ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX ORDER

M. K. AOUF, H. E. DARWISH AND A. A. ATtiyA
Dedicated to Professor Petru T. Mocanu on his $70^{\text {th }}$ birthday

Abstract

We introduce a class, namely, $H_{n}(b, M)$ of certain analytic functions. For this class we determine sufficient condition in terms of coefficients, coefficient estimate, maximization theorem concerning the coefficients, and radius problem.

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the unit disc $U=\{z:|z|<1\}$. We use Ω to denote the class of functions $w(z)$ in U satisfying the conditions $w(0)=0$ and $|w(z)|<1$ for $z \in U$. For a function $f(z)$ in A, we define

$$
\begin{gather*}
D^{0} f(z)=f(z) \tag{1.2}\\
D^{1} f(z)=D f(z)=z f^{\prime}(z), \tag{1.3}
\end{gather*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N=\{1,2, \ldots,\}) \tag{1.4}
\end{equation*}
$$

The differential operator D^{n} was introduced by Salagean [11]. With the help of the differential operator D^{n}, we say that a function $f(z)$ belonging to A is in the

[^0]class $F_{n}(b, M)$ if and only if
\[

$$
\begin{equation*}
\left|\frac{b-1+\frac{D^{n+1} f(z)}{D^{n} f(z)}}{b}-M\right|<M, \quad z \in U, \tag{1.5}
\end{equation*}
$$

\]

where $M>\frac{1}{2}$ and $b \neq 0$, complex.
It follows by Kulshrestha [6] that $g(z) \in H_{0}(1, M)=F(1, M)$ if and only if for $z \in U$

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\frac{1+w(z)}{1-m w(z)} \tag{1.6}
\end{equation*}
$$

where $m=1-\frac{1}{M}\left(M>\frac{1}{2}\right)$ and $w(z) \in \Omega$.
One can easily show that $f(z) \in H_{n}(b, M)$ if and only if there is a function $g(z) \in H_{0}(1, M)=F(1, M)$ such that

$$
\begin{equation*}
D^{n} f(z)=z\left[\frac{g(z)}{z}\right]^{b} \tag{1.7}
\end{equation*}
$$

Thus from (1.6) and (1.7) it follows that $f(z) \in H_{n}(b, M)$ if and only if for $z \in U$

$$
\begin{equation*}
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{1+[b(1+m)-m] w(z)}{1-m w(z)} \tag{1.8}
\end{equation*}
$$

where $m=1-\frac{1}{M}\left(M>\frac{1}{2}\right)$ and $w(z) \in \Omega$.
By giving specific values to n, b and M, we obtain the following important subclasses studied by various authors in earlier works:
(1) $H_{0}(b, M)=F(b, M)$ (Nasr and Aouf [7]) and $H_{1}(b, M)=G(b, M)$ (Nasr and Aouf [8]).
(2) $H_{0}\left(\cos \lambda e^{-i \lambda}, M\right)=F_{\lambda, M}$ and $H_{1}\left(\cos \lambda e^{-i \lambda}, M\right)=G_{\lambda, M} \quad\left(|\lambda|<\frac{\pi}{2}\right)$ (Kulshrestha [4]).
(3) $H_{0}\left((1-\alpha) \cos \lambda e^{-i \lambda}, \infty\right)=S^{\lambda}(\alpha)\left(|\lambda|<\frac{\pi}{2}, 0 \leq \alpha<1\right)$ (Libera [6]) and $H_{1}\left((1-\alpha) \cos \lambda e^{-i \lambda}, \infty\right)=C^{\lambda}(\alpha)\left(|\lambda|<\frac{\pi}{2}, 0 \leq \alpha<1\right)$ (Chichra [3] and Sizuk [14]).
(4) $H_{0}(b, M)=S(1-b)$ (Nasr and Aouf [9]) and $H_{1}(b, M)=C(b)$ (Wiatrowski [15] and Nasr and Aouf [10]).
(5) $H_{0}\left((1-\alpha) \cos \lambda e^{-i \lambda}, M\right)=F_{M}(\lambda, \alpha)$ and $H_{1}\left((1-\alpha) \cos \lambda e^{-i \lambda}, M\right)=$ $G_{M}(\lambda, \alpha)\left(|\lambda|<\frac{\pi}{2}, 0 \leq \alpha<1\right)($ Aouf $[1,2])$.

ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX ORDER
(6) $H_{0}(1,1)=F(1,1)$ Singh [12] and $H_{0}(1, M)=F(1, M)$ (Singh and Singh [13]).

From the definitions of the classes $F(b, M)$ and $H_{n}(b, M)$, we observe that

$$
\begin{equation*}
f(z) \in H_{n}(b, M) \text { if and only if } D^{n} f(z) \in F(b, M) . \tag{1.9}
\end{equation*}
$$

The purpose of the present paper is to determine sufficient condition in terms of coefficients for function belong to $H_{n}(b, M)$, coefficient estimate, and maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$ on the class $H_{n}(b, M)$ for complex value of μ. Further we obtain the radius of disc in which $\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>0$, wherever $f(z)$ belongs to $H_{n}(b, M)$.
2. A sufficient condition for a function to be in $H_{n}(b, M)$

Theorem 1. Let the function $f(z)$ defined by (1.1) and let

$$
\begin{equation*}
\sum_{k=2}^{\infty}\{(k-1)+|b(1+m)+m(k-1)|\} k^{n}\left|a_{k}\right| \leq|b(1+m)|, \tag{2.1}
\end{equation*}
$$

holds, then $f(z)$ belongs to $H_{n}(b, M)$, where $m=1-\frac{1}{M}\left(M>\frac{1}{2}\right)$.
Proof. Suppose that the inequality (2.1) holds. Then we have for $z \in U$

$$
\begin{gathered}
\left|D^{n+1} f(z)-D^{n} f(z)\right|-\left|b(1+m) D^{n} f(z)+m\left(D^{n+1} f(z)-D^{n} f(z)\right)\right| \\
=\left|\sum_{k=2}^{\infty} k^{n}(k-1) a_{k} z^{k}\right|-\left|b(1+m)\left\{z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}\right\}+m \sum_{k=2}^{\infty} k^{n}(k-1) a_{k} z^{k}\right| \leq \\
\leq \sum_{k=2}^{\infty} k^{n}(k-1)\left|a_{k}\right| r^{k}-\left\{|b(1+m)| r-\sum_{k=2}^{\infty}|b(1+m)+m(k-1)| k^{n}\left|a_{k}\right| r^{k}\right\}= \\
=\sum_{k=2}^{\infty}\{(k-1)+|b(1+m)+m(k-1)|\} k^{n}\left|a_{k}\right| r^{k}-|b(1+m)| r .
\end{gathered}
$$

Letting $r \rightarrow{ }^{-} 1$, then we have

$$
\begin{aligned}
& \left|D^{n+1} f(z)-D^{n} f(z)\right|-\left|b(1+m) D^{n} f(z)+m\left(D^{n+1} f(z)-D^{n} f(z)\right)\right|= \\
& =\sum_{k=2}^{\infty}\{(k-1)+|b(1+m)+m(k-1)|\} k^{n}\left|a_{k}\right|-|b(1+m)| \leq 0, \text { by }(2.1)
\end{aligned}
$$

Hence it follows that

$$
\left|\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1}{b(1+m)+m\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right\}}\right|<1, \quad z \in U
$$

Letting

$$
w(z)=\frac{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1}{b(1+m)+m\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right\}}
$$

then $w(0)=0, w(z)$ is analytic in $|z|<1$ and $|w(z)|<1$. Hence we have

$$
\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{1+[b(1+m)-m] w(z)}{1-m w(z)}
$$

which shows that $f(z)$ belongs to $H_{n}(b, M)$.

3. Coefficient estimate

Theorem 2. Let the function $f(z)$ defined by (1.1) be in the class $H_{n}(b, M), z \in U$.
(a) If $2 m(k-1) \operatorname{Re}\{b\}>(k-1)^{2}(1-m)-|b|^{2}(1+m)$, let

$$
N=\left[\frac{2 m(k-1) \operatorname{Re}\{b\}}{(k-1)^{2}(1-m)-|b|^{2}(1+m)}\right], \quad k=2,3, \ldots, j-1 .
$$

Then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{1}{j^{n}(j-1)!} \prod_{k=2}^{j}|b(1+m)+(k-2) m|, \tag{3.1}
\end{equation*}
$$

for $j=2,3, \ldots, N+2$; and

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{1}{j^{n}(j-1)(N+1)!} \prod_{k=2}^{N+3}|b(1+m)+(k-2) m|, \quad j>N+2 . \tag{3.2}
\end{equation*}
$$

(b) If $2 m(k-1) \operatorname{Re}\{b\} \leq(k-1)^{2}(1-m)-|b|^{2}(1+m)$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{(1+m)|b|}{j^{n}(j-1)}, \text { for } j \geq 2, \tag{3.3}
\end{equation*}
$$

where $m=1-\frac{1}{M}\left(M>\frac{1}{2}\right)$ and $b \neq 0$, complex.
The inequalities (3.1) and (3.3) are sharp.
Proof. Since $f(z) \in H_{n}(b, M)$, so from (1.8) we have that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}(k-1) a_{k} z^{k}=\left\{b(1+m) z+\sum_{k=2}^{\infty} k^{n}[b(1+m)+m(k-1)] a_{k} z^{k}\right\} w(z) \tag{3.4}
\end{equation*}
$$

which is equivalent to

$$
\sum_{k=2}^{j} k^{n}(k-1) a_{k} z^{k}+\sum_{k=2}^{\infty} d_{k} z^{k}=
$$

ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX ORDER

$$
=\left\{b(1+m) z+\sum_{k=2}^{j-1} k^{n}[b(1+m)+m(k-1)]\right\} a_{k} z^{k} w(z),
$$

where d_{j} 's are some complex numbers.
Then since $|w(z)|<1$, we have

$$
\begin{gather*}
\left|\sum_{k=2}^{j} k^{n}(k-1) a_{k} z^{k}+\sum_{j=k+1}^{\infty} d_{k} z^{k}\right| \leq \\
\leq\left|b(1+m) z+\sum_{k=2}^{j-1} k^{n}[b(1+m)+m(k-1)] a_{k} z^{k}\right| . \tag{3.5}
\end{gather*}
$$

Squaring both sides of (3.5) and integrating round $|z|=r<1$, we get, after taking the limit when $r \rightarrow 1$

$$
\begin{gather*}
j^{2 n}(j-1)^{2}\left|a_{j}\right|^{2} \leq(1+m)^{2}|b|^{2}+ \\
+\sum_{k=2}^{j-1} k^{2 n}\left\{|b(1+m)+m(k-1)|^{2}-(k-1)^{2}\right\}\left|a_{k}\right|^{2} . \tag{3.6}
\end{gather*}
$$

Now there may be following two cases:
(a) Let $2 m(k-1) \operatorname{Re}\{b\}>(k-1)^{2}(1-m)-(1+m)|b|^{2}$. Suppose that $j \leq N+2$; then for $j=2,(3.7)$ gives

$$
\left|a_{2}\right| \leq \frac{(1+m)|b|}{2^{n}}
$$

which gives (3.1) for $j=2$. We establish (3.1), by mathematical induction. Suppose (3.1) is valid for $k=2,3, \ldots, j-1$. Then it follows from (3.6)

$$
\begin{gathered}
j^{2 n}(j-1)^{2}\left|a_{j}\right|^{2} \leq(1+m)^{2}|b|^{2}+ \\
+\sum_{k=2}^{j-1} k^{2 n}\left\{|b(1+m)+m(k-1)|^{2}-(k-1)^{2}\right\} \frac{1}{k^{2 n}((k-1)!)^{2}} \prod_{p=2}^{k}|b(1+m)+(p-2) m|^{2}= \\
=\frac{1}{((j-1)!)^{2}} \prod_{k=2}^{j}|b(1+m)+(k-2) m|^{2}
\end{gathered}
$$

Thus, we get

$$
\left|a_{j}\right| \leq \frac{1}{j^{n}(j-1)!} \prod_{k=2}^{j}|b(1+m)+(k-2) m|,
$$

which completes the proof of (3.1).
Next, we suppose $j>N+2$. Then (3.6) gives

$$
j^{2 n}(j-1)^{2}\left|a_{j}\right|^{2} \leq(1+m)^{2}|b|^{2}+
$$

M. K. AOUF, H. E. DARWISH AND A. A. ATTIYA

$$
\begin{gathered}
+\sum_{k=2}^{N+1} k^{2 n}\left\{|b(1+m)+m(k-1)|^{2}-(k-1)^{2}\right\}\left|a_{k}\right|^{2}+ \\
+\sum_{k=N+3}^{j-1} k^{2 n}\left\{|b(1+m)+m(k-1)|^{2}-(k-1)^{2}\right\}\left|a_{k}\right|^{2} \leq \\
\leq(1+m)^{2}|b|^{2}+\sum_{k=2}^{N+2}\left\{|b(1+m)+m(k-1)|^{2}-(k-1)^{2}\right\}\left|a_{k}\right|^{2} .
\end{gathered}
$$

On substituting upper estimates for $a_{2}, a_{3}, \ldots, a_{N+2}$ obtained above, and simplifying, we obtain (3.2).
(b) Let $2 m(k-1) \operatorname{Re}\{b\} \leq(k-1)^{2}(1-m)-(1+m)|b|^{2}$, then it follows from

$$
\begin{equation*}
j^{2 n}(j-1)^{2}\left|a_{j}\right|^{2} \leq(1+m)^{2}|b|^{2}, \quad(j \geq 2) \tag{2.7}
\end{equation*}
$$

which proves (3.3).
The bounds in (3.1) are sharp for the function $f(z)$ given by

$$
D^{n} f(z)= \begin{cases}\frac{z}{(1-m z)^{\frac{b(1+m)}{m}},} & m \neq 0 \tag{3.7}\\ z \exp (b z), & m=0\end{cases}
$$

The bounds in (3.3) are sharp for the function $f_{k}(z)$ given by

$$
D^{n} f_{k}(z)= \begin{cases}\frac{z}{\left(1-m z^{k-1}\right) \frac{b(1+m)}{m(k-1)}}, & m \neq 0 \tag{3.8}\\ z \exp \left(\frac{b}{k-1} z^{k-1}\right), & m=0\end{cases}
$$

4. Maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$

We shall need in our discussion the following lemma:
Lemma 1. [5] Let $w(z)=\sum_{k=1}^{\infty} c_{k} z^{k} \in \Omega$, if μ is any complex number, then

$$
\begin{equation*}
\left|c_{2}-\mu c_{1}^{2}\right| \leq \max \{1,|\mu|\} \tag{4.1}
\end{equation*}
$$

for any complex μ. Equality in (4.1) may be attained with the functions $w(z)=z^{2}$ and $w(z)=z$ for $|\mu|<1$ and $|\mu| \geq 1$, respectively.

ON A CLASS OF CERTAIN ANALYTIC FUNCTIONS OF COMPLEX ORDER

Theorem 3. If a function $f(z)$ defined by (1.1) is in the class $H_{n}(b, M)$ and μ is any complex number, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b(1+m)|}{2 \cdot 3^{n}} \max \{1,|d|\} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\frac{2 \cdot 3^{n} \mu b(1+m)}{2^{2 n}}-[b(1+m)+m] . \tag{4.3}
\end{equation*}
$$

The result is sharp.
Proof. Since $f(z) \in H_{n}(b, m)$, we have

$$
\begin{gather*}
w(z)=\frac{D^{n+1} f(z)-D^{n} f(z)}{[b(1+m)-m] D^{n} f(z)+m D^{n+1} f(z)}= \\
=\frac{\sum_{k=2}^{\infty} k^{n}(k-1) a_{k} z^{k-1}}{b(1+m)+\sum_{k=2}^{\infty} k^{n}[b(1+m)+m(k-1)] a_{k} z^{k-1}}= \\
=\frac{\sum_{k=2}^{\infty} k^{n}(k-1) a_{k} z^{k-1}}{b(1+m)}\left[1+\frac{\sum_{k=2}^{\infty} k^{n}[b(1+m)+m(k-1)] a_{k} z^{k-1}}{b(1+m)}\right]^{-1} . \tag{4.4}
\end{gather*}
$$

Now compare the coefficients of z and z^{2} on both sides of (4.4). We thus obtain

$$
\begin{equation*}
a_{2}=\frac{b(1+m)}{2^{n}} c_{1}, \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{3}=\frac{b(1+m)}{2 \cdot 3^{n}}\left\{c_{2}+[b(1+m)+m] c_{1}^{2}\right\} . \tag{4.6}
\end{equation*}
$$

Hence

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{b(1+m)}{2 \cdot 3^{n}}\left[c_{2}-d c_{1}^{2}\right], \tag{4.7}
\end{equation*}
$$

where

$$
d=\frac{2 \cdot 3^{n} \mu b(1+m)}{2^{2 n}}[b(1+m)+m] .
$$

Taking modulus both sides in (4.7), we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b(1+m)|}{2 \cdot 3^{n}}\left|c_{2}-d c_{1}^{2}\right| . \tag{4.8}
\end{equation*}
$$

Using Lemma 1 in (4.8), we have

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{|b(1+m)|}{2 \cdot 3^{n}} \max \{1,|d|\} .
$$

Finally, the assertion (4.2) of Theorem 3 is sharp in view of the fact that the assertion (4.1) of Lemma 1 is sharp.

5. Radius Theorem

The following theorem may be obtained with the help of (1.9) and Theorem 3 of Nasr and Aouf [7].

Theorem 4. Let the function $f(z)$ defined by (1.1) be in the class $H_{n}(b, M)$.
Then

$$
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>0 \text { for }|z|<r_{n}
$$

where

$$
\begin{equation*}
r_{n}=2\left\{|b|(1+m)+\left[|b|^{2}(1+m)^{2}-4\left\{\operatorname{Re}(b)\left(\frac{1+m}{m}\right)-1\right\}-1\right]^{\frac{1}{2}}\right\}^{-1} \tag{5.1}
\end{equation*}
$$

such that

$$
|b|^{2}(1+m)^{2} \geq 4\left\{\operatorname{Re}(b)\left(\frac{1+m}{m}\right)-1\right\} .
$$

The result is sharp for the function $f_{0}(t)$, where

$$
\begin{equation*}
D^{n} f_{0}(z)=z(1-m z)^{-b\left(\frac{1+m}{m}\right)} \tag{5.2}
\end{equation*}
$$

and

$$
t=\frac{r\left[r-m\left(\frac{\bar{b}}{b}\right)^{\frac{1}{2}}\right]}{m\left[1-m r\left(\frac{\bar{b}}{b}\right)^{\frac{1}{2}}\right]}
$$

Remarks on Theorem 4.

(i) Putting $n=0$, we get the sharp radius of starlikeness of the class $F(b, M)$ studied by Nasr and Aouf [7].
(ii) Putting $n=1$, we get the sharp radius of convexity of the class $G(b, M)$ which is investigated by Nasr and Aouf [8].

References

[1] M.K. Aouf, Bounded p-valent Robertson functions of order α, Indian P. Pure Appl. Math. 16(1985), 775-790.
[2] M.K. Aouf, Bounded spiral-like functions with fixed second coefficient, Internat. J. Math. Sci. 12(1989), no.1, 113-118.
[3] P.N. Chichra, Regular functions $f(z)$ for which $z f^{\prime}(z)$ is α-spirallike, Proc. Amer. Math. Soc. 49(1975), 151-160.
[4] P.K. Kulshrestha, Bounded Robertson functions, Rend. Mat. (7)9(1976), 137-150.
[5] F.R. Keogh and E.P. Merkes, A coefficient inequalitu for certain classes of analytic functions, Proc. Amer. Math. Soc. 20(1969).
[6] R.J. Libera, Univalent α-spiral functions, Canad. J. Math. 19(1967), 449-456.
[7] M.A. Nasr and M.K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. (Math. Sci.) 92(1983), 97-102.
[8] M.A. Nasr and M.K. Aouf, Bounded convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 10(1983), 513-527.
[9] M.A. Nasr and M.K. Aouf, Starlike functions of complex order, J. Natur. Sci. Math. 25(1985), 1-12.
[10] M.A. Nasr and M.K. Aouf, On convex functions of complex order, Bull. Fac. Sci. Mansoura Univ. 10(1983), 513-527.
[11] G.S. Salagean, Subclasses of univalent functions, Lecture Notes in Math. 1013, pp.362372, Springer-Verlag, Berlin, Heidelberg and New York.
[12] R. Singh, On a class of starlike functions, J. Math. Soc. 32(1968), 208-213.
[13] R. Singh and V. Singh, On a class of bounded starlike functions, Indian J. Pure Appl. Math. 5(1974), 733-754.
[14] P.I. Sizuk, Regular functions $f(z)$ for which $z f^{\prime}(z)$ is α-spirallike, Proc. Amer. Math. Soc. 49(1975), 151-160.
[15] P. Wiatrowski, The coefficients of a certain family of holomorphic functions, Zeszyty Nauk. Univ. Lodzk. Nauki. Math. Przyrod 39(1971), 75-85.

Department of Mathematics, Faculty of Science, University of
Mansoura, Mansoura, Egypt
E-mail address: sinfac@mum.mans.eun.eg

[^0]: 1991 Mathematics Subject Classification. 30C45.
 Key words and phrases. analytic, Salagean operator, complex order.

