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Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. The purpose of this paper is to present data dependence re-

sults for some multivalued weakly Picard operatorors such as: Reich-type

operators, graphic-contractions.

1. Introduction

The purpose of this paper is to study the following problem (see Lim [9], Rus

[21], Rus-Mureşan [23], etc).

Problem. Let (X, d) be a metric space and T1, T2 : X → P (X) two multivalued

operators. If the fixed points sets FT1 and FT2 are nonempty and there exists η > 0

such that H(T1(x), T2(x)) ≤ η, for all x ∈ X, estimate H(FT1 , FT2), where H is the

Hausdorff-Pompeiu generalized functional on P (X).

Throughout the paper we follow the terminologies and the notations from

Rus [20]. For the convenience of the reader, we recall some of them.

Let (X, d) be a metric space. We denote:

P (X) := {A|A is a nonempty subset of X}, Pcl(X) := {A ∈ P (X)|A - closed},

Pb(X) := {A ∈ P (X)| A− bounded}, Pcp(X) := {A ∈ P (X)|A - compact},

Pb,cl(X) := Pb(X) ∩ Pcl(X).

If A,B ∈ P (X), then we define the functional:

D(A,B) := inf{d(a, b)|a ∈ A, b ∈ B},
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and the following generalized functionals:

ρ(A,B) := sup{D(a,B)|a ∈ A}, H(A,B) := max{ρ(A,B), ρ(B,A)}.

In this note we need the following well known properties of the functionals D and H

(see Nadler [13], Reich [15], Rus [19], [20],...).

Lemma 1.1 Let A,B ∈ P (X) and q ∈ R, q > 1, be given.

Then for every a ∈ A, there exists b ∈ B such that d(a, b) ≤ qH(A,B).

Lemma 1.2. Let A,B ∈ P (X). We suppose that there exists η ∈ R, η > 0,

such that

( i) for each a ∈ A there is b ∈ B such that d(a, b) ≤ η;

( ii) for each b ∈ B there is a ∈ A such that d(a, b) ≤ η.

Then H(A,B) ≤ η.

Lemma 1.3. Let A ∈ P (X) and x ∈ X. Then D(x,A) = 0 iff x ∈ A.

If T : X → P (X) is a multivalued operator, then we denote by FT the fixed

points set of T , i. e.

FT := {x ∈ X|x ∈ T (x)}.

2. Multivalued weakly Picard operators

Let us start the section by recalling an important notion.

Definition 2.1. Let (X, d) be a metric space and T : X → Pcl(X) a multi-

valued operator. By definition, T is a weakly Picard operator (briefly w.P.o.) iff for

all x ∈ X and all y ∈ T (x), there exists a sequence (xn)n∈N such that:

( i) x0 = x, x1 = y,

( ii) xn+1 ∈ T (xn), for all n ∈ N,

( iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Remark 2.2. A sequence (xn)n∈N satisfying the condition ( ii) and ( iii),

in the Definition 2.1 is, by definition, a sequence of successive approximations of T

starting from x0.

Example 2.3. [see Rus [22]] If t : X → X is a singlevalued w.P.o., then

the multivalued operator T : X → Pcl(X), T (x) := {t(x)}, for each x ∈ X, is a

multivalued w.P.o.
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Example 2.4. Let ti : X → X, i ∈ {1, 2, . . . , n}, be singlevalued contrac-

tions. Then the multivalued operator T : X → Pcl(X), T (x) = {t1(x), . . . , tn(x)}, for

each x ∈ X, is a multivalued w.P.o.

Example 2.5. [see Covitz-Nadler [4] and Reich [15]] Let (X, d) be a com-

plete metric space and T : X → Pcl(X) be a multivalued contraction. Then T is a

multivalued w.P.o.

Other examples will be given in the next paragraphs.

3. Data dependence of the fixed points set of Reich-type operators

The first main result of this paper is the following:

Theorem 3.1. Let (X, d) be a complete metric space and T1, T2 : X →

Pcl(X), be two multivalued operators. We suppose that :

( i) there exist αi, βi, γi ∈ R+, αi + βi + γi < 1, such that

H(Ti(x), Ti(y)) ≤ αid(x, y) + βiD(x, Ti(x)) + γiD(y, Ti(y)),

for all x, y ∈ X and i ∈ {1, 2};

( ii) there exists η > 0 such that

H(T1(x), T2(x)) ≤ η, for all x ∈ X.

Then

( a) FTi ∈ Pcl(X), i ∈ {1, 2},

(b) the operators T1, T2 are w.P.o. and

H(FT1 , FT2) ≤ η(1−min{γ1, γ2})(1−max{α1 + β1 + γ1, α2 + β2 + γ2})−1.

Proof. (a) From a theorem of Reich (Theorem 5 in [15]), we have that FTi
∈ P (X),

i ∈ {1, 2}. Let us prove that the fixed points set of a multivalued operator T , satisfying

a condition of type (i) (with α, β, γ ∈ R+, α+ β + γ < 1) is closed. For this purpose

let xn ∈ FT , n ∈ N, such that xn → x∗, as n→ +∞. We have:

D(x∗, T (x∗)) ≤ d(x∗, xn) +D(xn, T (x∗)) ≤ d(x∗, xn) +H(T (xn), T (x∗)) ≤

≤ d(x∗, xn) + αd(xn, x∗) + βD(xn, T (xn)) + γD(x∗, T (x∗)).
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From this relation we have that

D(x∗, T (x∗)) ≤ (1 + α)(1− γ)−1d(x∗, xn) → 0, as n→∞.

Hence, by Lemma 1.3, x∗ ∈ T (x∗).

(b) Let q ∈]1,min{(α1 + β1 + γ1)−1, (α2 + β2 + γ2)−1}[. Let x0 ∈ FT1 and

x1 ∈ T2(x0) such that

d(x0, x1) ≤ qH(T1(x0), T2(x0)) ≤ qη.

Using again Lemma 1.1, there exists x2 ∈ T2(x1) such that

d(x1, x2) ≤ q(α2 + β2)(1− qγ2)−1d(x0, x1).

By induction, we prove that there exists a sequence of successive approxima-

tions of T2, starting from x0 ∈ FT1 , such that

d(xn, xn+1) ≤ L2(q)d(xn−1, xn), n ∈ N∗,

where L2(q) = q(α2 + β2)(1− qγ2)−1 < 1.

This relation implies that xn → x∗, as n → ∞. By standard argument we

prove that x∗ ∈ FT2 and

d(xn, x∗) ≤ [1− L2(q)]−1[L2(q)]nqη, n ∈ N.

For n = 0, we obtain

d(x0, x
∗) ≤ [1− L2(q)]−1qη. (1)

By a similar way, we have that for all y0 ∈ FT2 and y1 ∈ T1(y0), there exists

a sequence of successive approximations of T1 such that

yn → y∗ ∈ FT1 , as n→∞

and

d(yn, y∗) ≤ [1− L1(q)]−1][L1(q)]nqη, n ∈ N,

where L1(q) := q(α1 + β1)(1− qγ1)−1 < 1.

For n = 0, we have

d(y0, y∗) ≤ [1− L1(q)]−1qη. (2)
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By Lemma 1.2, using (1) and (2) we have

H(FT1 , FT2) ≤ [1−max{L1(q), L2(q)}]−1qη.

Letting q ↘ 1, we get the conclusion. �

Remark 3.2. For βi = γi = 0 we have a result given by Lim [9]. See also

Rus [21].

4. Data dependence of the fixed points set of multivalued graphic-

contraction-type operators

A multivalued graphic-contraction-type operator is a multivalued operator

T : X → Pcl(X) satisfying a contraction-type condition for all x ∈ X and y ∈ T (x).

We have:

Theorem 4.1. Let (X, d) be a complete metric space and T1, T2 : X →

Pcl(X) such that :

( i) there exist αi, βi ∈ R+, αi + βi < 1 such that

H(Ti(x), Ti(y)) ≤ αid(x, y) + βiD(y, Ti(y)),

for every x ∈ X, every y ∈ Ti(x) and for i ∈ {1, 2};

( ii) there exists η > 0 such that H(T1(x), T2(x)) ≤ η, for all x ∈ X.

If :

( iii) T1, T2 are closed multivalued operators

or

( iv) there exist two continuous functions ψ1, ψ2 : R5
+ → R+ such that :

( iv1) H(Ti(x), Ti(y)) ≤ ψi(d(x, y), D(x, Ti(x)), D(y, Ti(y)), D(x, Ti(y)), D(y, Ti(x))),

for all x, y ∈ X and for i ∈ {1, 2};

( iv2) ψi(0, 0, s, s, 0) < s, if s > 0, i ∈ {1, 2};

( iv3) If u1 ≤ u2 and v1 ≤ v2 then ψi(u, u1, v, w, v1) ≤ ψi(u, u2, v, w, v2), for

all ui, vi, u, v, w ∈ R+ and i ∈ {1, 2},

then

( a) FTi
∈ Pcl(X), for i ∈ {1, 2};

(b) Ti are w.P.o., for i ∈ {1, 2};

( c) H(FT1 , FT2) ≤ η(1−min{β1, β2})(1−max{α1 + β1, α2 + β2})−1.
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Proof. Let us have (i), (ii) and (iii). From Lemma 2 in Rus [19] and (iii) we have Ti

are w.P.o. and FTi
∈ P (X), for i ∈ {1, 2}. Let us prove that FTi

∈ Pcl(X), i ∈ {1, 2}.

For this purpose, let (xn)n∈N ⊂ FTi be a convergent sequence to an element x∗ ∈ X.

It is sufficient to prove that x∗ ∈ FTi
. We have: xn ∈ Ti(xn), n ∈ N . From (iii) it

follows that x∗ ∈ Ti(x∗), for i ∈ {1, 2}.

Let us have (i), (ii) and (iv). Using Theorem 1 in [19] we obtain FTi
∈ P (X),

for i ∈ {1, 2}. Let us prove again that FTi is closed in X for each i ∈ {1, 2}. As before,

let (xn)n∈N ⊂ FTi
be a convergent sequence to a point x∗ ∈ X. Then:

D(x∗, Ti(x∗)) ≤ d(x∗, xn) +D(xn, Ti(x∗)) ≤ d(x∗, xn) +H(Ti(xn), Ti(x∗)) ≤

≤ d(xn, x∗)+ψi(d(xn, x∗), D(xn, Ti(xn)), D(x∗, Ti(x∗)), D(xn, Ti(x∗)), D(x∗, Ti(xn))) ≤

≤ d(x∗, xn) + ψi(d(xn, x∗), 0, D(x∗, Ti(x∗)), D(xn, Ti(x∗)), d(x∗, xn)).

Letting n→∞, we have:

D(x∗, Ti(x∗)) ≤ ψi(0, 0, D(x∗, Ti(x∗)), D(x∗, Ti(x∗)), 0).

From (iv2) it follows thatD(x∗, Ti(x∗)) = 0 and hence x∗ ∈ FTi
, for i ∈ {1, 2}.

So, we get the conclusions (a) and (b). For (c) let x0 ∈ FT1 .

For every q > 1, there exists x1 ∈ T2(x0) such that d(x0, x1) ≤

qH(T1(x0), T2(x)) ≤ qη. For x1 ∈ T2(x0) and 1 < q < min
{

1
α1 + β1

,
1

α2 + β2

}
there is x2 ∈ T2(x1) such that d(x1, x2) ≤ qH(T2(x0), T2(x1)) ≤ q[α2d(x0, x1) +

β2D(x1, T2(x1))] ≤ q[α2d(x0, x1) + β2d(x1, x2)] and hence

d(x1, x2) ≤
qα2

1− qβ2
d(x0, x1).

By induction, one prove that there exists a sequence of successive approxima-

tions for T2, starting from x0 ∈ FT1 such that d(xn, xn+1) ≤ p2(q)d(xn−1, xn), where

p2(q) =
qα2

1− qβ2
< 1. This implies that:

1) xn → x∗, as n→∞,

2) x∗ ∈ FT2 ,

3) d(xn, x∗) ≤
[p2(q)]n

1− p2(q)
d(x0, x1) ≤

[p2(q)]n

1− p2(q)
qη, n ∈ N.

Interchanging the roles, one can prove that for each y0 ∈ FT2 , there exists a

sequence of successive approximations for T1, starting from y0 such that

1’) yn → y∗, as n→∞,
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2’) y∗ ∈ FT1 ,

3’) d(yn, y∗) ≤
[p1(q)]n

1− p1(q)
d(y0, y1) ≤

[p1(q)]n

1− p1(q)
qη, n ∈ N, (where p1(q) =

qα1

1− qβ1
< 1).

For n = 0 we get d(x0, x
∗) ≤ qη

1− p2(q)
and d(y0, y∗) ≤ qη

1− p1(q)
. As

consequence H(FT1 , FT2) ≤ qη[1−max{p1(q), p2(q)}]−1.

Letting q ↘ 1, the conclusion follows. �

5. Applications

We shall prove now a data dependence result for the following equation:

φ(u) + ψ(u) = v, u ∈ U. (3)

Let us denote by Sψ,v the solutions set for (3). We have:

Theorem 5.1. Let (U, ‖ · ‖U ) and (V, ‖ · ‖V ) be real Banach spaces and let

φ : U → V be a continuous linear operator from U onto V . Put α = sup{inf{‖u‖U |u ∈

φ−1(v)}, v ∈ V, ‖v‖V ≤ 1}.

Then, for every v1, v2 ∈ V and every lipschitzian operators ψ1, ψ2 : U → V

(with the same Lipschitz constant L > 0) satisfying the following assertions:

i) there is η1 > 0 such that ‖v1 − v2‖V ≤ η1;

ii) there exists η2 > 0 such that ‖ψ1(u)− ψ2(u)‖V ≤ η2, for each u ∈ U ;

iii) αL < 1

are true the conclusions:

a) Sψi,vi
∈ Pcl(U), for i ∈ {1, 2};

b) H(Sψ1,v1 , Sψ2,v2) ≤
α(η1 + η2)

1− αL
.

Proof. From a result given by B. Ricceri (see [17], Theorem 4) it follows that Sψi,vi 6=

∅ and Sψi,vi
= FixFi, where Fi : U → Pcl(U) is a multivalued αL-contraction, given

by the formula Fi(u) = φ−1(vi − ψi(u)), for i ∈ {1, 2} (see also [18]). From Theorem

3.1 one have:

H(Sψ1,v1 , Sψ2,v2) ≤
1

1− αL
sup
u∈U

H(F1(u), F2(u)).

But H(F1(u), F2(u)) = H(φ−1(v1−ψ1(u)), φ−1(v2−ψ2(u))) ≤ α‖v1−ψ1(u)−

v2 + ψ2(u)‖ ≤ α(η1 + η2), for each u ∈ U and hence the conclusion follows. �
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Let us consider now the following functional equations of n-th order:

ϕ(x) ∈ G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))), x ∈ X, (4)

ϕ(x) ∈ G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))), x ∈ X, (5)

where ϕ is an unknown function and the multivalued operators G1, G2 and the singl-

evalued functions fk, gk (k ∈ {1, 2, . . . , n}) are given. Let us denote by Si (i ∈ {1, 2})

the space of continuous solutions for problems (4) and (5) respectively.

Theorem 5.2. Let X be a compact metric space and Y be a nonempty,

closed, convex subset of a Banach space. Let G1, G2 : X × Y n → Pcl,cv(Y ) be mul-

tivalued operators and fk, gk : X → X, k ∈ {1, 2, . . . , n} functions. We assume the

following conditions on the given operators:

i) there exist two functions βi : Rn+ → R+ non-decreasing with respect to

each variable with the property βi(t, t, . . . , t) ≤ ait, for each t > 0, with

0 ≤ ai < 1 such that one have:

H(Gi(x, y1, . . . , yn), Gi(x, z1, . . . , zn)) ≤ βi(‖y1 − z1‖, . . . , ‖yn − zn‖),

for x ∈ X, yk, zk ∈ Y (k ∈ {1, 2, . . . , n}) and for i ∈ {1, 2};

ii) fk, gk : X → X are continuous, k ∈ {1, 2, . . . , n};

iii) G1, G2 are lower semicontinuous (l.s.c.);

iv) there exist ηk, η̃ > 0 such that ‖fk(x) − gk(x)‖ ≤ ηk for k ∈

{1, 2, . . . , n} and H(G1(x, y1, . . . , yn), G2(x, y1, . . . , yn)) ≤ η̃, for x ∈ X

and y1, . . . , yn ∈ Y .

Then:

a) Si ∈ Pcl(C), for i ∈ {1, 2} (where C = C(X,Y ) is the space of continuous

functions from X to Y );

b) H(S1, S2) ≤ (1−max {a1, a2}) [β(η1, . . . , ηn) + η̃].

Proof. From Theorem 4.1 in Wȩgrzyk [26] we get that Si = FTi
, where Ti : C →

Pcl,cv(C), i ∈ {1, 2} are multivalued operators given by the formulae:

T1(ϕ) = {ψ ∈ C|ψ(x) ∈ G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))), x ∈ X}

and

T2(ϕ) = {ψ ∈ C| ψ(x) ∈ G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))), x ∈ X}.
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From Lemma 4.1 in the same paper [26], we have that H(Ti(ϕ1), Ti(ϕ2)) ≤

γi(d(ϕ1, ϕ2)), for ϕ1, ϕ2 ∈ C, where γi(t) = βi(t, . . . , t), for t ∈ R+ and d(ϕ1, ϕ2) =

sup{‖ϕ1(x)− ϕ2(x)‖ | x ∈ X}.

By i) it follows that Ti are multivalued ai-contractions, for i ∈ {1, 2}. Then,

we obtain:

Si ∈ Pcl(C), for i ∈ {1, 2}

and

H(S1, S2) = H(FT1 , FT2) ≤ [1−max {a1, a2}] sup
ϕ∈C

H(T1(ϕ), T2(ϕ)). (6)

On the other side, let us estimate H(T1(ϕ), T2(ϕ)).

For this purpose, let ϕ1 ∈ T1(ϕ). Then ϕ1(x) ∈

G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))), x ∈ X. We have

D(ϕ1(x), G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) ≤ H(G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))),

G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) ≤ H(G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))),

G1(x, ϕ(g1(x)), . . . , ϕ(gn(x))) +H(G1(x, ϕ(g1(x)), . . . , ϕ(gn(x))),

G2(x, ϕ(g1(x)), . . . , ϕ(gn(x)))) ≤ β(‖ϕ(f1(x))−ϕ(g1(x))‖, . . . , ‖ϕ(fn(x))−ϕ(gn(x))‖)+η̃.

From the uniform continuity of ϕ on the compact space X and from iv) we

get that

‖ϕ(fk(x))− ϕ(gk(x))‖ ≤ ηk, for each x ∈ X.

Hence we conclude that

D(ϕ1(x), G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) ≤ β(η1, . . . , ηn) + η̃,

for each x ∈ X.

Then, for a fixed ε > 0 and for every x ∈ X there exists zx ∈

G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) such that

‖ϕ1(x)− zx‖ ≤ β(η1, . . . , ηn) + η̃ + ε.

Using the same argument like in the proof of Lemma 4.1 from [26] we infer

that for every ε > 0 there exists a continuous function ϕ2 ∈ T2(ϕ) such that

d(ϕ1, ϕ2) ≤ β(η1, . . . , ηn) + η̃ + ε.
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It follows D(ϕ1, T2(ϕ)) ≤ β(η1, . . . , ηn) + η̃. From the analogous inequality:

D(ϕ2, T1(ϕ)) ≤ β(η1, . . . , ηn) + η̃, for every ϕ2 ∈ T2(ϕ) we get that

H(T1(ϕ), T2(ϕ)) ≤ β(η1, . . . , ηn) + η̃.

Making use of the estimate (6), we obtain

H(S1, S2) ≤ (1−max {a1, a2}) [β(η1, . . . , ηn) + η̃]. �

Remark 5.3. For other applications see [2], [3], [7], [8], [11], [24].
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