FIRST ORDER DIFFERENTIAL SUBORDINATIONS AND INEQUALITIES IN A BANACH SPACE

DORINA RĂDUCANU

Abstract

Let E be a complex Banach space and let $B=\{x \in E$ $\|x\|<1\}$ be the unit ball in E. Let $p: B \rightarrow \mathbb{C}$ be holomorphic in B and let q be holomorphic and univalent in the unit disc U. We prove that if p satisfies some differential subordinations and inequalities, then $p(B) \subset q(U)$. Applications of these results are presented.

1. Introduction

S. Gong and S.S. Miller [1] have dealt with holomorphic functions defined on a complete circular domain in \mathbb{C}^{n}, which satisfy certain partial differential inequalities or subordinations. In this paper we consider similar relationships for holomorphic functions from the unit ball B into \mathbb{C}.

The following sets $\{x \in E:\|x\|<r \leq 1\}$ and $\{x \in E:\|x\| \leq r \leq 1\}$ will be denoted B_{r}, respectively \bar{B}_{r}.

Let $H\left(B_{r}\right), r \in(0,1]$ be the class of functions $f: B_{r} \rightarrow \mathbb{C}$ that are holomorphic in B_{r}, i.e. have the Fréchet derivative $f^{\prime}(x)$ in each point $x \in B_{r}$.

2. First order differential subordinations

Lemma 1. Let $r_{0} \in(0,1)$ and let $f \in H\left(\bar{B}_{r_{0}}\right)$ with $f(0)=0$ and $f(x) \not \equiv 0$.
If $x_{0} \in \bar{B}_{r_{0}}$ and

$$
\begin{equation*}
\left|f\left(x_{0}\right)\right|=\max \left\{|f(x)|: x \in \bar{B}_{r_{0}}\right\} \tag{1}
\end{equation*}
$$

then there exists $m \in \mathbb{C}$ with $\operatorname{Re} m \geq 1$ such that

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)\left(x_{0}\right)=m f\left(x_{0}\right) \tag{2}
\end{equation*}
$$

Proof. We have $z x \in B_{r_{0}}$ for all $z \in U$ and $x \in \bar{B}_{r_{0}}$. We consider the function $g(z)=\frac{f\left(z x_{0}\right)}{f\left(x_{0}\right)}$, for $z \in U$. From (1) we obtain

$$
|g(z)|=\left|\frac{f\left(z x_{0}\right)}{f\left(x_{0}\right)}\right|<1, \quad \text { for all } \quad z \in U
$$

Since $g(0)=0$, we can apply Schwarz's lemma to obtain $|g(z)| \leq|z|, z \in U$ and thus

$$
\left|\frac{f\left(z x_{0}\right)}{f\left(x_{0}\right)}\right| \leq|z|, \quad \text { for } \quad z \in U .
$$

At the point $z=r, r \in(0,1)$ we have

$$
\begin{equation*}
\operatorname{Re} \frac{f\left(r x_{0}\right)}{f\left(x_{0}\right)} \leq r \tag{3}
\end{equation*}
$$

A simple calculation leads to

$$
\frac{f^{\prime}\left(x_{0}\right)\left(x_{0}\right)}{f\left(x_{0}\right)}=\left.\frac{d}{d r}\left[\frac{f\left(r x_{0}\right)}{f\left(x_{0}\right)}\right]\right|_{r=1}=\lim _{r \nmid 1} \frac{f\left(r x_{0}\right)-f\left(x_{0}\right)}{(r-1) f\left(x_{0}\right)}=\lim _{r \nearrow_{1}}\left[1-\frac{f\left(r x_{0}\right)}{f\left(x_{0}\right)}\right] \frac{1}{1-r} .
$$

Taking real parts and using (3) we obtain

$$
\operatorname{Re} \frac{f^{\prime}\left(x_{0}\right)\left(x_{0}\right)}{f\left(x_{0}\right)} \geq \lim _{r \nearrow 1}(1-r) \frac{1}{1-r}=1
$$

which proves the lemma.
We will extend the ideas in Lemma 1, but first we need to consider the following class of functions.

Definition 1. We denote by Q the set of functions q that are analytic and injective on $\bar{U} \backslash E(q)$, where $E(q)=\left\{\zeta \in \partial U: \lim _{z \rightarrow \zeta} q(z)=\infty\right\}$ and are such that $q^{\prime}(\zeta) \neq 0$, for $\zeta \in \partial U \backslash E(q)$.

Lemma 2. Let $q \in Q$ and let $p \in H(B)$ with $p(0)=q(0)$. If $p(B) \not \subset q(U)$ then there exist $r_{0} \in(0,1), x_{0} \in \bar{B}_{r_{0}}$ and $\zeta_{0} \in \partial U \backslash E(q)$ such that
(i) $p\left(x_{0}\right)=q\left(\zeta_{0}\right)$
(ii) $p^{\prime}\left(x_{0}\right)\left(x_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$, where $\operatorname{Re} m \geq 1$.

Proof. Since $p(0)=q(0)$ and $p(B) \not \subset q(U)$ there exists $r_{0} \in(0,1)$ such that $p\left(B_{r_{0}}\right) \subset q(U)$ and $p\left(\bar{B}_{r_{0}}\right) \cap q(\partial U) \backslash E(q) \neq \emptyset$. Hence there exist $x_{0} \in \bar{B}_{r_{0}}$ and $\zeta_{0} \in \partial U \backslash E(q)$ such that $p\left(x_{0}\right)=q\left(\zeta_{0}\right)$. If we let $f(x)=q^{-1}(p(x))$, for $x \in$ $\bar{B}_{r_{0}}$, then f is holomorphic in $\bar{B}_{r_{0}}$ and satisfies $\left|f\left(x_{0}\right)\right|=\left|\zeta_{0}\right|=1, f(0)=0$ and $|f(x)| \leq 1$, for $x \in \bar{B}_{r_{0}}$. Thus f satisfies the conditions of Lemma 1 and we obtain that there eixsts $m \in \mathbb{C}$, with $\operatorname{Re} m \geq 1$ such that $f^{\prime}\left(x_{0}\right)\left(x_{0}\right)=m f\left(x_{0}\right)$. Since
$p(x)=q(f(x))$, we have $p^{\prime}(x)=q^{\prime}(f(x)) f^{\prime}(x)$ and using $\zeta_{0}=f\left(x_{0}\right)$, we obtain $p^{\prime}\left(x_{0}\right)\left(x_{0}\right)=q^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)\left(x_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$.

Definition 2. Let Ω be a set in $\mathbb{C}, q \in Q$. We define $\psi[\Omega, q]$ to be the class of functions $\psi: \mathbb{C}^{2} \times B \rightarrow \mathbb{C}$ that satisfy the condition:

$$
\begin{gathered}
\psi(r, s ; x) \notin \Omega, \quad \text { whenever } \quad r=q(\zeta), \quad s=m \zeta q^{\prime}(\zeta), \\
x \in B, \quad \zeta \in \partial U \backslash E(q) \quad \text { and } \quad \operatorname{Re} m \geq 1 .
\end{gathered}
$$

We are now prepared to present the main result of this section.
Theorem 1. Let $\psi \in \psi[\Omega, q]$. If $p \in H(B)$ with $p(0)=q(0)$ and if p satisfies

$$
\begin{equation*}
\psi\left(p(x), p^{\prime}(x)(x) ; x\right) \in \Omega, \quad \text { for } \quad x \in B \tag{4}
\end{equation*}
$$

then $p(B) \subset q(U)$.
Proof. Assume $p(B) \not \subset q(U)$. By Lemma 2 there exist $x_{0} \in B, \zeta_{0} \in \partial U \backslash E(q)$ and $m \in \mathbb{C}$ with Re $m \geq 1$ that satisfy (i), (ii) of Lemma 2. Using these conditions with $r=p\left(x_{0}\right), s=p^{\prime}\left(x_{0}\right)\left(x_{0}\right)$ and $x=x_{0}$ in Definition 2 we obtain

$$
\psi\left(p\left(x_{0}\right), p^{\prime}\left(x_{0}\right)\left(x_{0}\right) ; x_{0}\right) \notin \Omega .
$$

Since this contradicts (4) we must have $p(B) \subset q(U)$.
We next apply Theorem 1 to two important particular cases corresponding to $q(U)$ being the unit disc and $q(U)$ being the right half-plane.

If we take $q(z)=z$ in Definition 2 and Theorem 1 we obtain the following result.

Corollary 1. Let Ω be a set in \mathbb{C} and let $\psi: \mathbb{C}^{2} \times B \rightarrow \mathbb{C}$ be such that
$\psi\left(e^{i \theta} ; m e^{i \theta} ; x\right) \notin \Omega, \quad$ whenever $\quad x \in B, \quad \theta \in \mathbb{R} \quad$ and $\quad \operatorname{Re} m \geq 1$.
If $p \in H(B)$ with $p(0)=0$ and if p satisfies

$$
\psi\left(p(x), p^{\prime}(x)(x) ; x\right) \in \Omega, \quad \text { for } \quad x \in B
$$

then $|p(x)|<1$, for $x \in B$.
If we take $q(z)=\frac{1+z}{1-z}$ in Definition 2 and Theorem 1 we obtain:
Corollary 2. Let Ω be a set in \mathbb{C} and let $\psi: \mathbb{C}^{2} \times B \rightarrow \mathbb{C}$ be such that
$\psi(a i, s ; x) \notin \Omega, \quad$ whenever $\quad x \in B, \quad a \in \mathbb{R}, \quad$ and $\quad \operatorname{Re} s \leq-\frac{1+a^{2}}{2}$.

If $p \in H(B)$ with $p(0)=1$ and if p satisfies

$$
\psi\left(p(x), p^{\prime}(x)(x) ; x\right) \in \Omega, \quad \text { for } \quad x \in B
$$

then $\operatorname{Re} p(x)>0$, for $x \in B$.

3. Examples

In this section we present a seris of examples of differential inequalities by applying the two corollaries of the previous section.

Example 1. Let $\Omega=U$ and let $\psi(r, s ; x)=\alpha(|r|+|s|)+\beta\|x\|$, where $\alpha \geq \frac{1}{2}$ and $\beta \geq 0$. If $p \in H(B)$ with $p(0)=0$, then

$$
\alpha\left(|p(x)|+\left|p^{\prime}(x)(x)\right|\right)+\beta\|x\|<1 \Rightarrow|p(x)|<1
$$

Proof. To use Corollary 1 we need to shoe that the condition (5) is satisfied.
This follows since

$$
\left|\psi\left(e^{i \theta}, m e^{i \theta} ; x\right)\right|=|\alpha(1+|m|)+\beta\|x\|| \geq \alpha(1+|m|) \geq \alpha(1+\operatorname{Re} m) \geq 2 \alpha \geq 1
$$

Remark. When $\alpha=\frac{1}{2}$ and $\beta=0$ we have

$$
|p(x)|+\left|p^{\prime}(x)(x)\right|<2 \Rightarrow|p(x)|<1
$$

The proof of the following example also follows from Corollary 1.
Example 2. Let $\Omega=U$ and let $\psi(r, s ; x)=\alpha(x) r+\beta s$, where $\beta \geq 0$ and $\alpha: B \rightarrow \mathbb{C}$ such that $\operatorname{Re} \alpha(x) \geq 1-\beta$. If $p \in H(B)$ with $p(0)=0$, then

$$
\left|\alpha(x) p(x)+\beta p^{\prime}(x)(x)\right|<1 \Rightarrow|p(x)|<1 .
$$

Example 3. Let $\Omega=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ and let $\psi(r, s ; x)=r^{2}+s$. If $p \in \mathcal{H}(B)$ with $p(0)=1$, then

$$
\operatorname{Re}\left[p^{2}(x)+p^{\prime}(x)(x)\right]>0 \Rightarrow \operatorname{Re} p(x)>0
$$

Proof. To use Corollary 2 we need to show that the condition (6) is satisfied.
This follows since

$$
\operatorname{Re} \psi(a i, s ; x)=-a^{2}+\operatorname{Re} s \leq \frac{-3 a^{2}-1}{2}<0
$$

The proof of the following example also follows from Corollary 2.

Example 4. Let $\Omega=\{z \in \mathbb{C}: \operatorname{Re} z>0\}$ and let $\psi(r, s ; x)=\alpha(x) r+\beta s$, where $\beta \geq 0$ and $\alpha: B \rightarrow \mathbb{C}$ such that $|\operatorname{Im} \alpha(x)| \leq \beta$. If $p \in H(B)$ with $p(0)=1$, then

$$
\operatorname{Re}\left[\alpha(x) p(x)+\beta p^{\prime}(x)(x)\right]>0 \Rightarrow \operatorname{Re} p(x)>0 .
$$

References

[1] S. Gong, S.S. Miller, Partial differential subordinations and inequalities defined on complex circular domains, Comm. in Partial Diff. Equations, 11(1986), 1243-1255.
[2] E. Janiec, On starlike and convex maps of a Banach space into the complex plane, Demonstratio Math. 2(1994), XXVII, 2(1994), 511-516.
[3] Miller, S.S., Mocanu, P.T., The theory and applications of second-order differential subordinations, Studia Math., 34, 4(1989), 3-33.
[4] Sălăgean, G.S., Wiesler, H., Jack's Lemma for holomorphic vector-valued functions, Mathematica, 23(46), 1(1981), 85-90.

Faculty of Sciences, "Transilvania" University, 2200 Braşov, Romania

