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ON SOME CLASSES OF HOLOMORPHIC FUNCTIONS

DORINA RĂDUCANU

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. In this note we define two classes of functions, which are called

α-starlike and α-harmonic starlike and we obtain some properties concern-

ing these classes.

1. Introduction and preliminaries

Let Cn be the space of n-complex variables z = (z1, . . . , zn) with the

norm ‖z‖ = max
1≤k≤n

|zk|. The unit polydisc {z ∈ Cn : ‖z‖ < 1} is denoted by P .

Let H(P ) be the family of all holomorphic functions from P into C. The

Fréchet derivative of f ∈ H(P ) is

Df(z) =
(

∂f

∂z1
(z), . . . ,

∂f

∂zn
(z)

)
, z ∈ P

and D2f(z) =
(

∂2f

∂zk∂zj
(z)

)
1≤k,j≤n

is the Fréchet derivative of the second order of

f .

Let A denote the class of all functions f ∈ H(P ) which satisfy the conditions

f(0) = 0 and
∂f

∂zk
(0) = 1, 1 ≤ k ≤ n.

In several papers K. Dobrowolska, J. Dziubinski, R. Sitarski [1], [2] and E.

Janiec [4] have studied the subclasses of the class A consisting in starlike and convex

functions.

Let S∗(P ) be the class of all functions f ∈ A, f(z) 6= 0 for all z ∈ P \ {0},

satisfying the condition

Re
zDf(z)′

f(z)
> 0, for z ∈ P (1)
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where Df(z)′ is the transpose of Df(z). The functions of this class are called starlike

on P .

Let Sc(P ) be the class of all functions f ∈ A, zDf ′(z) 6= 0, z ∈ P \ {0}, for

which

Re

(
1 +

zD2f(z)z′

zDf(z)′

)
> 0, for z ∈ P (2)

where z′ is the transpose of z. The class Sc(P ) is the class of convex functions on P .

We shall use the following theorem to prove our results.

Theorem 1. [3] Let q be a holomorphic and univalent function on U = {z ∈

C : |z| ≤ 1} without at most one point ζ ∈ ∂U , which is a simple pole. Let p : P → C

be a holomorphic function on P with p(0) = q(0). If p(P ) 6⊂ q(U), then there exist

ζ0 ∈ ∂U , r0 ∈ (0, 1), z0 ∈ r0P and m ≥ 1 such that

p(z0) = q(ζ0) (3)

z0Df(z0)′ = mζ0q
′(ζ0) (4)

Re

(
1 +

z0D
2f(z0)z′0

z0Df(z0)′

)
≥ m Re

(
1 +

ζ0q
′′(ζ0)

q′(ζ0)

)
. (5)

2. Main results

Let α be a complex number. A function f ∈ A, f(z) 6= 0, z ∈ P \ {0} is

called α-starlike on P if the function

G(z) = (1− α)f(z) + αzDf(z)′, for z ∈ P (6)

is a starlike function on P . We denote by S∗
α(P ) the class of α-starlike functions on

P .

Since G ∈ S∗(P ), from (1) and (6) it follows that a function f is α-starlike

on P if

Re

[
p(z) + α

zDp(z)′

1− α + αp(z)

]
> 0, for all z ∈ P, (7)

where p(z) =
zDf(z)′

f(z)
.

The definitions of the classes S∗(P ), Sc(P ) and S∗
α(P ) imply immediately

S∗
0 (P ) = S∗(P ) and S∗

1 (P ) = Sc(P ).

Theorem 2. If f ∈ S∗
α(P ) and α ∈ C with

∣∣∣∣α− 1
2

∣∣∣∣ ≤ 1
2
, then f ∈ S∗(P ).
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Proof. We assume that Re
zDf(z)′

f(z)
6> 0 for some z ∈ P . Let q : U \{1} → C

be the function defined by q(z) =
1 + z

1− z
.

If p(z) =
zDf(z)′

f(z)
, z ∈ P then we have p(0) = q(0) = 1 and p(P ) 6⊂ q(U).

From Theorem 1 there exist ξ0 ∈ ∂U , r0 ∈ (0, 1) and z0 ∈ r0P such that p(z0) =

q(ζ0) and z0Dp(z0)′ = mζ0q
′(ζ0), m ≥ 1. It follows Rep(z0) = Re q(ζ0) = 0 and

z0Dp(z0)′ < 0. We obtain

Re

[
p(z0) + α

z0Dp(z0)′

1− α + αp(z0)

]
=

z0Dp(z0)′

|1− α + αp(z0)|2
Re(α− |α|2).

Since
∣∣∣∣α− 1

2

∣∣∣∣ ≤ 1
2 it follows Re

[
p(z0) +

αz0Dp(z0)′

1− α + αp(z0)

]
≤ 0 which contra-

dicts (7). We get Re
zDf(z)′

f(z)
> 0 for all z ∈ P and then f ∈ S∗(P ).

The notion of α-starlikeness was introduced with the help of the generalized

arithmetical mean of the functions f(z) and zDf(z)′. We now consider a new class

of functions using the generalized harmonic mean of the functions f(z) and zDf(z)′.

Let α be a complex number. The function f ∈ A, f(z) 6= 0, zDf(z)′ 6= 0 for

z ∈ P \ {0} is called α-harmonic starlike if the function F : P → C defined by

1
F (z)

=
1− α

f(z)
+

α

zDf(z)′
, for z ∈ P (8)

is a starlike function on P .

We denote by SH∗
α(P ) the class of α-harmonic starlike functions on P . We

have SH∗
0 (P ) = S∗(P ) and SH∗

1 (P ) = Sc(P ). Using (1) and (8) it follows that a

function f belongs to the class SH∗
α(P ) if

Re

[
p(z) +

zDp(z)′

p(z)
− (1− α)

zDp(z)′

α + (1− α)p(z)

]
> 0, for all z ∈ P, (9)

where p(z) =
zDf(z)′

f(z)
.

Theorem 3. If f ∈ SH∗
α(P ) and α ∈ C with

∣∣∣∣α− 1
2

∣∣∣∣ ≥ 1
2

then f ∈ S∗(P ).

The proof is similar with the proof of Theorem 2.

Remark. The classes S∗
α(P ) and SH∗

α(P ) are the extensions of the α-starlike

and α-harmonic starlike functions in the unit disc U = {z ∈ C : |z| < 1} which were

obtained by N.N. Pascu [5] and N.N. Pascu, D. Răducanu [6].

125



DORINA RĂDUCANU
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