FIRST ORDER DIFFERENTIAL SUBORDINATIONS AND INEQUALITIES IN A BANACH SPACE

DORINA RĂDUCANU

Abstract. Let *E* be a complex Banach space and let $B = \{x \in E : \|x\| < 1\}$ be the unit ball in *E*. Let $p : B \to \mathbb{C}$ be holomorphic in *B* and let *q* be holomorphic and univalent in the unit disc *U*. We prove that if *p* satisfies some differential subordinations and inequalities, then $p(B) \subset q(U)$. Applications of these results are presented.

1. Introduction

S. Gong and S.S. Miller [1] have dealt with holomorphic functions defined on a complete circular domain in \mathbb{C}^n , which satisfy certain partial differential inequalities or subordinations. In this paper we consider similar relationships for holomorphic functions from the unit ball B into \mathbb{C} .

The following sets $\{x \in E : ||x|| < r \le 1\}$ and $\{x \in E : ||x|| \le r \le 1\}$ will be denoted B_r , respectively \overline{B}_r .

Let $H(B_r)$, $r \in (0,1]$ be the class of functions $f : B_r \to \mathbb{C}$ that are holomorphic in B_r , i.e. have the Fréchet derivative f'(x) in each point $x \in B_r$.

2. First order differential subordinations

Lemma 1. Let $r_0 \in (0,1)$ and let $f \in H(\overline{B}_{r_0})$ with f(0) = 0 and $f(x) \neq 0$. If $x_0 \in \overline{B}_{r_0}$ and

$$|f(x_0)| = \max\{|f(x)|: \ x \in \overline{B}_{r_0}\}$$
(1)

then there exists $m \in \mathbb{C}$ with $\operatorname{Re} m \geq 1$ such that

$$f'(x_0)(x_0) = mf(x_0).$$
 (2)

DORINA RĂDUCANU

Proof. We have $zx \in B_{r_0}$ for all $z \in U$ and $x \in \overline{B}_{r_0}$. We consider the function $g(z) = \frac{f(zx_0)}{f(x_0)}$, for $z \in U$. From (1) we obtain

$$|g(z)| = \left|\frac{f(zx_0)}{f(x_0)}\right| < 1, \text{ for all } z \in U.$$

Since g(0) = 0, we can apply Schwarz's lemma to obtain $|g(z)| \le |z|, z \in U$

and thus

$$\left|\frac{f(zx_0)}{f(x_0)}\right| \le |z|, \quad \text{for} \quad z \in U.$$

At the point $z = r, r \in (0, 1)$ we have

$$\operatorname{Re} \frac{f(rx_0)}{f(x_0)} \le r. \tag{3}$$

A simple calculation leads to

$$\frac{f'(x_0)(x_0)}{f(x_0)} = \frac{d}{dr} \left[\frac{f(rx_0)}{f(x_0)} \right] \bigg|_{r=1} = \lim_{r \nearrow 1} \frac{f(rx_0) - f(x_0)}{(r-1)f(x_0)} = \lim_{r \nearrow 1} \left[1 - \frac{f(rx_0)}{f(x_0)} \right] \frac{1}{1-r}.$$

Taking real parts and using (3) we obtain

Re
$$\frac{f'(x_0)(x_0)}{f(x_0)} \ge \lim_{r \nearrow 1} (1-r) \frac{1}{1-r} = 1,$$

which proves the lemma.

We will extend the ideas in Lemma 1, but first we need to consider the following class of functions.

Definition 1. We denote by Q the set of functions q that are analytic and injective on $\overline{U} \setminus E(q)$, where $E(q) = \{\zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty\}$ and are such that $q'(\zeta) \neq 0$, for $\zeta \in \partial U \setminus E(q)$.

Lemma 2. Let $q \in Q$ and let $p \in H(B)$ with p(0) = q(0). If $p(B) \not\subset q(U)$ then there exist $r_0 \in (0,1)$, $x_0 \in \overline{B}_{r_0}$ and $\zeta_0 \in \partial U \setminus E(q)$ such that

(*i*) $p(x_0) = q(\zeta_0)$

(*ii*) $p'(x_0)(x_0) = m\zeta_0 q'(\zeta_0)$, where Re $m \ge 1$.

Proof. Since p(0) = q(0) and $p(B) \not\subset q(U)$ there exists $r_0 \in (0,1)$ such that $p(B_{r_0}) \subset q(U)$ and $p(\overline{B}_{r_0}) \cap q(\partial U) \setminus E(q) \neq \emptyset$. Hence there exist $x_0 \in \overline{B}_{r_0}$ and $\zeta_0 \in \partial U \setminus E(q)$ such that $p(x_0) = q(\zeta_0)$. If we let $f(x) = q^{-1}(p(x))$, for $x \in \overline{B}_{r_0}$, then f is holomorphic in \overline{B}_{r_0} and satisfies $|f(x_0)| = |\zeta_0| = 1$, f(0) = 0 and $|f(x)| \leq 1$, for $x \in \overline{B}_{r_0}$. Thus f satisfies the conditions of Lemma 1 and we obtain that there eixsts $m \in \mathbb{C}$, with Re $m \geq 1$ such that $f'(x_0)(x_0) = mf(x_0)$. Since 84

p(x) = q(f(x)), we have p'(x) = q'(f(x))f'(x) and using $\zeta_0 = f(x_0)$, we obtain $p'(x_0)(x_0) = q'(f(x_0))f'(x_0)(x_0) = m\zeta_0q'(\zeta_0)$.

Definition 2. Let Ω be a set in \mathbb{C} , $q \in Q$. We define $\psi[\Omega, q]$ to be the class of functions $\psi : \mathbb{C}^2 \times B \to \mathbb{C}$ that satisfy the condition:

 $\psi(r,s;x)\not\in\Omega,\quad\text{whenever}\quad r=q(\zeta),\quad s=m\zeta q'(\zeta),$

 $x \in B$, $\zeta \in \partial U \setminus E(q)$ and Re $m \ge 1$.

We are now prepared to present the main result of this section.

Theorem 1. Let $\psi \in \psi[\Omega, q]$. If $p \in H(B)$ with p(0) = q(0) and if p satisfies

 $\psi(p(x), p'(x)(x); x) \in \Omega, \quad for \quad x \in B$ (4)

then $p(B) \subset q(U)$.

Proof. Assume $p(B) \not\subset q(U)$. By Lemma 2 there exist $x_0 \in B$, $\zeta_0 \in \partial U \setminus E(q)$ and $m \in \mathbb{C}$ with Re $m \ge 1$ that satisfy (i), (ii) of Lemma 2. Using these conditions with $r = p(x_0)$, $s = p'(x_0)(x_0)$ and $x = x_0$ in Definition 2 we obtain

$$\psi(p(x_0), p'(x_0)(x_0); x_0) \notin \Omega$$

Since this contradicts (4) we must have $p(B) \subset q(U)$.

We next apply Theorem 1 to two important particular cases corresponding to q(U) being the unit disc and q(U) being the right half-plane.

If we take q(z) = z in Definition 2 and Theorem 1 we obtain the following result.

Corollary 1. Let Ω be a set in \mathbb{C} and let $\psi : \mathbb{C}^2 \times B \to \mathbb{C}$ be such that $\psi(e^{i\theta}; me^{i\theta}; x) \notin \Omega$, whenever $x \in B$, $\theta \in \mathbb{R}$ and $\text{Re } m \ge 1$. (5) If $p \in H(B)$ with p(0) = 0 and if p satisfies

$$\psi(p(x), p'(x)(x); x) \in \Omega, \quad for \quad x \in B$$

then |p(x)| < 1, for $x \in B$.

If we take $q(z) = \frac{1+z}{1-z}$ in Definition 2 and Theorem 1 we obtain: **Corollary 2.** Let Ω be a set in \mathbb{C} and let $\psi : \mathbb{C}^2 \times B \to \mathbb{C}$ be such that $\psi(ai, s; x) \notin \Omega$, whenever $x \in B$, $a \in \mathbb{R}$, and $\operatorname{Re} s \leq -\frac{1+a^2}{2}$. (6)

85

If
$$p \in H(B)$$
 with $p(0) = 1$ and if p satisfies

$$\psi(p(x), p'(x)(x); x) \in \Omega, \quad for \quad x \in B$$

then Re p(x) > 0, for $x \in B$.

3. Examples

In this section we present a series of examples of differential inequalities by applying the two corollaries of the previous section.

Example 1. Let $\Omega = U$ and let $\psi(r, s; x) = \alpha(|r| + |s|) + \beta ||x||$, where $\alpha \ge \frac{1}{2}$ and $\beta \ge 0$. If $p \in H(B)$ with p(0) = 0, then

$$\alpha(|p(x)| + |p'(x)(x)|) + \beta ||x|| < 1 \implies |p(x)| < 1.$$

Proof. To use Corollary 1 we need to shoe that the condition (5) is satisfied. This follows since

$$|\psi(e^{i\theta}, me^{i\theta}; x)| = \left|\alpha(1+|m|) + \beta \|x\|\right| \ge \alpha(1+|m|) \ge \alpha(1+\operatorname{Re}\,m) \ge 2\alpha \ge 1.$$

Remark. When $\alpha = \frac{1}{2}$ and $\beta = 0$ we have

$$|p(x)| + |p'(x)(x)| < 2 \implies |p(x)| < 1.$$

The proof of the following example also follows from Corollary 1.

Example 2. Let $\Omega = U$ and let $\psi(r,s;x) = \alpha(x)r + \beta s$, where $\beta \ge 0$ and $\alpha : B \to \mathbb{C}$ such that Re $\alpha(x) \ge 1 - \beta$. If $p \in H(B)$ with p(0) = 0, then

$$|\alpha(x)p(x) + \beta p'(x)(x)| < 1 \implies |p(x)| < 1.$$

Example 3. Let $\Omega = \{z \in \mathbb{C} : \text{Re } z > 0\}$ and let $\psi(r, s; x) = r^2 + s$. If $p \in \mathcal{H}(B)$ with p(0) = 1, then

Re
$$[p^2(x) + p'(x)(x)] > 0 \implies$$
 Re $p(x) > 0$.

Proof. To use Corollary 2 we need to show that the condition (6) is satisfied. This follows since

Re
$$\psi(ai, s; x) = -a^2 + \text{Re } s \le \frac{-3a^2 - 1}{2} < 0.$$

The proof of the following example also follows from Corollary 2.

86

Example 4. Let $\Omega = \{z \in \mathbb{C} : \text{Re } z > 0\}$ and let $\psi(r, s; x) = \alpha(x)r + \beta s$, where $\beta \ge 0$ and $\alpha : B \to \mathbb{C}$ such that $|\text{Im } \alpha(x)| \le \beta$. If $p \in H(B)$ with p(0) = 1, then

 $\operatorname{Re}\left[\alpha(x)p(x) + \beta p'(x)(x)\right] > 0 \implies \operatorname{Re}p(x) > 0.$

References

- S. Gong, S.S. Miller, Partial differential subordinations and inequalities defined on complex circular domains, Comm. in Partial Diff. Equations, 11(1986), 1243-1255.
- [2] E. Janiec, On starlike and convex maps of a Banach space into the complex plane, Demonstratio Math. 2(1994), XXVII, 2(1994), 511-516.
- [3] Miller, S.S., Mocanu, P.T., The theory and applications of second-order differential subordinations, Studia Math., 34, 4(1989), 3-33.
- [4] Sălăgean, G.S., Wiesler, H., Jack's Lemma for holomorphic vector-valued functions, Mathematica, 23(46), 1(1981), 85-90.

FACULTY OF SCIENCES, "TRANSILVANIA" UNIVERSITY, 2200 BRAŞOV, ROMANIA