ON SOME CLASSES OF HOLOMORPHIC FUNCTIONS

DORINA RĂDUCANU

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. In this note we define two classes of functions, which are called α -starlike and α -harmonic starlike and we obtain some properties concerning these classes.

1. Introduction and preliminaries

Let \mathbb{C}^n be the space of *n*-complex variables $z = (z_1, \ldots, z_n)$ with the norm $||z|| = \max_{1 \le k \le n} |z_k|$. The unit polydisc $\{z \in \mathbb{C}^n : ||z|| < 1\}$ is denoted by *P*.

Let H(P) be the family of all holomorphic functions from P into \mathbb{C} . The Fréchet derivative of $f \in H(P)$ is

$$Df(z) = \left(\frac{\partial f}{\partial z_1}(z), \dots, \frac{\partial f}{\partial z_n}(z)\right), \quad z \in P$$

and $D^2 f(z) = \left(\frac{\partial^2 f}{\partial z_k \partial z_j}(z)\right)_{1 \le k, j \le n}$ is the Fréchet derivative of the second order of f.

Let A denote the class of all functions $f \in H(P)$ which satisfy the conditions f(0) = 0 and $\frac{\partial f}{\partial z_k}(0) = 1, 1 \le k \le n$.

In several papers K. Dobrowolska, J. Dziubinski, R. Sitarski [1], [2] and E. Janiec [4] have studied the subclasses of the class A consisting in starlike and convex functions.

Let $S^*(P)$ be the class of all functions $f \in A$, $f(z) \neq 0$ for all $z \in P \setminus \{0\}$, satisfying the condition

$$Re\frac{zDf(z)'}{f(z)} > 0, \quad \text{for} \quad z \in P$$
 (1)

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish Seminar, Iaşi, 23-27 August 1999.

DORINA RĂDUCANU

where Df(z)' is the transpose of Df(z). The functions of this class are called starlike on P.

Let $S^c(P)$ be the class of all functions $f \in A$, $zDf'(z) \neq 0$, $z \in P \setminus \{0\}$, for which

$$Re\left(1 + \frac{zD^2f(z)z'}{zDf(z)'}\right) > 0, \quad \text{for} \quad z \in P$$
(2)

where z' is the transpose of z. The class $S^{c}(P)$ is the class of convex functions on P.

We shall use the following theorem to prove our results.

Theorem 1. [3] Let q be a holomorphic and univalent function on $\overline{U} = \{z \in \mathbb{C} : |z| \leq 1\}$ without at most one point $\zeta \in \partial U$, which is a simple pole. Let $p : P \to \mathbb{C}$ be a holomorphic function on P with p(0) = q(0). If $p(P) \not\subset q(U)$, then there exist $\zeta_0 \in \partial U$, $r_0 \in (0,1)$, $z_0 \in r_0 \overline{P}$ and $m \geq 1$ such that

$$p(z_0) = q(\zeta_0) \tag{3}$$

$$z_0 Df(z_0)' = m\zeta_0 q'(\zeta_0) \tag{4}$$

$$Re\left(1 + \frac{z_0 D^2 f(z_0) z'_0}{z_0 D f(z_0)'}\right) \ge m \, Re\left(1 + \frac{\zeta_0 q''(\zeta_0)}{q'(\zeta_0)}\right). \tag{5}$$

2. Main results

Let α be a complex number. A function $f \in A$, $f(z) \neq 0$, $z \in P \setminus \{0\}$ is called α -starlike on P if the function

$$G(z) = (1 - \alpha)f(z) + \alpha z D f(z)', \quad \text{for} \quad z \in P$$
(6)

is a starlike function on P. We denote by $S^*_{\alpha}(P)$ the class of α -starlike functions on P.

Since $G \in S^*(P)$, from (1) and (6) it follows that a function f is α -starlike on P if

$$Re\left[p(z) + \alpha \frac{zDp(z)'}{1 - \alpha + \alpha p(z)}\right] > 0, \quad \text{for all} \quad z \in P,$$

$$(7)$$

where $p(z) = \frac{zDf(z)'}{f(z)}$.

The definitions of the classes $S^*(P)$, $S^c(P)$ and $S^*_{\alpha}(P)$ imply immediately $S^*_0(P) = S^*(P)$ and $S^*_1(P) = S^c(P)$.

Theorem 2. If
$$f \in S^*_{\alpha}(P)$$
 and $\alpha \in \mathbb{C}$ with $\left|\alpha - \frac{1}{2}\right| \leq \frac{1}{2}$, then $f \in S^*(P)$.

124

Proof. We assume that $Re \frac{zDf(z)'}{f(z)} \neq 0$ for some $z \in P$. Let $q: \overline{U} \setminus \{1\} \to \mathbb{C}$ be the function defined by $q(z) = \frac{1+z}{1-z}$.

If $p(z) = \frac{zDf(z)'}{f(z)}$, $z \in P$ then we have p(0) = q(0) = 1 and $p(P) \not\subset q(U)$. From Theorem 1 there exist $\xi_0 \in \partial U$, $r_0 \in (0,1)$ and $z_0 \in r_0 \overline{P}$ such that $p(z_0) = q(\zeta_0)$ and $z_0 Dp(z_0)' = m\zeta_0 q'(\zeta_0)$, $m \ge 1$. It follows $\operatorname{Re} p(z_0) = \operatorname{Re} q(\zeta_0) = 0$ and $z_0 Dp(z_0)' < 0$. We obtain

$$Re\left[p(z_0) + \alpha \frac{z_0 Dp(z_0)'}{1 - \alpha + \alpha p(z_0)}\right] = \frac{z_0 Dp(z_0)'}{|1 - \alpha + \alpha p(z_0)|^2} Re(\alpha - |\alpha|^2).$$

Since $\left|\alpha - \frac{1}{2}\right| \le \frac{1}{2}$ it follows $Re\left[p(z_0) + \frac{\alpha z_0 Dp(z_0)'}{1 - \alpha + \alpha p(z_0)}\right] \le 0$ which contradicts (7). We get $Re\frac{zDf(z)'}{f(z)} > 0$ for all $z \in P$ and then $f \in S^*(P)$.

f(z)The notion of α -starlikeness was introduced with the help of the generalized arithmetical mean of the functions f(z) and zDf(z)'. We now consider a new class of functions using the generalized harmonic mean of the functions f(z) and zDf(z)'.

Let α be a complex number. The function $f \in A$, $f(z) \neq 0$, $zDf(z)' \neq 0$ for $z \in P \setminus \{0\}$ is called α -harmonic starlike if the function $F : P \to \mathbb{C}$ defined by

$$\frac{1}{F(z)} = \frac{1-\alpha}{f(z)} + \frac{\alpha}{zDf(z)'}, \quad \text{for} \quad z \in P$$
(8)

is a starlike function on P.

We denote by $SH^*_{\alpha}(P)$ the class of α -harmonic starlike functions on P. We have $SH^*_0(P) = S^*(P)$ and $SH^*_1(P) = S^c(P)$. Using (1) and (8) it follows that a function f belongs to the class $SH^*_{\alpha}(P)$ if

$$Re\left[p(z) + \frac{zDp(z)'}{p(z)} - (1-\alpha)\frac{zDp(z)'}{\alpha + (1-\alpha)p(z)}\right] > 0, \quad \text{for all} \quad z \in P,$$
(9)

where $p(z) = \frac{zDf(z)'}{f(z)}$.

Theorem 3. If $f \in SH^*_{\alpha}(P)$ and $\alpha \in \mathbb{C}$ with $\left|\alpha - \frac{1}{2}\right| \geq \frac{1}{2}$ then $f \in S^*(P)$. The proof is similar with the proof of Theorem 2.

Remark. The classes $S^*_{\alpha}(P)$ and $SH^*_{\alpha}(P)$ are the extensions of the α -starlike and α -harmonic starlike functions in the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ which were obtained by N.N. Pascu [5] and N.N. Pascu, D. Răducanu [6].

DORINA RĂDUCANU

References

- K. Dobrowolska, J. Dziubinski, On starlike and convex functions of many variables, Demonstratio Math. 11(1978).
- [2] J. Dziubinski, R. Sitarski, On classes of holomorphic functions of many variables starlike and convex on some hypersurfaces, Demonstratio Math. 13(1980).
- [3] S. Gong, S.S. Miller, Partial differential subordinations and inequalities defined on complex circular domains, Comm. in Partial Diff. Equations, 11(1986).
- [4] E. Janiec, On starlike and convex maps of a Banach space into the complex plane, Demonstratio Math. 2(1994).
- [5] N.N. Pascu, Alpha-starlike functions, Bull. Univ. Braşov, CXIX, 1977.
- [6] N.N. Pascu, D. Răducanu, Generalized means and generalized convexity, Seminar of Geometric Function Theory, Preprint 3(1993).

Department of Mathematics, Faculty of Sciences, "Transilvania" University of Braşov, Iuliu Maniu, 50, 2200 Braşov, Romania