
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 3, September 2001

A NOTE ON STANDARD TOPOLOGICAL CONTEXTS WITH
PSEUDOMETRIC

CHRISTIAN SĂCĂREA

Abstract. Standard topological contexts are a valuable tool in represent-

ing several classes of ordered algebraic structures. While investigating

Contextual Topology, pseudometric contexts were introduced as a tool in

approximating objects by their attributes. Here we describe the interac-

tion between these two classes, i.e., pseudometric contexts and standard

topological contexts, pointing out whether the Hartung duality extends

in the case of metric lattices or not. Moreover, the meaning of being a

contraction or being continuous in the case of multivalued pseudometric

morphisms is investigated.

1. Introduction

Formal Concept Analysis was introduced first in an attempt of restructuring

lattice theory (see [Wi82]). Since then, Formal Concept Analysis developed contin-

uously to a theory of interpreting data by revealing the fundamental patterns of it.

These patterns are then synthesized in a structure called concept lattice. Ten years

later, standard topological contexts were introduced as a valuable tool in representing

0–1 lattices via Formal Concept Analysis ([Ha92]). This representation could be also

considered as the first step in investigating the links between Topology and Formal

Concept Analysis.

In [Sa00a] pseudometric and metric formal contexts were introduced as a

generalization of the well known concepts of a metric on a set. By this generalization,

the notion of metric extends on a formal context by the mathematization of a well

known fact: Formal contexts are representing data sets. Usually, a data set is a

record of several measurements or informations about a set of objects and a set of

attributes of interest. These attributes are specific for the topic in study but some

of these are more characteristic than others. (Pseudo)metric contexts, and uniform
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contexts as well, captures at best this phenomenon, i.e., that an attribute is more

or less characteristic for an object as another one. For more informations, see for

example [Sa00b].

This paper describes the links between standard topological contexts and

pseudo metric contexts, investigating whether the well known duality between stan-

dard topological contexts and 0–1 lattices remains valid if we consider 0–1 pseudo-

metric lattices. Moreover, we shall describe how some properties of 0–1 pseudometric

lattices like being a contraction or being continuous reflects in the category of standard

topological contexts with pseudometric.

2. Basic Definitions and Results

We briefly sketch the duality between bounded lattices and standard topo-

logical contexts developed in [Ha92] and [Ha93]. We recall some definitions and basic

facts, for other definitions and results we refer to [GW96].

By (X, τ) we denote a topological space, where X is the underlying set

and T is the family of all closed sets of that space. We start with a triple

KT := ((G, ρ), (M,σ), I) consisting of two topological spaces (G, ρ), (M,σ) and a

binary relation I ⊆ G×M . For A ⊆ G and B ⊆M , we define two derivations by

A′ := {m ∈M | gIm for all g ∈ A} and

B′ := {g ∈ G| gIm for all m ∈ B}.

These form a Galois-connection which gives rise to a complete lattice

B(KT ) := {(A,B)| A ⊆ G,B ⊆M,A′ = B,B′ = A}

which is known as the concept lattice of the context KT . The elements of B(KT )

are called (formal) concepts. If (A,B) is a concept of KT , the sets A and B are

called the extent and the intent of the concept (A,B). For two concepts, the relation

subconcept–superconcept is given by

(A,B) ≤ (C,D) ⇔ A ⊆ B(⇔ B ⊇ B).
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A closed concept is a concept consisting in each component of a closed set with

respect to the corresponding topology. The set of all closed concepts is denoted by

BT (KT ) := {(A,B) ∈ B(KT )| A ∈ ρ and B ∈ σ}.

The triple KT := ((G, ρ), (M,σ), I) is called a topological context if the

following two conditions are satisfied:

(i) A ∈ ρ⇒ A′′ ∈ ρ;B ∈ σ ⇒ B′′ ∈ σ.

(ii) Sρ := {A ⊆ G| (A,A′) ∈ BT (KT )} is a subbasis of ρ and

Sσ := {B ⊆M | (B,B′) ∈ BT (KT )} is a subbasis of σ.

Under these assumptions, BT (KT ) with the induced order is a 0–1 lattice in

which infima and suprema can be described as follows

(A1, B1) ∧ (A2, B2) = (A1 ∩A2, (B1 ∪B2)′′);

(A1, B1) ∨ (A2, B2) = ((A1 ∪A2)′′, B1 ∩B2).

For each g ∈ G, the concept γg := (g′′, g′) is called the object concept

of G and for each m ∈ M , the concept µm := (m′,m′′) is called the attribute

concept of m. We call a context clarified if g, h ∈ G with g′ = h′ implies g = h and

m,n ∈M with m′ = n′ implies m = n. A clarified context is called reduced if each

object concept is completely join-irreducible and each attribute concept is completely

meet-irreducible. For each context K := (G,M, I), every g ∈ G and m ∈ M , we

define:

g ↙ m⇔ g\Im and (g′ ⊂ h′ ⇒ m ∈ h′);

g ↗ m⇔ g\Im and (m′ ⊂ n′ ⇒ g ∈ n′);

g ↙↗ m⇔ g ↙ m and g ↗ m.

We call two contexts K1 and K2 isomorphic if there are bijective maps

α : G1 → G2 and β : M1 → M2 such that for all g ∈ G1 and m ∈ M1, the following

condition is fulfilled:

gI1m⇔ α(g)I2β(m).

For each H ⊆ G and N ⊆ M , the context (H,N, I ∩ (H × N)) is called a

subcontext of K. This subcontext is compatible if (A,B) ∈ B(K) implies (A ∩

H,B ∩N) ∈ B(H,N, I ∩ (H ×N)).
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Proposition 2.1. A subcontext (H,N, I ∩ (H × N)) of K is compatible if

and only if

ΠH,N : B(K) → B(H,N, I ∩ (H ×N)) with (A,B) 7→ (A ∩H,B ∩N)

is a surjective complete lattice homomorphism.

A subcontext (H,N, I ∩ (H × N)) of a purified context K is called arrow–

closed if for h ∈ H, the relation h ↙ m implies m ∈ N and for n ∈ N , the relation

g ↗ n implies g ∈ H.

A topological context is called a standard topological context if in addi-

tion the following hold:

(R) KT is reduced;

(S) gIm⇒ ∃(A,B) ∈ BT (KT ) with g ∈ A and m ∈ B;

(Q) ({I, (ρ×σ)|{I) is a quasicompact space where {I := (G×M)\I and ρ×σ

denotes the product topology on G×M .

Let now L be a 0–1 lattice. A nonempty lattice filter F of L is called an

I-maximal filter [Ur78] if there exists a nonempty lattice ideal I of L such that

F ∩ I = ∅ and every proper superfilter F̃ ⊃ F already contains an element of I. We

denote the set of all I-maximal proper filters of L by F0(L). Dually, the set I0(L) of all

F-maximal ideals is introduced. The dual space of L, called the standard topological

context of L is defined by

KT (L) := ((F0(L), ρ0), (I0(L), σ0),∆)

where F∆I :⇔ F ∩ I 6= ∅ and the topologies ρ0 and σ0 are given by the subbasis

Sρ0 := {Fa| a ∈ L};Fa := {F ∈ F0(L)| a ∈ F},

Sσ0 := {Ia| a ∈ L}; Ia := {I ∈ I0(L)| a ∈ I}.

KT (L) is the reduced context of all filters and ideals of L and it is a standard topo-

logical context. The 0–1 lattice L is isomorphic to BT (KT (L)) via the isomorphism

ιA : L→ BT (KT (L)); ιA(a) = (Fa, Ia).

Conversely, every standard topological context KT is isomorphic to

KT (BT (KT )) via the pair of homeomorphisms

ψKT : G→ F0(BT (KT )), g 7→ {(A,B) ∈ BT (KT )|g ∈ A},
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φKT : M → I0(BT (KT )), m 7→ {(A,B) ∈ BT (KT )|m ∈ B}.

Let KT
1 and KT

2 be standard topological contexts. A pair of maps (α, β) with

α : G1 → G2 and β : M1 → M2 is called a context embedding of KT
1 into KT

2 if

the contexts KT
1 and ((α(G1), ρ2|α(G1)), (β(M1), σ2|β(M1)), I2 ∩ (α(G1)× β(M1))) are

isomorphic as topological contexts with respect to (α, β).

If KT is a topological context, a subcontext ((H, ρ|H), N, σ|N ), I ∩H × N))

is called weakly compatible if

(A,B) ∈ BT (KT ) ⇒ (A ∩H,B ∩N) ∈ B(H,N, I ∩ (H ×N)).

A context embedding (α, β) between two standard topological contexts KT
1

and KT
2 is called a standard embedding of KT

1 into KT
2 if the following conditions

are satisfied:

(a) ((α(G1), ρ2|α(G1)), (β(M1), σ2|β(M1)), I2 ∩ (α(G1) × β(M1))) is a weakly

compatible subcontext of KT
2;

(b) For (A,B) ∈ BT (KT
1), there exists (C,D) ∈ BT (KT

2) such that

(α(A), β(B)) = ((C ∩ α(G1)), (D ∩ β(M1))).

Preimages of I-maximal filters (resp. ideals) are not maximal again, so we

have to define appropriate morphisms between standard topological contexts to im-

prove a categorical dual equivalence between the category of bounded lattices and the

category of standard topological contexts.

A multivalued function F : X → Y from a set X to a set Y is a binary

relation F ⊆ X × Y such that prX(F ) = X, where prX denotes the projection onto

X. For A ⊆ X and B ⊆ Y we define
FA := prY (F ∩ (A× Y )) = {y ∈ Y | (a, y) ∈ F for some a ∈ A};

F−1B := prX(F ∩ (X ×B)) = {x ∈ X | (x, b) ∈ F for some b ∈ B};

F [−1]B := {x ∈ X | Fx ⊆ B}.
Note that FA =

⋃
a∈A Fa and F−1B =

⋃
b∈B F

−1b. If F : X → Y and

G : Y → Z are multivalued functions their relational product

G ◦ F := {(x, z) ∈ X × Z | (x, y) ∈ F and (y, z) ∈ G for some y ∈ Y }

is a multivalued function from X to Z.
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We shall call a multivalued standard morphism from KT
1 to KT

2 a pair

(R,S) : KT
1 → KT

2, where KT
1 and KT

2 are standard topological contexts, R is a mul-

tivalued function from G1 to G2 and S is a multivalued function from M1 to M2

satisfying the following conditions:

(i) (R[−1]A,S[−1]B) ∈ BT (KT
1) for every (A,B) ∈ BT (KT

2);

(ii) Rg = Rg′′ = Rg for every g ∈ G1 and

Sm = Sm′′ = Sm for every m ∈M1.

Remark 1. Condition (ii) can be understood in lattice theoretical terms.

Every element g ∈ G1 correspond to exactly one I-maximal filter of BT (KT
1). The

demand on Rg to be a closed extent means that Rg corresponds to a lattice filter of

BT (KT
2).

Every multivalued standard morphism induces a 0-1 lattice homomorphism

and vice versa. In order to make this assignment functorial we have to modify the rela-

tional composition of multivalued standard morphisms, since the relational composi-

tion of two multivalued standard morphisms is not necessarily a multivalued standard

morphism.

Let (R1, S1) : KT
1 → KT

2 and (R2, S2) : KT
2 → KT

3 be multivalued standard

morphisms between standard topological contexts. We define

(R2, S2)�(R1, S1) := (R2�R1, S2�S1)

where

(R2�R1)g1 := ((R2 ◦R1)g1)′′ and (S2�S1)m1 := ((S2 ◦ S1)m1)′′

and ◦ denotes the relational product, i.e.

(R2 ◦R1)g1 := {g3 ∈ G3 | g3 ∈ R2g2 for some g2 ∈ R1g1} and, dually,

(S2 ◦ S1)g1 := {m3 ∈M3 | m3 ∈ S2m2 for some m2 ∈ S1m1}.

The class of all standard topological contexts together with the multivalued

standard morphisms with � as composition yields a category which is dually equiva-

lent to the category of 0-1 lattices with 0-1 lattice homomorphisms.
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3. Standard Topological Contexts with Pseudometric

If we want to represent several classes of ordered algebraic structures, stan-

dard topological contexts are the best tool to do this. On the other hand, if we want

to approximate objects by their attributes in a given formal context, we have to mod-

ify this approach towards a topological formal concept analysis and to investigate a

generalization on formal contexts of the classical notion of a metric (see [Sa00b]).

Definition 3.1. Let G and M be two sets. We call pseudometric between

G and M a map d : G×M → R satisfying the following rectangle condition:

(R) d(g,m) ≤ d(g, n) + d(h,m) + d(h, n), g, h ∈ G, m, n ∈M,

and, for every g ∈ G and ε > 0, there is an attribute m ∈M with d(g,m) < ε. Dually,

for every m ∈M and every ε > 0, there is an object g ∈ G with d(g,m) < ε.

If d is a pseudometric between G and M , then d∨ : G × G → R defined

by d∨(g, h) := infm∈M (d(g,m) + d(h,m)), g, h ∈ G is a pseudometric on G. Dually,

d∧ : M ×M → R defined by d∧(m,n) := infg∈G(d(g,m) + d(g, n)),m, n ∈ M is a

pseudometric on M .

Definition 3.2. A formal context K := (G,M, I) is called a pseudometric

context if there is a pseudometric d : G×M → R between G and M satisfying the

following two conditions, called ε-conditions:

∀ε ≥ 0 ∀g ∈ G ∃m ∈M : gIm and d(g,m) < ε,

∀ε ≥ 0 ∀m ∈M ∃g ∈ G : gIm and d(g,m) < ε.

We shall call a pseudometric context standard if d(A,B) = inf{d(a, b) | a ∈

A, b ∈ B} = 0 for every concept (A,B) of K.

Let K := (G,M, I; d) be a pseudometric context. We consider G and M as

topological spaces with the pseudometric topology given by d∨ and d∧, respectively.

As we have seen before, a topological context is a triple (G,M, I) where G and M

are topological spaces and I ⊆ G ×M is a binary relation between them, satisfying

some compatibility conditions with the topologies on G and M . If in addition the

topological context satisfies some separation and compactness properties, it is called

a standard topological context and it was shown by G. Hartung that the category of

standard topological contexts is dual equivalent to that of 0–1 lattices.

95



CHRISTIAN SĂCĂREA

A question arises naturally: what are the connections between pseudometric

contexts and standard topological ones? As in the topological algebra, there are

two possibilities. On the one hand, we can demand that the topologies on G and

M are generated by the pseudometrics induced by d. We shall call such a context a

compatible pseudometric context, i.e., KT := ((G, Td∨), (M, Td∧ , I) is a standard

topological context where Td∨ denotes the pseudometric topology on G, and Td∧

denotes the pseudometric topology on M .

On the other hand, we can simply consider standard topological contexts

with pseudometric, i.e., no compatibility conditions between the topologies on G

and M and the given pseudometric are required.

In the following we shall investigate the categories of standard topological

contexts with a compatible pseudometric or not and we shall take a look whether an

extension of the Hartung duality to the pseudometric case is possible or not. Beside of

this extension, we are mainly interested on how some properties of pseudometric lat-

tice homomorphisms are reflected into the properties of standard topological context

morphisms.

Remark 2. Before starting these investigations, remember that R can be

understood as the concept lattice of the context (Q,Q,≤). Since (Q, d) is a metric

space, where d is the natural metric on Q, then (Q,Q,≤) is a metric context. The

metric on R ' B(Q,Q,≤) can be understood as a kind of ”reflection” of the contex-

tual metric d on (Q,Q,≤) on the concept lattice. The following Lemma ([Sa00b])

synthesizes this phenomenon in its full generality.

Lemma 3.1. Let K := (G,M, I; ρ) be a pseudometric context. The map

d : B(G,M, I)× B(G,M, I) → R, defined by

d((A,B), (C,D)) := max{ρ(A,D), ρ(C,B)},

is a pseudometric on B(G,M, I), the concept lattice of K.

Let K1 := (G1,M1, I1; d1) and K2 := (G2,M2, I2; d2) be standard topological

contexts with pseudometric. A morphism between them is defined as a pair of mul-

tivalued functions R : G1 → G2 and S : M1 →M2 (i.e., R and S are binary relations

on G1 × G2 and M1 ×M2, respectively, satisfying prG1
R = G1 and prM1

S = M1)

with the properties:
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(i) (R[−1]A,S[−1]B) ∈ BT (KT
1 ) for every (A,B) ∈ BT (KT

2 );

(ii) Rg = Rg′′ = Rg for every g ∈ G1, and

Sm = Sm′′ = Sm for every m ∈M1;

(iii) d2(Rg, Sm) ≤ d1(g,m) for every g ∈ G1 and m ∈M1.

The pair (R,S) will be called multivalued pseudometric morphism.

Lemma 3.2. The class of all standard topological contexts with pseudometric

together with the multivalued pseudometric morphisms between them yields a category

denoted by TopCond. The class of all compatible pseudometric contexts is a full

subcategory CCM of TopCond.

Proof. Let K := (G,M, I; d) be a pseudometric context, the identity (Re, Se)

where Re : G → G and Se : M → M are defined by Reg := g′′ and Sem := m′′,

respectively, is a multivalued standard morphism. Since d(Reg, Sem) = d(g′′,m′′) ≤

d(g,m) for every g ∈ G and m ∈ M , we conclude that (Re, Se) is a multivalued

pseudometric morphism, i.e., the identity in the category of standard topological

contexts is also identity in TopCond.

Let now (R1, S1) : (K1, d1) → (K2, d2) and (R2, S2) : (K2, d2) →

(K3, d3) be multivalued metric morphisms. We shall prove that their composition

(R2, S2)�(R1, S1) := (R2�R1, S2�S1) is again a multivalued pseudometric mor-

phism.

By definition of �, (R2�R1)g1 := ((R2 ◦ R1)g1)′′ for every g1 ∈ G1. Dually,

we have (S2�S1)m1 := ((S2 ◦ S1)m1)′′ for every m2 ∈M2. The following holds:

d3((R2�R1)g1, (S2�S1)m1) = d3(((R2 ◦R1)g1)′′, ((S2 ◦ S1)m1)′′)

≤ d3((R2 ◦R1)g1, (S2 ◦ S1)m1)

= d3(R2(R1g1), S2(S1m1))

= d3({g3 ∈ G3 | g3 ∈ R2g2 for some g2 ∈ R1g1},

{m3 ∈M3 | m3 ∈ R2m2 for some m2 ∈ R1m1}).

But (R1, S1) and (R2, S2) are multivalued pseudometric morphisms, and so

d2(R1g1, S1m1) ≤ d1(g1,m1) for every g1 ∈ G1 and m1 ∈M1

d3(R2g2, S2m2) ≤ d2(g2,m2) for every g2 ∈ G2 and m2 ∈M2.
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For every g2 ∈ R1g1 and m2 ∈ S1m1, we have d3(R2g2, S2m2) ≤ d2(g2,m2) which

implies

d3(R2(R1g1), S2(S1m1)) = d3(
⋃

g2∈R1g1

R2g2,
⋃

m2∈S1m1

S2m2)

= inf{d3(g3,m3) | g3 ∈
⋃

g2∈R1g1

R2g2,

m3 ∈
⋃

m2∈S1m1

S2m2}

≤ inf{d3(g3,m3) | g3 ∈ R2g2,m3 ∈ S2m2},

for every g2 ∈ R1g1 and every m2 ∈ S1m1

= d3(R2g2, S2m2) for every g2 ∈ R1g1,m2 ∈ S1m1

≤ d2(g2,m2) for every g2 ∈ R1g1,m2 ∈ S1m1.

Hence d3(R2(R1g1), S2(S1m1)) ≤ inf{d2(g2,m2) | g2 ∈ R1g1,m2 ∈ S1m1} =

d2(R1g1, S1m1) ≤ d1(g1,m1). Since associativity is naturally inherited, the above

condition completes our proof. �

Lemma 3.3. If (L, ρ) is a 0-1-lattice and ρ : L × L → R is a pseudometric

on L, then KT (L), the standard topological context of L, is a standard pseudometric

context.

Proof. As we have seen before, to every 0-1-lattice L, we can define a standard

topological context denoted by KT (L) := (F0(L), I0(L),∆) where F∆I :⇔ F ∩I 6= ∅.

We shall define a pseudometric d : F0(L)×I0(L) → R on KT (L), by d(F, I) :=

inf{ρ(g,m) | g ∈ F,m ∈ I} = ρ(F, I). Let F ∈ F0(L). Then d(F, F ′) = d(F, {I ∈

I0(L) | F ∩ I 6= ∅}) = 0 since d(F, I) = 0 for every I ∈ I0(L) with F ∩ I 6= ∅, i.e.,

I ∈ F ′. Let us prove the rectangle inequality for d. Let (F, I), (F, J), (K,J) and

(K, I) in F0(L)× I0(L) be arbitrary chosen. We have to prove that

d(F, I) ≤ d(F, J) + d(K,J) + d(K, I).
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Then

d(F, I) = inf{ρ(f, i) | f ∈ F, i ∈ I}

≤ inf{ρ(f, i) + ρ(k, j) + ρ(k, i) | f ∈ F, i ∈ I} for j ∈ J, k ∈ K

≤ inf{ρ(f, i) + ρ(k, j) + ρ(k, i) | f ∈ F, i ∈ I, j ∈ J, k ∈ K}

≤ inf{ρ(f, i) | f ∈ F, i ∈ I}+ inf{ρ(k, j) | k ∈ K, j ∈ J}

+ inf{ρ(k, i) | k ∈ K, i ∈ I}

= d(F, J) + d(K,J) + d(K, I).

If (A,B) ∈ B(KT (L)), we conclude that d(A,B) = 0 by the definition of the

incidence relation and of the set distance; hence (KT (L), d) is a standard pseudometric

context. �

Remark 3. Since d∨ is the pseudometric induced on F0(L) by d, we have

d∨(F1, F2) = inf{d(F1, I) + d(F2, I) | I ∈ I0}; hence we conclude that generally, the

pseudometric d∨ does not induce the topology on F0(L) (which has as subbasis of

closed sets the family {Fa | a ∈ L}, where Fa := {F ∈ F0(L) | a ∈ F}). Indeed, for

two filters F1, F2 ∈ F0(L) we will often be able to find an ideal I ∈ I0(L) which has

a non empty intersection to F1 and F2 and therefore d∨(F1, F2) = 0.

In the following we shall consider only the case where KT is a standard

topological context with pseudometric. Let KT := (G,M, I) be a standard topological

context and let (Pε)ε≥0 be a family of non empty relations, Pε ⊆ G×M with ε ≥ 0,

which are satisfying the following conditions:

(M ′) Pε(x, y) → Pδ(x, y), δ ≥ ε

Pε ∧ Pδ(k, z) ∧ Pη(k, y) → Pε+δ+η(x, y).

(M∞) ∀δ ≥ ε : Pδ(x, y) → Pε(x, y), ε ≥ 0.

(M0) ∀g ∀ε ∃m : Pε(x, y).

A morphism (R,S) : (KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0 has to satisfy the following

compatibility condition

(C) Pε(g1,m1) ⇒ ∃g2 ∈ Rg1 ∃m2 ∈ Sm1 : Qε(g2,m2), ε ≥ 0.
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Lemma 3.4. The class of multicontexts (KT , Pε)ε≥0, where KT is a standard

topological context and (Pε)ε≥0 a family of binary relations on G × M satisfying

(M ′), (M∞) and (M0), together with the multivalued standard morphisms which are

satisfying condition (C) yields a category denoted by TopConε.

Proof. Let ε ≥ 0 be arbitrary chosen and KT be a standard topological context.

The identity morphism (Rε, Sε) : KT → KT where Reg := g′′ and Sem := m′′ is

obviously satisfying condition (C). Let us now consider (R1, S1) : (KT
1 , Pε)ε≥0 →

(KT
2 , Qε)ε≥0 and (R2, S2) : (KT

2 , Qε)ε≥0 → (KT
3 , Rε)ε≥0 two morphisms between ob-

jects in TopConε. We shall prove that their composition in Topcon, i.e., (R2, S2)�

(R1, S1) = (R2�R1, S2�S1) is a morphism between objects of TopConε, i.e.,

Pε(g1,m1) ⇒ ∃g3 ∈ (R2�R1)g1 ∃m3 ∈ (S2�S1)m : Rε(g3,m3).

Since the given morphisms are satisfying condition (C) and, by definition,

(R2�R1)g1 := ((R2 ◦ R1)g1)′′ and (S2�S1)m1 = ((S2�S1)m1)′′, we conclude that

Pε(g1,m1) implies the existence of a g2 ∈ R1g1 and an m2 ∈ S1m1 with Qε(g2,m2),

which implies the existence of elements g3 ∈ R2(R1g1) and m3 ∈ S2(S1m1) with

Rε(g3,m3). Since g3 ∈ R2(R1g1) ⊆ (R2 ◦ R1)g′′1 and m3 ∈ S2(S1m1) ⊆ (S2 ◦ S1)m′′
1

our proof is complete. �

Proposition 3.5. The category TopCond of standard topological contexts

with pseudometric is equivalent to TopConε.

Proof. Let F : TopCond → TopConε defined on objects by F (KT , d) =

(KT , Pε)ε≥0 and on morphisms in an obvious way. The functor F is obviously faithful.

Let (R,S) : F (KT
1 , d1) → F (KT

2 , d2) be a morphism of TopConε, that means (R,S) :

(KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0. We only have to prove that d2(Rg1, Sm1) ≤ d1(g1,m1)

for every g1 ∈ G1 and m1 ∈M1.

Let g1 ∈ G1 and m1 ∈ M1 be arbitrary chosen and define ε := d1(g1,m1).

It follows that Pε(g1,m1) and by (C), there is a g2 ∈ Rg1 and an m2 ∈ Sm1

with Qε(g2,m2), i.e., d2(g2,m2) ≤ ε. Hence d2(Rg1, Sm1) = inf{d2(g2,m2) | g2 ∈

Rg1,m2 ∈ Sm1} ≤ ε, i.e., F is full.

If (KT , Pε)ε≥0 is an object in TopConε, we define a pseudometric d : G ×

M → [0,+∞] by d(g,m) := inf{δ ≥ 0 | Pδ(g,m)}. As we have seen in the precedent

section, d is well-defined and is a pseudometric between G and M . Hence, we have
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found an object (KT , d) in TopCond with F (KT , d) ∼= (KT , Pε)ε≥0 which concludes

the proof. �

We shall now investigate whether the duality between standard topological

contexts and 0–1 lattices can be extended to the metric case. Even this will not

be generally true, it is of interest to investigate how some properties of morphisms

between pseudometric 0–1 lattices are reflected in the category TopCond as equivalent

properties of standard multivalued morphisms.

Let (R,S) : (KT
1, d1) → (KT

2, d2) be a morphism in TopCond. This morphism

induces fRS : (BT (KT
2 ), ρ2) → (BT (KT

1 ), ρ1) a 0–1 lattice homomorphism defined by

fRS(A,B) = (R[−1]A,S[−1]B) where R[−1]A = {g1 ∈ G1 | Rg1 ⊆ A} and S[−1]B =

{m1 ∈M1 | Sm1 ⊆ D}. By definition,

ρ1(fRS(A,B), fRS(C,D)) = ρ1((R[−1]A, S[−1]B), (R[−1]C,S[−1]D)

= max{d1(R[−1]A,S[−1]D), d1(R[−1]C,S[−1]B)}.

The morphism (R,S) is in TopCond, i.e., it satisfies d2(Rg1, Sm1) ≤ d1(g1,m1) for

every g1 ∈ G1 and m1 ∈ M1; hence d1(g1,m1) ≥ d2(Rg1, Sm1) ≥ d2(A,D) for every

g1 ∈ R[−1]A and every m ∈ S[−1]D, and so d1(R[−1]A,S[−1]D) ≥ d2(A,D). By a

similar calculus, we obtain d1(R[−1]C,S[−1]B) ≥ d2(C,B) which implies the following

inequality:

ρ1(fRS(A,B), fRS(C,D)) ≥ ρ2((A,B), (C,D)).

As we can see, condition (iii) has as consequence that on the “lattice side”

the mappings are not the usually contractions. To avoid this, we will impose for

context morphisms the following compatibility condition

(iv) d1(R−1g2, S
−1m2) ≤ d2(g2,m2) for every g2 ∈ G2 and m2 ∈M2.

In fact, let (R,S) : (KT
1 , d1) → (KT

2 , d2) be such a morphism and consider

fRS : (BT (KT
2 ), ρ2) → (BT (KT

1 ), ρ1) the induced 0–1 lattice homomorphism. Then

ρ1(fRS(A,B), fRS(C,D)) = max{d1(R[−1]A,S[−1]D), d1(R[−1]C,S[−1]B)}.
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Since R[−1]A = {g1 ∈ G1 | Rg1 ⊆ A} where A ⊆ G2, we have R[−1]A =⋃
T⊆A,T 6=∅

⋂
a∈T R

−1a and S[−1]D =
⋃

T ′⊆D,T ′ 6=∅
⋂

d∈T ′ S
−1d. It follows

d1(R[−1]A,S[−1]D) = d1(
⋃

T⊆A,T 6=∅

⋂
a∈T

R−1a,
⋃

T ′⊆D,T ′ 6=∅

⋂
d∈T ′

S−1d)

≤ d1(
⋂
a∈T

R−1a,
⋂

d∈T ′

S−1d)

for every non empty subsets T ⊆ A and T ′ ⊆ D. Choose T := {a} with a ∈ A and

T ′ := {d} with d ∈ D, then

d1(R[−1]A,S[−1]D) ≤ d1(R−1a, S−1d) ≤ d2(a, d)

for every a ∈ A and d ∈ D; hence d1(R[−1]A,S[−1]D) ≤ d2(A,D).

Analogously, we are able to prove that d1(R[−1]C,S[−1]B) ≤ d2(C,B); hence

fRS is a contraction.

Remark 4. The dual inequality to (iv), i.e.,

d1(R−1g2, S
−1m2) ≥ d2(g2,m2)

implies (iii). Indeed, for every g1 ∈ G1 and m1 ∈M1, we have

d2(Rg1, Sm1) = inf d2(g2,m2) ≤ inf d1(R−1g2, S
−1m2) ≤ d1(g1,m1).

Lemma 3.6. The class of standard topological contexts with metric together

with all multivalued standard morphisms between them satisfying condition (iv) yields

a category denoted by TopCon′d.

Proof. The unit morphism (Re, Se) : (KT , d) → (KT , d) defined by Reg := g′′

and Sem := m′′ satisfies (C ′), since R−1
e h = {g ∈ G | h ∈ g′′} and S−1

e n = {m ∈

M | n ∈ m′′}. In particular, h ∈ R−1h and n ∈ S−1n, hence d(R−1
e h, S−1

e n) ≤ d(h, n)

for every h ∈ G and n ∈M .

Let (R1, S1) : (KT
1 , d1) → (KT

2 , d2) and (R2, S2) : (KT
2 , d2) → (KT

3 , d3) be

two multivalued standard morphisms which are satisfying (iv). We shall prove that

their composition (R2, S2)�(R1, S1) = (R2�R1, S2�S1) : (KT
1 , d1) → (KT

2 , d2) is also

satisfying (iv).
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For g3 ∈ G3 and m3 ∈M3 we have

(R2�R1)−1g3 = {g1 ∈ G1 | g3 ∈ ((R2 ◦R1)g1)′′}

⊇ {g1 ∈ G1 | g3 ∈ R2(R1g1)}

= {g1 ∈ G1 | g1 ∈ (R2 ◦R1)−1g3}

= {g1 ∈ G1 | g1 ∈ R−1
1 (R−1

2 g3))}

= {g1 ∈ G1 | ∃g2 ∈ G2 : (g2, g1) ∈ R−1, (g3, g2) ∈ R−1
2 }

= {g1 ∈ G1 | ∃g2 ∈ G2 : g1 ∈ R−1
1 g2, g2 ∈ R−1

2 g3}.

In a similar manner, we are able to prove that

(S2�S1)−1m3 ⊇ {m1 ∈M1 | ∃m2 ∈M2 : m1 ∈ S−1m2,m2 ∈ S−1
2 m3},

hence

d1((R2�R1)−1g3, (S2�S1)−1m3)

≤ d1({g1 ∈ G1 | ∃g2 ∈ G2 : g1 ∈ R−1
1 g2, g2 ∈ R−1

2 g3},

{m1 ∈M1 | ∃m2 ∈M2 : m1 ∈ S−1
1 m2, m2 ∈ S−1

2 m2})

= inf{d1(g1,m1) | ∃g2 ∈ G2 : g1 ∈ R−1
1 g2, g2 ∈ R−1

2 g3,

∃m2 ∈M2 : m1 ∈ S−1
1 m2,m2 ∈ S−1

2 m3}

= inf{d1(R−1
1 g2, S

−1
2 m2) | g2 ∈ R−1

2 g3,m2 ∈ S−1
2 m3}

≤ inf{d2(g2,m2) | g2 ∈ R−1
2 g3,m2 ∈ S−1

2 m3}

= d2(R−1
2 g3, S

−1
2 m3) ≤ d3(g3,m3).

�

If we split again the pseudometric d : G×M → [0,+∞] in the family of re-

lations (Pε)ε≥0, compatibility condition (C ′) for (R,S) : (KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0

changes to

(C ′) Qε(g2,m2) ⇒ ∃g1 ∈ R−1g2 ∃m1 ∈ S−1m2 : Pε(g1,m1).

Lemma 3.7. The class of multicontexts (KT , Pε)ε≥0, where KT is a standard

topological context and Pε is a binary relation between the object and the attribute
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set of KT satisfying axioms (M ′), (M0) and (M∞) is the object class of a category

denoted TopCon′ε, whose morphisms are the multivalued standard morphisms which

are satisfying (C ′).

Proof. The identity (Re, Se) is obviously a morphism in TopCon′ε. Let (R1, S1) :

(KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0 and (R2, S2) : (KT
2 , Qε)ε≥0 → (KT

3 , Rε)ε≥0 be morphisms

in TopCon′ε. Their composition is again in TopCon′ε. To see this, let g3 ∈ G3 and

m3 ∈ M3 with Rε(g3,m3). Then there are g2 ∈ R−1
2 g3 and m2 ∈ S−1

2 m3 with

Qε(g2,m2), hence there are g1 ∈ R−1
1 g2 and m1 ∈ S−1

1 m2 with Pε(g1,m1). Now,

g1 ∈ R−1
1 g2 ⊆ (R2 ◦R1)−1g3 ⊆ (R2�R1)−1g3,

m1 ∈ S−1
1 m2 ⊆ (S2 ◦ S − 1)−1m3 ⊆ (S2�S1)′m3

which completes the proof. �

Proceeding in a similar manner as before, we can prove the following Lemma:

Lemma 3.8. The categories TopCon′d and TopCon′ε are equivalent.

Let us denote the functors from the Hartung duality by T and S. The functor

T : Lat→ TopCon is defined on objects by T(L) = KT (L) and for any morphism

f : L1 → L2, the image of f by T is a multivalued standard morphism Tf : KT (L2) →

KT (L1) defined by Tf = (Rf , Sf ) where

Rf ⊆ F0(L2)×F0(L1), (F2, F1) ∈ Rf ⇔ f−1(F2) ⊆ F1,

Sf ⊆ I0(L2)× I0(L1), (I2, I1) ∈ Sf ⇔ f−1(I2) ⊆ I1.

The functor S is defined on objects by S(KT ) := BT (KT ) and for every multival-

ued standard morphism (R,S) : KT
1 → KT

2, the image of (R,S) by S is a 0-1-

lattice homomorphism S : BT (KT
2) → BT (KT

1) is defined by S(R,S) := fRS where

fRS(A,B) := (R[−1]A,S[−1]B) for all closed concepts (A,B) in KT
2.

As we have seen before, the restriction of S to the metric case, S : TopCond →

Latd, is well-defined, the morphisms in Latd being the expansive mappings with

respect to the correspondent pseudometric of a lattice L in Latd.

Consider now f : (L1, ρ1) → (L2, ρ2) satisfying ρ2(f(x), f(y)) ≥ ρ1(x, y) for

every x, y ∈ L1. Then d1(F1, I1) ≤ d2(f(F1), f(I1)) ≤ d2(F2, I2) for all F2 ∈ R−1
f F1

and I2 ∈ S−1
f I1 since (F2, F1) ∈ Rf is equivalent to F2 ⊆ f(F1), and (I2, I1) ∈ Sf is

equivalent to I2 ⊆ f(I1). It follows that d1(F1, I1) ≤ d2(R−1
f F1, S

−1
f I1). Moreover,
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d1(RfF2, SfI2) = inf d1(F1, I1) ≤ inf d2(f(F1), f(I1)) ≤ d2(F2, I2) which proves that

if we consider expansive mappings as morphisms between metric lattices, both (iii)

and the dual of (iv) are satisfied, i.e., the restriction of T to the metric case T :

Latd → TopCond is also well-defined.

Example:

Let us consider the following lattice the metric being labeled on its Hesse-

diagram, the morphism f being given by arrows:

As one can easily check, f is an expansion. Now

R−1
f = {F2 ∈ F0(L2) | (F2, F1) ∈ Rf}

= {F2 ∈ F0(L2) | f−1(F2) ⊆ F1}

= {F2, F3, [1)}

and, dually, S−1
f (I1) = {I2, I3, (0]}. As we can easily see, d2(F2, I2) = 4, d1(F1, I1) = 3

i.e., the dual of (iv) (and so (iii)) is satisfied.

Remark 5. While dealing with mappings between (pseudo)metric spaces,

contractions are more often used as expansive maps. We are considering expansions in

this section in order to give a necessary condition that the isomorphisms ι : (L, ρ) →
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(BT (KT (L)), d) and (Rα, Sβ) : (KT , d) → (KT (BT (KT )), ρ) belong to the considered

categories.

Unfortunately, the map ι : (L, ρ) → (BT (KT (L)), d) even if an isomorphism in

Lat, fails to be an isomorphism in Latd (i.e., a bijective isometry). Indeed, d(ιa, ιb) =

d((Fa, Ia), (Fb, Ib)) = max{ρ(Fa, Ib), ρ(Fb, Ib)} ≤ ρ(a, b) for every a, b ∈ L. Obviously,

ι can not generally be an isometry and so the categories Latd and TopCond fails to

be dual equivalent.

On the other hand, consider (KT , d) a standard topological context in

TopCond. Then (Rα1 , Sβ1) : (KT , d) → (KT (BT (KT )), ρ) is a multivalued pseu-

dometric morphism. Indeed, consider F ∈ F0(BT (KT )) and I ∈ I0(BT (KT )). Then

for every g ∈ R−1
α F and m ∈ S−1

β I,

ρ(F, I) = ρ(α(g)′′, β(m)′′) ≤ ρ(α(g), β(m)) ≤ σ((A,B), (C,D))

for every (A,B) ∈ BT (KT ) with g ∈ A, and every (C,D) ∈ BT (KT ) with m ∈ D.

Since σ((A,B), (C,D)) = max{d(A,D), d(C,B)}, choose for (A,B) := (G, ∅) and

for (C,D) := (∅,M). Then d(C,B) = 0 and d(A,D) ≤ d(g,m). It follows that

ρ(F, I) ≤ d(R−1
α F, S−1

β I), i.e., the dual of (iv) which then implies (iii).

Remark 6. Generally, (Rα, Sβ) can not be an isomorphism in TopCond

since from the above calculus we deduce that ρ(F, I) = 0 for every F ∈ F0(BT (KT ))

and I ∈ I0(BT (KT )), and so T and S are failing even to be adjoint.

Even if contractions or expansions between pseudometric spaces have proved

their usefulness several times, for example in establishing a duality between pseu-

dometric complete lattices and pseudometric contexts, the condition that a map is

expansive is too strong in order to obtain a categorical duality or an adjoint situa-

tion between the restrictions of the two functors T and S to the (pseudo)metric case.

More general, the most used morphisms between pseudometric spaces are continuous

maps. In the following we shall define the analogous concept in the case of standard

topological contexts with pseudometric.

Definition 3.3. The multivalued standard morphism (R,S) : (KT
1, d1) →

(KT
2, d2) between two standard topological contexts with pseudometric is called pseu-

dometric continuous if for every ε > 0 and every g2 ∈ G2, there is a δ > 0 so that

for every m2 ∈M2, with d2(g2,m2) < δ, we have d1(R−1g2, S
−1m2) < ε.
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The morphism (R,S) is called pseudometric uniformously continuous if

for every ε > 0, every g2 ∈ G2 and m2 ∈M2 there is a δ > 0 such that d2(g2,m2) < δ

implies d1(R−1g2, S
−1m2) < ε.

We shall denote the category of standard topological contexts with pseudo-

metric with pseudometric continuous morphisms by TCd and that of pseudometric

lattices with continuous lattice homomorphism by Ld and we shall prove that the re-

strictions of the well-known functors T and S of the Hartung duality, T : Ld → TCd

and S : TCd → Ld, respectively, are well-defined. We have seen before that the object

maps of T and S, respectively, are well-defined.

Proposition 3.9. For every pseudometric continuous standard multivalued

morphism (R,S) : (KT
1, d1) → (KT

2, d2), the induced lattice morphism S(R,S) :=

fRS : (BT (KT
2), ρ2) → (BT (KT

1), ρ1) defined by fRS(A,B) := (R[−1]A,S[−1]B) is a

continuous mapping with respect to the metric topology of the correspondent concept

lattices.

Proof. Consider ε > 0 and (A,B) ∈ BT (KT
2). Then, for every a ∈ A,

there is a δ > 0 such that for every m2 ∈ M2 with d2(a,m2) < δ, we have that

d1(R−1a, S−1m2) < ε. Take a closed concept (C,D) ∈ BT (KT
2) whose distance to

(A,B) is less than δ, i.e., d2(A,D) < δ and d2(C,B) < δ. Then, for the chosen

a ∈ A, we shall find a d ∈ D with d2(a, d) < δ, hence d1(R−1a, S−1d) < ε. Since

d1(R[−1]A,S[−1]D) ≤ d1(R−1a, S−1d), it follows that d1(R[−1]A,S[−1]D) < ε. The

same holds for d1(R[−1]C,S[−1]B) concluding that ρ1(fRS(A,B), fRS(C,D)) < ε, i.e.,

fRS is continuous. �

Remark 7. Analogous arguments shows that if (R,S) is a pseudometric

uniformously continuous morphism, then the induced 0-1-lattice homomorphism fRS

is uniformously continuous too.

Proposition 3.10. For every continuous pseudometric 0-1-lattice homomor-

phism f : (L1, ρ1) → (L2, ρ2), the induced multivalued standard morphism (Rf , Sf ) :

(KT (L2), d2) → (KT (L1), d1) is pseudometric continuous.

Proof. Consider F1 ∈ F0(L1) and I1 ∈ I0(L1). Then, for every x ∈ F1, there

is a δ > 0 such that for every y ∈ L1 with ρ1(x, y) < δ, we have ρ2(f(x), f(y)) < ε.

Then, for every y ∈ I1 with ρ1(x, y) < δ, we have d1(F1, I1) < δ. By the definition of

R−1
f F1 and S−1

f I1, we obtain that d2(R−1
f F1, S

−1
f I1) < ε. �
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Remark 8. If f is uniformously continuous then (Rf , Sf ) is pseudometric

uniformously continuous too.

The above results say nothing else than the restriction of the two functors to

the pseudometric continuous case are well-defined.

Consider now ι : (L, ρ) → (BT (KT (L)), d) defined by ιa := (Fa, Ia). In order

to prove the continuity of ι we have to show that for every ε > 0 and every a ∈ L, there

is a δ > 0 such that for every b ∈ L with ρ(a, b) < δ, we have d((Fa, Ia), (Fb, Ib)) < ε.

By definition, d((Fa, Ia), (Fb, Ib)) := max{σ(Fa, Ib), σ(Fb, Ib)} < ε if and only

if σ(Fa, Ib) = inf ρ(F, I) < ε. It follows that there is an F ∈ Fa and an I ∈ Ib with

ρ(F, I) < ε.

On the other hand, since a ∈ F and b ∈ I, we conclude that ρ(F, I) ≤ ρ(a, b).

Choose δ := ε, hence ι is continuous. Moreover, since δ do not depend on a ∈ L,

we can conclude that ι is uniformously continuous. As one can easily see, ι is not a

homeomorphism, hence the categories TCd and Ld are not dual equivalent.

The same holds for (Rα, Sβ) : (KT , d) → (KT (BT (KT )), ρ). Since the pseu-

dometric ρ on KT (BT (KT )) is the trivial one, and since there are several examples

of pseudometrics on KT which are not trivial, we conclude that (Rα−1 , Sβ−1), i.e.,

the inverse of (Rα, Sβ) in the category TopCond is pseudometric continuous (and

even more, pseudometric uniformously continuous), but (Rα, Sβ) itself is generally

not pseudometric continuous.
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