(n, m, \lambda, \alpha_{2}\right) . \tag{2.7}
\end{equation*}
$$

Proof. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}\left(n, m, \lambda, \alpha_{2}\right)$ and let $\alpha_{1}=\alpha_{2}-\delta$. Then, by Theorem 1, we have

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha_{2} \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq \frac{1-\alpha_{2}}{j+1-\alpha_{2}}<1 \tag{2.9}
\end{equation*}
$$

Consequently,

$$
\begin{gather*}
\sum_{k=j+1}^{\infty} k^{n}\left(k-\alpha_{1}\right)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}=\sum_{k=j+1}^{\infty} k^{n}\left(k-\alpha_{2}\right)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k}+ \\
+\delta \sum_{k=j+1}^{\infty} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha_{1} \tag{2.10}
\end{gather*}
$$

This completes the proof of Theorem 2 with the aid of Theorem 1.
Theorem 3. Let $0 \leq \alpha<1,0 \leq \lambda_{1} \leq \lambda_{2} \leq 1, j \in N$ and $n, m \in N_{0}$. Then

$$
\begin{equation*}
T_{j}\left(n, m, \lambda_{1}, \alpha\right) \supseteq T_{j}\left(n, m, \lambda_{2}, \alpha\right) . \tag{2.11}
\end{equation*}
$$

Proof. It follows from Theorem 1 that

$$
\sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda_{1}\right] a_{k} \leq \sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda_{2}\right] a_{k} \leq 1-\alpha
$$

for $f(z) \in T_{j}\left(n, m, \lambda_{2}, \alpha\right)$.
Theorem 4. For $0 \leq \alpha<1,0 \leq \lambda \leq 1, j \in N$ and $n, m \in N_{0}$,

$$
\begin{equation*}
T_{j}(n+1, m, \lambda, \alpha) \subseteq T_{j}(n, m, \lambda, \alpha) . \tag{2.12}
\end{equation*}
$$

The proof of Theorem 4 follows also from Theorem 1.

3. Growth and distortion theorems

Theorem 5. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then for $|z|=r<1$,

$$
\begin{equation*}
\left|D^{i} f(z)\right| \geq r-\frac{1-\alpha}{(j+1)^{n-i}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} r^{j+1} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D^{i} f(z)\right| \leq r+\frac{1-\alpha}{(j+1)^{n-i}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} r^{j+1} \tag{3.2}
\end{equation*}
$$

for $z \in U$ and $0 \leq i \leq n$. The equalities in (3.1) and (3.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} z^{j+1} \quad(z= \pm r) \tag{3.3}
\end{equation*}
$$

Proof. Note that $f(z) \in T_{j}(n, m, \lambda, \alpha)$ if and only if

$$
D^{i} f(z) \in T_{j}(n-i, m, \lambda, \alpha)
$$

and that

$$
\begin{equation*}
D^{i} f(z)=z-\sum_{k=j+1}^{\infty} k^{i} a_{k} z^{k} \tag{3.4}
\end{equation*}
$$

By Theorem 1, we know that

$$
\begin{gather*}
(j+1)^{n-i}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right] \sum_{k=j+1}^{\infty} k^{i} a_{k} \leq \\
\quad \leq \sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha \tag{3.5}
\end{gather*}
$$

that is, that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{i} a_{k} \leq \frac{1-\alpha}{(j+1)^{n-i}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} \tag{3.6}
\end{equation*}
$$

The assertions (3.1) and (3.2) of Theorem 5 would now follow readily from (3.4) and (3.6).

Finally, we note that the equalities in (3.1) and (3.2) are attained for the function $f(z)$ defined by

$$
\begin{equation*}
D^{i} f(z)=z-\frac{1-\alpha}{(j+1)^{n-i}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} z^{j+1} \tag{3.7}
\end{equation*}
$$

This completes the proof of Theorem 5.
Corollary 2. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then, for $|z|=r<1$,

$$
\begin{equation*}
|f(z)| \geq r-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} r^{j+1} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq r+\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} r^{j+1} \tag{3.9}
\end{equation*}
$$

The equalities in (3.8) and (3.9) are attained for the function $f(z)$ given by (3.3).

Proof. Taking $i=0$ in Theorem 5, we immediately obtain (3.8) and (3.9).
Corollary 3. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then for $|z|=r<1$,

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq \frac{1-\alpha}{(j+1)^{n-i}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} r^{j} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+\frac{1-\alpha}{(j+1)^{n-i}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} r^{j} \quad(z \in U) \tag{3.11}
\end{equation*}
$$

The equalities in (3.10) and (3.11) are attained for the function $f(z)$ given by (3.3).

Proof. Setting $i=1$ in Theorem 5, and making use of the definition (1.3), we arrive at Corollary 3.

4. Convex linear combinations

In this section, we shall prove that the class $T_{j}(n, m, \lambda, \alpha)$ is closed under convex linear combinations.

Theorem 6. $T_{j}(n, m, \lambda, \alpha)$ is a convex set.
Proof. Let the functions

$$
\begin{equation*}
f_{v}(z)=z-\sum_{k=j+1}^{\infty} a_{k, v} z^{k} \quad\left(a_{k, v} \geq 0 ; v=1,2\right) \tag{4.1}
\end{equation*}
$$

On A CERTAIN FAMILIES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS
be in the class $T_{j}(n, m, \lambda, \alpha)$. It is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z) \quad(0 \leq \mu \leq 1) \tag{4.2}
\end{equation*}
$$

is also in the class $T_{j}(n, m, \lambda, \alpha)$. Since, for $0 \leq \mu \leq 1$,

$$
\begin{equation*}
h(z)=z-\sum_{k=j+1}^{\infty}\left[\mu a_{k, 1}+(1-\mu) a_{k, 2}\right] z^{k} \tag{4.3}
\end{equation*}
$$

with the aid of Theorem 1, we have

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]\left[\mu a_{k, 1}+(1-\mu) a_{k, 2}\right] \leq 1-\alpha \tag{4.4}
\end{equation*}
$$

which implies that $f(z) \in T_{j}(n, m, \lambda, \alpha)$. Hence $T_{j}(n, m, \lambda, \alpha)$ is a convex set.
Theorem 7. Let

$$
\begin{equation*}
f_{j}(z)=z \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} z^{k} \quad\left(k \geq j+1 ; n, m \in N_{0}\right) \tag{4.6}
\end{equation*}
$$

for $0 \leq \alpha<1$ and $0 \leq \lambda \leq 1$. Then $f(z)$ is in the class $T_{j}(n, m, \lambda, \alpha)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=j}^{\infty} \mu_{k} f_{k}(z), \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{k} \geq 0(k \geq j) \quad \text { and } \quad \sum_{k=j}^{\infty} \mu_{k}=1 . \tag{4.8}
\end{equation*}
$$

Proof. Assume that

$$
\begin{gather*}
f(z)=\sum_{k=j}^{\infty} \mu_{k} f_{k}(z)= \\
=z-\sum_{k=j+1}^{\infty} \frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} \mu_{k} z^{k} . \tag{4.9}
\end{gather*}
$$

Then it follows that

$$
\begin{gather*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} \cdot \frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} \mu_{k}= \\
=\sum_{k=j+1}^{\infty} \mu_{k}=1-\mu_{j} \leq 1 \tag{4.10}
\end{gather*}
$$

So, by Theorem $1, f(z) \in T_{j}(n, m, \lambda, \alpha)$.
Conversely, assume that the function $f(z)$ defined by (1.6) belongs to the class $T_{j}(n, m, \lambda, \alpha)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} \quad\left(k \geq j+1 ; n, m \in N_{0}\right) \tag{4.11}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\mu_{k}=\frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k} \quad\left(k \geq j+1 ; n, m \in N_{0}\right) \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{j}=1-\sum_{k=j+1}^{\infty} \mu_{k} \tag{4.13}
\end{equation*}
$$

we can see that $f(z)$ can be expressed in the form (4.7). This completes the proof of Theorem 7.

5. Radii of close-to-convexity, starlikeness, and convexity

Theorem 8. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then $f(z)$ is close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=r_{1}(n, m, \lambda, \alpha, \rho)=\inf _{k}\left[\frac{(1-\rho) k^{n-1}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{\frac{1}{k-1}} \quad(k \geq j+1) . \tag{5.1}
\end{equation*}
$$

The result is sharp, the extremal function $f(z)$ begin given by (2.5).
Proof. We must show that

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho \text { for }|z|<r_{1}(n, m, \lambda, \alpha, \rho)
$$

where $r_{1}(n, m, \lambda, \alpha, \rho)$ is given by (5.1). Indeed we find from the definition (1.6) that

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=j+1}^{\infty} k a_{k}|z|^{k-1}
$$

Thus

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho
$$

if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.2}
\end{equation*}
$$

ON A CERTAIN FAMILIES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

But, by Theorem 1, (5.2) will be true if

$$
\left(\frac{k}{1-\rho}\right)|z|^{k-1} \leq \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho) k^{n-1}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{\frac{1}{k-1}} \quad(k \geq j+1) . \tag{5.3}
\end{equation*}
$$

Theorem 8 follows easily from (5.3).
Theorem 9. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=r_{2}(n, m, \lambda, \alpha, \rho)=\inf _{f}\left[\frac{(1-\rho) k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq j+1) . \tag{5.4}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.5)
Proof. It is sufficient to show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho \text { for }|z|<r_{2}(n, m, \lambda, \alpha, \rho),
$$

where $r_{2}(n, m, \lambda, \alpha, \rho)$ is given by (5.4). Indeed we find, again from the definition (1.6), that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=j+1}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=j+1}^{\infty} a_{k}|z|^{k-1}}
$$

Thus

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho
$$

if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty}\left(\frac{k-\rho}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{5.5}
\end{equation*}
$$

But, by Theorem 1, (5.5) will be if

$$
\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \leq \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho) k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq j+1) . \tag{5.6}
\end{equation*}
$$

Theorem 9 follows easily from (5.6).

Corollary 4. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=r_{3}(n, m, \lambda, \alpha, \rho)=\inf _{k}\left[\frac{(1-\rho) k^{n-1}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq j+1) \tag{5.7}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.5).

6. Modified Hadamard products

Let the functions $f_{v}(z)(v=1,2)$ be defined by (4.1). The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
f_{1} * f_{2}(z)=z-\sum_{k=j+1}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{6.1}
\end{equation*}
$$

Theorem 10. Let each of the functions $f_{v}(z)(v=1,2)$ defined by (4.1) be in the class $T_{j}(n, m, \lambda, \alpha)$. Then

$$
f_{1} * f_{2}(z) \in T_{j}(n, m, \lambda, \beta(j, n, m, \lambda, \alpha))
$$

where

$$
\begin{equation*}
\beta(j, n, m, \lambda, \alpha)=1-\frac{j(1-\alpha)^{2}}{(j+1)^{n}(j+1-\alpha)^{2}\left[1+\lambda\left[(j+1)^{m}-1\right]\right]-(1-\alpha)^{2}} . \tag{6.2}
\end{equation*}
$$

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [6], we need to find the largest $\beta=\beta(j, n, m, \lambda, \alpha)$ such that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\beta)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\beta} a_{k, 1} a_{k, 2} \leq 1 \tag{6.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 1} \leq 1 \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 2} \leq 1 \tag{6.5}
\end{equation*}
$$

by the Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 \tag{6.6}
\end{equation*}
$$

ON A CERTAIN FAMILIES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{k^{n}(k-\beta)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\beta} a_{k, 1} a_{k, 2} \leq \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}}(k \geq j+1), \tag{6.7}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{(k-\alpha)(1-\beta)}{(k-\beta)(1-\alpha)} \quad(k \geq j+1) \tag{6.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} \quad(k \geq j+1) \tag{6.9}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{1-\alpha}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]} \leq \frac{(k-\alpha)(1-\beta)}{(k-\beta)(1-\alpha)} \quad(k \geq j+1) \tag{6.10}
\end{equation*}
$$

or, equivalently, that

$$
\begin{equation*}
\beta \leq 1-\frac{(k-1)(1-\alpha)^{2}}{k^{n}(k-\alpha)^{2}\left[1+\left(k^{m}-1\right) \lambda\right]-(1-\alpha)^{2}} \quad(k \geq j+1) . \tag{6.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
A(k)=1-\frac{(k-1)(1-\alpha)^{2}}{k^{n}(k-\alpha)^{2}\left[1+\left(k^{m}-1\right) \lambda\right]-(1-\alpha)^{2}} \tag{6.12}
\end{equation*}
$$

is an increasing function of $k(k \geq j+1)$, letting $k=j+1$ in (6.12) we obtain

$$
\begin{equation*}
\beta \leq A(j+1)=\frac{j(1-\alpha)^{2}}{(j+1)^{n}(j+1-\alpha)^{2}\left[1+\left[(j+1)^{m}-1\right] \lambda\right]-(1-\alpha)^{2}} \tag{6.13}
\end{equation*}
$$

which proves the main assertion of Theorem 10.
Finally, by taking the functions

$$
\begin{equation*}
f_{v}(z)=z-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} z^{j+1} \quad(v=1,2) \tag{6.14}
\end{equation*}
$$

we can see that the result is sharp,
Theorem 11. Let $f_{1}(z) \in T_{j}(n, m, \lambda, \alpha)$ and $f_{2}(z) \in T_{j}(n, m, \lambda, \gamma)$. then

$$
f_{1} * f_{2}(z) \in T_{j}(n, m, \lambda, \xi(j, n, m, \lambda, \alpha, \gamma))
$$

where

$$
\begin{gather*}
\xi(j, n, m, \lambda, \alpha, \gamma)= \tag{6.15}\\
=1-\frac{j(1-\alpha)(1-\gamma)}{(j+1)^{n}(j+1-\alpha)(j+1-\gamma)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]-(1-\alpha)(1-\gamma)}
\end{gather*}
$$

The result is best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} z^{j+1} \tag{6.16}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z-\frac{1-\gamma}{(j+1)^{n}(j+1-\gamma)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} z^{j+1} \tag{6.17}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 10, we get

$$
\begin{equation*}
\xi \leq 1-\frac{(k-1)(1-\alpha)(1-\gamma)}{k^{n}(k-\alpha)(k-\gamma)\left[1+\left(k^{m}-1\right) \lambda\right]-(1-\alpha)(1-\gamma)} \quad(k \geq j+1) \tag{6.18}
\end{equation*}
$$

Since the right hand side of (6.18) is an increasing function of k, setting $k=j+1$ in (6.18) we obtain (6.15). This completes the proof of Theorem 11.

Corollary 5. Let the functions $f_{v}(z)$ defined by

$$
\begin{equation*}
f_{v}(z)=z-\sum_{k=j+1}^{\infty} a_{k, v} z^{k} \quad\left(a_{k, v} \geq 0, v=1,2,3\right) \tag{6.19}
\end{equation*}
$$

be in the class $T_{j}(n, m, \lambda, \alpha)$. Then

$$
f_{1} * f_{2} * f_{3}(z) \in T_{j}(n, m, \lambda, \delta(j, n, m, \lambda, \alpha))
$$

where

$$
\begin{equation*}
\delta(j, n, m, \lambda, \alpha)=1-\frac{j(1-\alpha)^{3}}{(j+1)^{2 n}(j+1-\alpha)^{3}\left[1+\left[(j+1)^{m}-1\right] \lambda\right]^{2}-(1-\alpha)^{3}} \tag{6.20}
\end{equation*}
$$

The result is best possible for the functions

$$
\begin{equation*}
f_{v}(z)=z-\frac{1-\alpha}{(j+1)^{n}(j+1-\alpha)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]} z^{j+1} \quad(v=1,2,3) \tag{6.21}
\end{equation*}
$$

Proof. From Theorem 10, we have

$$
f_{1} * f_{2}(z) \in T_{j}(n, m, \lambda, \beta(j, n, m, \lambda, \alpha))
$$

where β is given by (6.2). Now, using Theorem 11, we get

$$
f_{1} * f_{2} * f_{3}(z) \in T_{j}(n, m, \lambda, \delta(j, n, m, \lambda, \alpha))
$$

where

$$
\begin{gathered}
\delta(j, n, m, \lambda, \alpha)= \\
=1-\frac{j(1-\alpha)(1-\beta)}{(j+1)^{n}(j+1-\alpha)(j+1-\beta)\left[1+\left[(j+1)^{m}-1\right] \lambda\right]-(1-\alpha)(1-\beta)}=
\end{gathered}
$$

ON A CERTAIN FAMILIES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

$$
=1-\frac{j(1-\alpha)^{3}}{(j+1)^{2 n}(j+1-\alpha)^{3}\left[1+\left[(j+1)^{m}-1\right] \lambda\right]-(1-\alpha)^{3}} .
$$

This completes the proof of Corollary 5.
Theorem 12. Let the functions $f_{v}(z)(v=1,2)$ defined by (4.1) be in the class $T_{j}(n, m, \lambda, \alpha)$, then the function

$$
\begin{equation*}
h(z)=z-\sum_{k=j+1}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{6.22}
\end{equation*}
$$

belongs to the class $T_{j}(n, m, \lambda, \eta(j, n, m, \lambda, \alpha))$, where

$$
\begin{equation*}
\eta(j, n, m, \lambda, \alpha)=1-\frac{2 j(1-\alpha)^{2}}{(j+1)^{n}(j+1-\alpha)^{2}\left[1+\left[(j+1)^{m}-1\right] \lambda\right]-2(1-\alpha)^{2}} \tag{6.23}
\end{equation*}
$$

The result is sharp for the functions $f_{v}(z)(v=1,2)$ defined by (6.14).
Proof. By virtue of Theorem 1, we obtain

$$
\begin{align*}
& \sum_{k=j+1}^{\infty}\left[\frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2} a_{k, 1}^{2} \leq \tag{6.24}\\
\leq & {\left[\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 1}\right]^{2} \leq 1 }
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=j+1}^{\infty}\left[\frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2} a_{k, 2}^{2} \leq \tag{6.25}\\
\leq & {\left[\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k, 2}\right]^{2} \leq 1 . }
\end{align*}
$$

It follows from (6.24) and (6.25) that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{1}{2}\left[\frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1 \tag{6.26}
\end{equation*}
$$

Therefore, we need to find the largest $\eta=\eta(j, n, m, \lambda, \alpha)$ such that

$$
\begin{equation*}
\frac{k^{n}(k-\eta)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\eta} \leq \frac{1}{2}\left[\frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha}\right]^{2} \quad(k \geq j+1), \tag{6.27}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\eta \leq 1-\frac{2(k-1)(1-\alpha)^{2}}{(k-\alpha)^{2} k^{n}\left[1+\left(k^{m}-1\right) \lambda\right]-2(1-\alpha)^{2}} \quad(k \geq j+1) . \tag{6.28}
\end{equation*}
$$

Since

$$
\begin{equation*}
B(k)=1-\frac{2(k-1)(1-\alpha)^{2}}{k^{n}(k-\alpha)^{2}\left[1+\left(k^{m}-1\right) \lambda\right]-2(1-\alpha)^{2}} . \tag{6.29}
\end{equation*}
$$

is an increasing function of $k(k \geq j+1)$, we readily have

$$
\begin{equation*}
\eta \leq B(j+1)=1-\frac{2 j(1-\alpha)^{2}}{(j+1)^{n}(j+1-\alpha)^{2}\left[1+\left[(j+1)^{m}-1\right] \lambda\right]-2(1-\alpha)^{2}}, \tag{6.30}
\end{equation*}
$$

and Theorem 12 follows at once.

7. A family of integral operators

Theorem 13. Let the function $f(z)$ defined by (1.6) be in the class $T_{j}(n, m, \lambda, \alpha)$, and let c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \quad(c>-1) \tag{7.1}
\end{equation*}
$$

also belongs to the class $T_{j}(n, m, \lambda, \alpha)$.
Proof. From the representation (7.1) of $F(z)$, it follows that

$$
F(z)=z-\sum_{k=j+1}^{\infty} b_{k} z^{k}
$$

where

$$
b_{k}=\left(\frac{c+1}{c+k}\right) a_{k}
$$

Therefore, we have

$$
\begin{aligned}
\sum_{k=j+1}^{\infty} k^{n}(k-\alpha)[1 & \left.+\left(k^{m}-1\right) \lambda\right] b_{k}=\sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]\left(\frac{c+1}{c+k}\right) a_{k} \leq \\
& \leq \sum_{k=j+1}^{\infty} k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right] a_{k} \leq 1-\alpha
\end{aligned}
$$

since $f(z) \in T_{j}(n, m, \lambda, \alpha)$. Hence, by Theorem $1, F(z) \in T_{j}(n, m, \lambda, \alpha)$.
Theorem 14. Let the function

$$
F(z)=z-\sum_{k=j+1}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0, j \in N\right)
$$

be in the class $T_{j}(n, m, \lambda, \alpha)$, and let c be a real number such that $c>-1$. Then the function $f(z)$ given by (7.1) is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{*}=\inf _{k}\left[\frac{(k-\alpha) k^{n-1}\left[1+\left(k^{m}-1\right) \lambda\right](c+1)}{(1-\alpha)(c+k)}\right]^{\frac{1}{k-1}} \quad(k \geq j+1) \tag{7.2}
\end{equation*}
$$

The result is sharp.

Proof. From (7.1), we have

$$
f(z)=\frac{z^{1-c}\left(z^{c} F(z)\right)^{\prime}}{c+1}=z-\sum_{k=j+1}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} .
$$

In order to obtain the required result, it suffices to show that

$$
\left|f^{\prime}(z)-1\right|<1 \text { whenever }|z|<R^{*}
$$

where R^{*} is given by (7.2). Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=j+1}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}<1 . \tag{7.3}
\end{equation*}
$$

But Theorem 1 confirms that

$$
\begin{equation*}
\sum_{k=j+1}^{\infty} \frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha} a_{k} \leq 1 \tag{7.4}
\end{equation*}
$$

Hence (7.3) will be satisfied if

$$
\frac{k(c+k)}{c+1}|z|^{k-1}<\frac{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z|<\left[\frac{(k-\alpha) k^{n-1}\left[1+\left(k^{m}-1\right) \lambda\right](c+1)}{(1-\alpha)(c+k)}\right]^{\frac{1}{k-1}} \quad(k \geq j+1) . \tag{7.5}
\end{equation*}
$$

Therefore, the function $f(z)$ given by (7.1) is univalent in $|z|<R^{*}$. Sharpness of the result follows if we take

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)(c+k)}{k^{n}(k-\alpha)\left[1+\left(k^{m}-1\right) \lambda\right](c+1)} z^{k} \quad(k \geq j+1) . \tag{7.6}
\end{equation*}
$$

References

[1] O. Altantas, On s subclass of certain starlike functions with negative coefficients, Math. Japon. 36(1991), 489-495.
[2] M.K. Aouf and G.S. Salagean, Prestarlike functions with negative coefficients, Rev. Roum. Math. Pures Appl. (to appear)
[3] M.K. Aouf and H.M. Srivastava, Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203(1996), 762-790.
[4] S.K. Chatterjea, On starlike functions, J. Pure Math. 1(1981), 23-26.
[5] G.S. Salagean, Subclasses of univalent function, Complex Analysis - Fifth Romanian - Finnish Seminar Bucharest 1981, Proceedings, part 1, lect. Notes in Math. 1013, Springer Verlag 1983, 362-372.

M.K. AOUF, H.M. HOSSEN AND A.Y. LASHIN

[6] A. Schild and H. Silverman, Convolutions of univalent function with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska, Sect.A, 29(1975), 99-107.
[7] T. Sekine, Generalization of certain subclasses of analytic function, Internat. J. Math. Sci. 10(1987), no.4, 725-732.
[8] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.
[9] H.M. Srivastava, S. Owa and S.K. Chatterjea, A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77(1987), 115-124.

Department of Mathematics, Faculty of Science,
University of Mansoura, Mansoura, Egypt
E-mail address: sinfac@mum.mans.eun.eg

