DATA DEPENDENCE OF THE FIXED POINTS SET OF MULTIVALUED WEAKLY PICARD OPERATORS

IOAN A. RUS, ADRIAN PETRUŞEL, ALINA SÎNTĂMĂRIAN
Dedicated to Professor Petru T. Mocanu on his $70^{\text {th }}$ birthday

Abstract

The purpose of this paper is to present data dependence results for some multivalued weakly Picard operatorors such as: Reich-type operators, graphic-contractions.

1. Introduction

The purpose of this paper is to study the following problem (see Lim [9], Rus [21], Rus-Mureşan [23], etc).

Problem. Let (X, d) be a metric space and $T_{1}, T_{2}: X \rightarrow P(X)$ two multivalued operators. If the fixed points sets $F_{T_{1}}$ and $F_{T_{2}}$ are nonempty and there exists $\eta>0$ such that $H\left(T_{1}(x), T_{2}(x)\right) \leq \eta$, for all $x \in X$, estimate $H\left(F_{T_{1}}, F_{T_{2}}\right)$, where H is the Hausdorff-Pompeiu generalized functional on $P(X)$.

Throughout the paper we follow the terminologies and the notations from Rus [20]. For the convenience of the reader, we recall some of them.

Let (X, d) be a metric space. We denote:

$$
\begin{aligned}
& P(X):=\{A \mid A \text { is a nonempty subset of } X\}, \quad P_{c l}(X):=\{A \in P(X) \mid A \text { - closed }\}, \\
& P_{b}(X):=\{A \in P(X) \mid A \text { - bounded }\}, \quad P_{c p}(X):=\{A \in P(X) \mid A \text { - compact }\},
\end{aligned}
$$

$$
P_{b, c l}(X):=P_{b}(X) \cap P_{c l}(X) .
$$

If $A, B \in P(X)$, then we define the functional:

$$
D(A, B):=\inf \{d(a, b) \mid a \in A, b \in B\},
$$

and the following generalized functionals:

$$
\rho(A, B):=\sup \{D(a, B) \mid a \in A\}, \quad H(A, B):=\max \{\rho(A, B), \rho(B, A)\}
$$

In this note we need the following well known properties of the functionals D and H (see Nadler [13], Reich [15], Rus [19], [20],...).

Lemma 1.1 Let $A, B \in P(X)$ and $q \in \mathbb{R}, q>1$, be given.
Then for every $a \in A$, there exists $b \in B$ such that $d(a, b) \leq q H(A, B)$.
Lemma 1.2. Let $A, B \in P(X)$. We suppose that there exists $\eta \in \mathbb{R}, \eta>0$, such that
(i) for each $a \in A$ there is $b \in B$ such that $d(a, b) \leq \eta$;
(ii) for each $b \in B$ there is $a \in A$ such that $d(a, b) \leq \eta$.

Then $H(A, B) \leq \eta$.
Lemma 1.3. Let $A \in P(X)$ and $x \in X$. Then $D(x, A)=0$ iff $x \in \bar{A}$.
If $T: X \rightarrow P(X)$ is a multivalued operator, then we denote by F_{T} the fixed points set of T, i. e.

$$
F_{T}:=\{x \in X \mid x \in T(x)\} .
$$

2. Multivalued weakly Picard operators

Let us start the section by recalling an important notion.
Definition 2.1. Let (X, d) be a metric space and $T: X \rightarrow P_{c l}(X)$ a multivalued operator. By definition, T is a weakly Picard operator (briefly w.P.o.) iff for all $x \in X$ and all $y \in T(x)$, there exists a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that:
(i) $x_{0}=x, x_{1}=y$,
(ii) $x_{n+1} \in T\left(x_{n}\right)$, for all $n \in \mathbb{N}$,
(iii) the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent and its limit is a fixed point of T.

Remark 2.2. A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ satisfying the condition (ii) and (iii), in the Definition 2.1 is, by definition, a sequence of successive approximations of T starting from x_{0}.

Example 2.3. [see Rus [22]] If $t: X \rightarrow X$ is a singlevalued w.P.o., then the multivalued operator $T: X \rightarrow P_{c l}(X), T(x):=\{t(x)\}$, for each $x \in X$, is a multivalued w.P.o.

Example 2.4. Let $t_{i}: X \rightarrow X, i \in\{1,2, \ldots, n\}$, be singlevalued contractions. Then the multivalued operator $T: X \rightarrow P_{c l}(X), T(x)=\left\{t_{1}(x), \ldots, t_{n}(x)\right\}$, for each $x \in X$, is a multivalued w.P.o.

Example 2.5. [see Covitz-Nadler [4] and Reich [15]] Let (X, d) be a complete metric space and $T: X \rightarrow P_{c l}(X)$ be a multivalued contraction. Then T is a multivalued w.P.o.

Other examples will be given in the next paragraphs.

3. Data dependence of the fixed points set of Reich-type operators

The first main result of this paper is the following:
Theorem 3.1. Let (X, d) be a complete metric space and $T_{1}, T_{2}: X \rightarrow$ $P_{c l}(X)$, be two multivalued operators. We suppose that:
(i) there exist $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{R}_{+}, \alpha_{i}+\beta_{i}+\gamma_{i}<1$, such that

$$
\begin{aligned}
& H\left(T_{i}(x), T_{i}(y)\right) \leq \alpha_{i} d(x, y)+\beta_{i} D\left(x, T_{i}(x)\right)+\gamma_{i} D\left(y, T_{i}(y)\right) \\
& \text { for all } x, y \in X \text { and } i \in\{1,2\}
\end{aligned}
$$

(ii) there exists $\eta>0$ such that

$$
H\left(T_{1}(x), T_{2}(x)\right) \leq \eta, \text { for all } x \in X
$$

Then
(a) $F_{T_{i}} \in P_{c l}(X), i \in\{1,2\}$,
(b) the operators T_{1}, T_{2} are w.P.o. and

$$
H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \eta\left(1-\min \left\{\gamma_{1}, \gamma_{2}\right\}\right)\left(1-\max \left\{\alpha_{1}+\beta_{1}+\gamma_{1}, \alpha_{2}+\beta_{2}+\gamma_{2}\right\}\right)^{-1}
$$

Proof. (a) From a theorem of Reich (Theorem 5 in [15]), we have that $F_{T_{i}} \in P(X)$, $i \in\{1,2\}$. Let us prove that the fixed points set of a multivalued operator T, satisfying a condition of type (i) (with $\alpha, \beta, \gamma \in \mathbb{R}_{+}, \alpha+\beta+\gamma<1$) is closed. For this purpose let $x_{n} \in F_{T}, n \in \mathbb{N}$, such that $x_{n} \rightarrow x^{*}$, as $n \rightarrow+\infty$. We have:

$$
\begin{gathered}
D\left(x^{*}, T\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{n}\right)+D\left(x_{n}, T\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{n}\right)+H\left(T\left(x_{n}\right), T\left(x^{*}\right)\right) \leq \\
\leq d\left(x^{*}, x_{n}\right)+\alpha d\left(x_{n}, x^{*}\right)+\beta D\left(x_{n}, T\left(x_{n}\right)\right)+\gamma D\left(x^{*}, T\left(x^{*}\right)\right)
\end{gathered}
$$

From this relation we have that

$$
D\left(x^{*}, T\left(x^{*}\right)\right) \leq(1+\alpha)(1-\gamma)^{-1} d\left(x^{*}, x_{n}\right) \rightarrow 0, \text { as } n \rightarrow \infty .
$$

Hence, by Lemma 1.3, $x^{*} \in T\left(x^{*}\right)$.
(b) Let $q \in] 1, \min \left\{\left(\alpha_{1}+\beta_{1}+\gamma_{1}\right)^{-1},\left(\alpha_{2}+\beta_{2}+\gamma_{2}\right)^{-1}\right\}\left[\right.$. Let $x_{0} \in F_{T_{1}}$ and $x_{1} \in T_{2}\left(x_{0}\right)$ such that

$$
d\left(x_{0}, x_{1}\right) \leq q H\left(T_{1}\left(x_{0}\right), T_{2}\left(x_{0}\right)\right) \leq q \eta .
$$

Using again Lemma 1.1, there exists $x_{2} \in T_{2}\left(x_{1}\right)$ such that

$$
d\left(x_{1}, x_{2}\right) \leq q\left(\alpha_{2}+\beta_{2}\right)\left(1-q \gamma_{2}\right)^{-1} d\left(x_{0}, x_{1}\right)
$$

By induction, we prove that there exists a sequence of successive approximations of T_{2}, starting from $x_{0} \in F_{T_{1}}$, such that

$$
d\left(x_{n}, x_{n+1}\right) \leq L_{2}(q) d\left(x_{n-1}, x_{n}\right), n \in \mathbb{N}^{*}
$$

where $L_{2}(q)=q\left(\alpha_{2}+\beta_{2}\right)\left(1-q \gamma_{2}\right)^{-1}<1$.
This relation implies that $x_{n} \rightarrow x^{*}$, as $n \rightarrow \infty$. By standard argument we prove that $x^{*} \in F_{T_{2}}$ and

$$
d\left(x_{n}, x^{*}\right) \leq\left[1-L_{2}(q)\right]^{-1}\left[L_{2}(q)\right]^{n} q \eta, n \in \mathbb{N} .
$$

For $n=0$, we obtain

$$
\begin{equation*}
d\left(x_{0}, x^{*}\right) \leq\left[1-L_{2}(q)\right]^{-1} q \eta . \tag{1}
\end{equation*}
$$

By a similar way, we have that for all $y_{0} \in F_{T_{2}}$ and $y_{1} \in T_{1}\left(y_{0}\right)$, there exists a sequence of successive approximations of T_{1} such that

$$
y_{n} \rightarrow y^{*} \in F_{T_{1}}, \text { as } n \rightarrow \infty
$$

and

$$
\left.d\left(y_{n}, y^{*}\right) \leq\left[1-L_{1}(q)\right]^{-1}\right]\left[L_{1}(q)\right]^{n} q \eta, \quad n \in \mathbb{N}
$$

where $L_{1}(q):=q\left(\alpha_{1}+\beta_{1}\right)\left(1-q \gamma_{1}\right)^{-1}<1$.
For $n=0$, we have

$$
\begin{equation*}
d\left(y_{0}, y^{*}\right) \leq\left[1-L_{1}(q)\right]^{-1} q \eta . \tag{2}
\end{equation*}
$$

DATA DEPENDENCE OF THE FIXED POINTS SET OF MULTIVALUED WEAKLY PICARD OPERATORS
By Lemma 1.2, using (1) and (2) we have

$$
H\left(F_{T_{1}}, F_{T_{2}}\right) \leq\left[1-\max \left\{L_{1}(q), L_{2}(q)\right\}\right]^{-1} q \eta .
$$

Letting $q \searrow 1$, we get the conclusion.
Remark 3.2. For $\beta_{i}=\gamma_{i}=0$ we have a result given by Lim [9]. See also Rus [21].

4. Data dependence of the fixed points set of multivalued graphic-contraction-type operators

A multivalued graphic-contraction-type operator is a multivalued operator $T: X \rightarrow P_{c l}(X)$ satisfying a contraction-type condition for all $x \in X$ and $y \in T(x)$. We have:

Theorem 4.1. Let (X, d) be a complete metric space and $T_{1}, T_{2}: X \rightarrow$ $P_{c l}(X)$ such that:
(i) there exist $\alpha_{i}, \beta_{i} \in \mathbb{R}_{+}, \alpha_{i}+\beta_{i}<1$ such that

$$
H\left(T_{i}(x), T_{i}(y)\right) \leq \alpha_{i} d(x, y)+\beta_{i} D\left(y, T_{i}(y)\right)
$$

for every $x \in X$, every $y \in T_{i}(x)$ and for $i \in\{1,2\} ;$
(ii) there exists $\eta>0$ such that $H\left(T_{1}(x), T_{2}(x)\right) \leq \eta$, for all $x \in X$. If:
(iii) T_{1}, T_{2} are closed multivalued operators
or
(iv) there exist two continuous functions $\psi_{1}, \psi_{2}: \mathbb{R}_{+}^{5} \rightarrow \mathbb{R}_{+}$such that:

$$
\begin{aligned}
\left(\mathrm{iv}_{1}\right) & H\left(T_{i}(x), T_{i}(y)\right) \leq \psi_{i}\left(d(x, y), D\left(x, T_{i}(x)\right), D\left(y, T_{i}(y)\right), D\left(x, T_{i}(y)\right), D\left(y, T_{i}(x)\right)\right), \\
& \text { for all } x, y \in X \text { and for } i \in\{1,2\} \\
\left(\mathrm{iv}_{2}\right) & \psi_{i}(0,0, s, s, 0)<s \text {, if } s>0, i \in\{1,2\} \\
\left(\mathrm{iv}_{3}\right) & \text { If } u_{1} \leq u_{2} \text { and } v_{1} \leq v_{2} \text { then } \psi_{i}\left(u, u_{1}, v, w, v_{1}\right) \leq \psi_{i}\left(u, u_{2}, v, w, v_{2}\right) \text {, for } \\
& \text { all } u_{i}, v_{i}, u, v, w \in \mathbb{R}_{+} \text {and } i \in\{1,2\},
\end{aligned}
$$

then
(a) $F_{T_{i}} \in P_{c l}(X)$, for $i \in\{1,2\}$;
(b) T_{i} are w.P.o., for $i \in\{1,2\}$;
(c) $H\left(F_{T_{1}}, F_{T_{2}}\right) \leq \eta\left(1-\min \left\{\beta_{1}, \beta_{2}\right\}\right)\left(1-\max \left\{\alpha_{1}+\beta_{1}, \alpha_{2}+\beta_{2}\right\}\right)^{-1}$.

Proof. Let us have (i), (ii) and (iii). From Lemma 2 in Rus [19] and (iii) we have T_{i} are w.P.o. and $F_{T_{i}} \in P(X)$, for $i \in\{1,2\}$. Let us prove that $F_{T_{i}} \in P_{c l}(X), i \in\{1,2\}$. For this purpose, let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset F_{T_{i}}$ be a convergent sequence to an element $x^{*} \in X$. It is sufficient to prove that $x^{*} \in F_{T_{i}}$. We have: $x_{n} \in T_{i}\left(x_{n}\right), n \in N$. From (iii) it follows that $x^{*} \in T_{i}\left(x^{*}\right)$, for $i \in\{1,2\}$.

Let us have $(i),(i i)$ and (iv). Using Theorem 1 in [19] we obtain $F_{T_{i}} \in P(X)$, for $i \in\{1,2\}$. Let us prove again that $F_{T_{i}}$ is closed in X for each $i \in\{1,2\}$. As before, let $\left(x_{n}\right)_{n \in \mathbb{N}} \subset F_{T_{i}}$ be a convergent sequence to a point $x^{*} \in X$. Then:

$$
\begin{gathered}
D\left(x^{*}, T_{i}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{n}\right)+D\left(x_{n}, T_{i}\left(x^{*}\right)\right) \leq d\left(x^{*}, x_{n}\right)+H\left(T_{i}\left(x_{n}\right), T_{i}\left(x^{*}\right)\right) \leq \\
\leq d\left(x_{n}, x^{*}\right)+\psi_{i}\left(d\left(x_{n}, x^{*}\right), D\left(x_{n}, T_{i}\left(x_{n}\right)\right), D\left(x^{*}, T_{i}\left(x^{*}\right)\right), D\left(x_{n}, T_{i}\left(x^{*}\right)\right), D\left(x^{*}, T_{i}\left(x_{n}\right)\right)\right) \leq \\
\leq d\left(x^{*}, x_{n}\right)+\psi_{i}\left(d\left(x_{n}, x^{*}\right), 0, D\left(x^{*}, T_{i}\left(x^{*}\right)\right), D\left(x_{n}, T_{i}\left(x^{*}\right)\right), d\left(x^{*}, x_{n}\right)\right) .
\end{gathered}
$$

Letting $n \rightarrow \infty$, we have:

$$
D\left(x^{*}, T_{i}\left(x^{*}\right)\right) \leq \psi_{i}\left(0,0, D\left(x^{*}, T_{i}\left(x^{*}\right)\right), D\left(x^{*}, T_{i}\left(x^{*}\right)\right), 0\right) .
$$

From $\left(i v_{2}\right)$ it follows that $D\left(x^{*}, T_{i}\left(x^{*}\right)\right)=0$ and hence $x^{*} \in F_{T_{i}}$, for $i \in\{1,2\}$.
So, we get the conclusions (a) and (b). For (c) let $x_{0} \in F_{T_{1}}$.
For every $q>1$, there exists $x_{1} \in T_{2}\left(x_{0}\right)$ such that $d\left(x_{0}, x_{1}\right) \leq$ $q H\left(T_{1}\left(x_{0}\right), T_{2}(x)\right) \leq q \eta$. For $x_{1} \in T_{2}\left(x_{0}\right)$ and $1<q<\min \left\{\frac{1}{\alpha_{1}+\beta_{1}}, \frac{1}{\alpha_{2}+\beta_{2}}\right\}$ there is $x_{2} \in T_{2}\left(x_{1}\right)$ such that $d\left(x_{1}, x_{2}\right) \leq q H\left(T_{2}\left(x_{0}\right), T_{2}\left(x_{1}\right)\right) \leq q\left[\alpha_{2} d\left(x_{0}, x_{1}\right)+\right.$ $\left.\beta_{2} D\left(x_{1}, T_{2}\left(x_{1}\right)\right)\right] \leq q\left[\alpha_{2} d\left(x_{0}, x_{1}\right)+\beta_{2} d\left(x_{1}, x_{2}\right)\right]$ and hence

$$
d\left(x_{1}, x_{2}\right) \leq \frac{q \alpha_{2}}{1-q \beta_{2}} d\left(x_{0}, x_{1}\right)
$$

By induction, one prove that there exists a sequence of successive approximations for T_{2}, starting from $x_{0} \in F_{T_{1}}$ such that $d\left(x_{n}, x_{n+1}\right) \leq p_{2}(q) d\left(x_{n-1}, x_{n}\right)$, where $p_{2}(q)=\frac{q \alpha_{2}}{1-q \beta_{2}}<1$. This implies that:

1) $x_{n} \rightarrow x^{*}$, as $n \rightarrow \infty$,
2) $x^{*} \in F_{T_{2}}$,
3) $d\left(x_{n}, x^{*}\right) \leq \frac{\left[p_{2}(q)\right]^{n}}{1-p_{2}(q)} d\left(x_{0}, x_{1}\right) \leq \frac{\left[p_{2}(q)\right]^{n}}{1-p_{2}(q)} q \eta, n \in \mathbb{N}$.

Interchanging the roles, one can prove that for each $y_{0} \in F_{T_{2}}$, there exists a sequence of successive approximations for T_{1}, starting from y_{0} such that

$$
\left.1^{\prime}\right) y_{n} \rightarrow y^{*}, \text { as } n \rightarrow \infty
$$

DATA DEPENDENCE OF THE FIXED POINTS SET OF MULTIVALUED WEAKLY PICARD OPERATORS

2') $y^{*} \in F_{T_{1}}$,
$\left.3^{\prime}\right) d\left(y_{n}, y^{*}\right) \leq \frac{\left[p_{1}(q)\right]^{n}}{1-p_{1}(q)} d\left(y_{0}, y_{1}\right) \leq \frac{\left[p_{1}(q)\right]^{n}}{1-p_{1}(q)} q \eta, n \in \mathbb{N}$, (where $p_{1}(q)=$ $\left.\frac{q \alpha_{1}}{1-q \beta_{1}}<1\right)$.

For $n=0$ we get $d\left(x_{0}, x^{*}\right) \leq \frac{q \eta}{1-p_{2}(q)}$ and $d\left(y_{0}, y^{*}\right) \leq \frac{q \eta}{1-p_{1}(q)}$. As consequence $H\left(F_{T_{1}}, F_{T_{2}}\right) \leq q \eta\left[1-\max \left\{p_{1}(q), p_{2}(q)\right\}\right]^{-1}$.

Letting $q \searrow 1$, the conclusion follows.

5. Applications

We shall prove now a data dependence result for the following equation:

$$
\begin{equation*}
\phi(u)+\psi(u)=v, \quad u \in U . \tag{3}
\end{equation*}
$$

Let us denote by $S_{\psi, v}$ the solutions set for (3). We have:
Theorem 5.1. Let $\left(U,\|\cdot\|_{U}\right)$ and $\left(V,\|\cdot\|_{V}\right)$ be real Banach spaces and let $\phi: U \rightarrow V$ be a continuous linear operator from U onto V. Put $\alpha=\sup \left\{\inf \left\{\|u\|_{U} \mid u \in\right.\right.$ $\left.\left.\phi^{-1}(v)\right\}, v \in V,\|v\|_{V} \leq 1\right\}$.

Then, for every $v_{1}, v_{2} \in V$ and every lipschitzian operators $\psi_{1}, \psi_{2}: U \rightarrow V$ (with the same Lipschitz constant $L>0$) satisfying the following assertions:
i) there is $\eta_{1}>0$ such that $\left\|v_{1}-v_{2}\right\|_{V} \leq \eta_{1}$;
ii) there exists $\eta_{2}>0$ such that $\left\|\psi_{1}(u)-\psi_{2}(u)\right\|_{V} \leq \eta_{2}$, for each $u \in U$;
iii) $\alpha L<1$
are true the conclusions:
a) $S_{\psi_{i}, v_{i}} \in P_{c l}(U)$, for $i \in\{1,2\}$;
b) $H\left(S_{\psi_{1}, v_{1}}, S_{\psi_{2}, v_{2}}\right) \leq \frac{\alpha\left(\eta_{1}+\eta_{2}\right)}{1-\alpha L}$.

Proof. From a result given by B. Ricceri (see [17], Theorem 4) it follows that $S_{\psi_{i}, v_{i}} \neq$ \emptyset and $S_{\psi_{i}, v_{i}}=F i x F_{i}$, where $F_{i}: U \rightarrow P_{c l}(U)$ is a multivalued αL-contraction, given by the formula $F_{i}(u)=\phi^{-1}\left(v_{i}-\psi_{i}(u)\right)$, for $i \in\{1,2\}$ (see also [18]). From Theorem 3.1 one have:

$$
H\left(S_{\psi_{1}, v_{1}}, S_{\psi_{2}, v_{2}}\right) \leq \frac{1}{1-\alpha L} \sup _{u \in U} H\left(F_{1}(u), F_{2}(u)\right)
$$

But $H\left(F_{1}(u), F_{2}(u)\right)=H\left(\phi^{-1}\left(v_{1}-\psi_{1}(u)\right), \phi^{-1}\left(v_{2}-\psi_{2}(u)\right)\right) \leq \alpha \| v_{1}-\psi_{1}(u)-$ $v_{2}+\psi_{2}(u) \| \leq \alpha\left(\eta_{1}+\eta_{2}\right)$, for each $u \in U$ and hence the conclusion follows.

Let us consider now the following functional equations of n-th order:

$$
\begin{array}{ll}
\varphi(x) \in G_{1}\left(x, \varphi\left(f_{1}(x)\right), \ldots, \varphi\left(f_{n}(x)\right)\right), & x \in X \\
\varphi(x) \in G_{2}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right), & x \in X \tag{5}
\end{array}
$$

where φ is an unknown function and the multivalued operators G_{1}, G_{2} and the singlevalued functions $f_{k}, g_{k}(k \in\{1,2, \ldots, n\})$ are given. Let us denote by $S_{i}(i \in\{1,2\})$ the space of continuous solutions for problems (4) and (5) respectively.

Theorem 5.2. Let X be a compact metric space and Y be a nonempty, closed, convex subset of a Banach space. Let $G_{1}, G_{2}: X \times Y^{n} \rightarrow P_{c l, c v}(Y)$ be multivalued operators and $f_{k}, g_{k}: X \rightarrow X, k \in\{1,2, \ldots, n\}$ functions. We assume the following conditions on the given operators:
i) there exist two functions $\beta_{i}: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}_{+}$non-decreasing with respect to each variable with the property $\beta_{i}(t, t, \ldots, t) \leq a_{i} t$, for each $t>0$, with $0 \leq a_{i}<1$ such that one have:

$$
H\left(G_{i}\left(x, y_{1}, \ldots, y_{n}\right), G_{i}\left(x, z_{1}, \ldots, z_{n}\right)\right) \leq \beta_{i}\left(\left\|y_{1}-z_{1}\right\|, \ldots,\left\|y_{n}-z_{n}\right\|\right)
$$

for $x \in X, y_{k}, z_{k} \in Y(k \in\{1,2, \ldots, n\})$ and for $i \in\{1,2\}$;
ii) $f_{k}, g_{k}: X \rightarrow X$ are continuous, $k \in\{1,2, \ldots, n\}$;
iii) G_{1}, G_{2} are lower semicontinuous (l.s.c.);
iv) there exist $\eta_{k}, \tilde{\eta}>0$ such that $\left\|f_{k}(x)-g_{k}(x)\right\| \leq \eta_{k}$ for $k \in$ $\{1,2, \ldots, n\}$ and $H\left(G_{1}\left(x, y_{1}, \ldots, y_{n}\right), G_{2}\left(x, y_{1}, \ldots, y_{n}\right)\right) \leq \tilde{\eta}$, for $x \in X$ and $y_{1}, \ldots, y_{n} \in Y$.

Then:
a) $S_{i} \in P_{c l}(\mathcal{C})$, for $i \in\{1,2\}$ (where $\mathcal{C}=C(X, Y)$ is the space of continuous functions from X to Y);
b) $H\left(S_{1}, S_{2}\right) \leq\left(1-\max \left\{a_{1}, a_{2}\right\}\right)\left[\beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}\right]$.

Proof. From Theorem 4.1 in Wȩgrzyk [26] we get that $S_{i}=F_{T_{i}}$, where $T_{i}: \mathcal{C} \rightarrow$ $P_{c l, c v}(\mathcal{C}), i \in\{1,2\}$ are multivalued operators given by the formulae:

$$
T_{1}(\varphi)=\left\{\psi \in \mathcal{C} \mid \psi(x) \in G_{1}\left(x, \varphi\left(f_{1}(x)\right), \ldots, \varphi\left(f_{n}(x)\right)\right), x \in X\right\}
$$

and

$$
T_{2}(\varphi)=\left\{\psi \in \mathcal{C} \mid \psi(x) \in G_{2}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right), x \in X\right\}
$$

DATA DEPENDENCE OF THE FIXED POINTS SET OF MULTIVALUED WEAKLY PICARD OPERATORS
From Lemma 4.1 in the same paper [26], we have that $H\left(T_{i}\left(\varphi_{1}\right), T_{i}\left(\varphi_{2}\right)\right) \leq$ $\gamma_{i}\left(\bar{d}\left(\varphi_{1}, \varphi_{2}\right)\right)$, for $\varphi_{1}, \varphi_{2} \in \mathcal{C}$, where $\gamma_{i}(t)=\beta_{i}(t, \ldots, t)$, for $t \in \mathbb{R}_{+}$and $\bar{d}\left(\varphi_{1}, \varphi_{2}\right)=$ $\sup \left\{\left\|\varphi_{1}(x)-\varphi_{2}(x)\right\| \mid x \in X\right\}$.

By i) it follows that T_{i} are multivalued a_{i}-contractions, for $i \in\{1,2\}$. Then, we obtain:

$$
S_{i} \in P_{c l}(\mathcal{C}), \text { for } i \in\{1,2\}
$$

and

$$
\begin{equation*}
H\left(S_{1}, S_{2}\right)=H\left(F_{T_{1}}, F_{T_{2}}\right) \leq\left[1-\max \left\{a_{1}, a_{2}\right\}\right] \sup _{\varphi \in \mathcal{C}} H\left(T_{1}(\varphi), T_{2}(\varphi)\right) \tag{6}
\end{equation*}
$$

On the other side, let us estimate $H\left(T_{1}(\varphi), T_{2}(\varphi)\right)$.
For this purpose, let $\varphi_{1} \in T_{1}(\varphi)$. Then $\varphi_{1}(x) \in$ $G_{1}\left(x, \varphi\left(f_{1}(x)\right), \ldots, \varphi\left(f_{n}(x)\right)\right), x \in X$. We have

$$
\begin{gathered}
D\left(\varphi_{1}(x), G_{2}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right) \leq H\left(G_{1}\left(x, \varphi\left(f_{1}(x)\right), \ldots, \varphi\left(f_{n}(x)\right)\right),\right.\right. \\
G_{2}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right) \leq H\left(G_{1}\left(x, \varphi\left(f_{1}(x)\right), \ldots, \varphi\left(f_{n}(x)\right)\right),\right. \\
G_{1}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right)+H\left(G_{1}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right),\right. \\
\left.G_{2}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right)\right) \leq \beta\left(\left\|\varphi\left(f_{1}(x)\right)-\varphi\left(g_{1}(x)\right)\right\|, \ldots,\left\|\varphi\left(f_{n}(x)\right)-\varphi\left(g_{n}(x)\right)\right\|\right)+\tilde{\eta} .
\end{gathered}
$$

From the uniform continuity of φ on the compact space X and from iv) we get that

$$
\left\|\varphi\left(f_{k}(x)\right)-\varphi\left(g_{k}(x)\right)\right\| \leq \eta_{k}, \text { for each } x \in X
$$

Hence we conclude that

$$
D\left(\varphi_{1}(x), G_{2}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right) \leq \beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}\right.
$$

for each $x \in X$.
Then, for a fixed $\varepsilon>0$ and for every $x \in X$ there exists $z_{x} \in$ $G_{2}\left(x, \varphi\left(g_{1}(x)\right), \ldots, \varphi\left(g_{n}(x)\right)\right)$ such that

$$
\left\|\varphi_{1}(x)-z_{x}\right\| \leq \beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}+\varepsilon .
$$

Using the same argument like in the proof of Lemma 4.1 from [26] we infer that for every $\varepsilon>0$ there exists a continuous function $\varphi_{2} \in T_{2}(\varphi)$ such that

$$
\bar{d}\left(\varphi_{1}, \varphi_{2}\right) \leq \beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}+\varepsilon
$$

IOAN A. RUS, ADRIAN PETRUŞEL, ALINA SÎNTĂMĂRIAN

It follows $D\left(\varphi_{1}, T_{2}(\varphi)\right) \leq \beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}$. From the analogous inequality:
$D\left(\varphi_{2}, T_{1}(\varphi)\right) \leq \beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}$, for every $\varphi_{2} \in T_{2}(\varphi)$ we get that

$$
H\left(T_{1}(\varphi), T_{2}(\varphi)\right) \leq \beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}
$$

Making use of the estimate (6), we obtain

$$
H\left(S_{1}, S_{2}\right) \leq\left(1-\max \left\{a_{1}, a_{2}\right\}\right)\left[\beta\left(\eta_{1}, \ldots, \eta_{n}\right)+\tilde{\eta}\right] .
$$

Remark 5.3. For other applications see [2], [3], [7], [8], [11], [24].

References

[1] A. Alesina, S. Massa, D. Roux, Punti uniti di multifunzioni con condizioni di tipo BoydWong, Boll. U. M. I., 8 (1973), 29-34.
[2] A. Constantin, Some existence results for nonlinear integral equations, in Qualitative problems for diff. eq. and control theory, Editor: C. Corduneanu, World Scientific, 1995, 105-111.
[3] A. Constantin, Stability of solutions sets for differential equations with multivalued righthand side, J. Diff. Eq., 114 (1994), 243-252.
[4] H. Covitz, S. B. Nadler jr., Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5-11.
[5] P. Z. Daffer, H. Haneko, Remarks on contractive-type mappings, Scientiae Math., 1 (1998), 125-131.
[6] P. Z. Daffer, H. Haneko, W. Li, On a conjecture of S. Reich, Proceed. Amer. Math. Soc., 124 (1996), 3159-3162.
[7] M. Frigon, A. Granas, Resultats du type de Leray-Schauder pour les contractions multivoques, Topol. Methods in Nonlinear Analysis, 4 (1994), 197-208.
[8] C. J. Himmelberg, F. S. Van Vleck, Lipschitzian generalized differential equations, Rend. Sem. Mat. Univ. Padova, 48 (1973), 159-168.
[9] T. C. Lim, On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. Math. Anal. Appl., 110 (1985), 436-441.
[10] J. T. Markin, Continuous dependence of fixed points sets, Proc. A. M. S., 38 (1973), 545-547.
[11] J. T. Markin, Stability of solutions set for generalized differential equations, Journal Math. Anal. Appl., 46 (1974), 289-291.
[12] S. Massa, D. Roux, On the minimal displacement under generalized nonexpansive multivalued mappings, Rend. di Mat., 12 (1979), 577-585.
[13] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
[14] V. A. Plotnikov, L. I. Plotnikova, Approximated equations: theory and applications, in Approximation and Optimization, ICAOR, Vol. II, 203-216, Cluj-Napoca, 1996.
[15] S. Reich, Kannan's fixed point theorem, Boll. U. M. I., 4 (1971), 1-11.
[16] S. Reich, Some problems and results in fixed points theory, Contemporary Math., 21 (1983), 179-187.
[17] B. Ricceri, Une propriété topologique de l'ensemble des points fixed d'une contraction multivoque à valeurs convexes, Atti. Acc. Lincei Rend., LXXXI (1987), 283-286.
[18] S. M. Robinson, Normed convex processes, Trans. A. M. S., 174 (1972), 127-140.
[19] I. A. Rus, Fixed point theorems for multivalued mappings in complete metric spaces, Math. Japonica, 20 (1975), 21-24.
[20] I. A. Rus, Generalized contractions and applications, Cluj University Press, ClujNapoca, 2001.
[21] I. A. Rus, Basic problems of the metric fixed point theory revisited, (II), Studia Univ. Babes-Bolyai, 36 (1991), 81-99.

DATA DEPENDENCE OF THE FIXED POINTS SET OF MULTIVALUED WEAKLY PICARD OPERATORS
[22] I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae, 34, 4 (1993), 769-773.
[23] I. A. Rus, S. Mureşan, Data dependence of the fixed points set of weakly Picard operators, Studia Univ. Babeş-Bolyai, 43 (1998), 79-83.
[24] J. Saint-Raymond, Multivalued contractions, Set Valued Analysis, 2 (1994), 559-571.
[25] C. Yu-Qing, On a fixed point problem of Reich, Proc. A. M. S., 124 (1996), 3085-3088.
[26] R. Wȩgrzyk, Fixed point theorems for multivalued functions and their applications to functional equations, Dissertationes Math., 21 (1982), 1-28.

Babeş-Bolyai University, 3400 Cluj-Napoca, Kogălniceanu Nr.1, Romania

