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Abstract. In this work we prove a new univalence criterion for the

analicity and univalence in the unit disc U = {z ∈ C : |z| < 1} of an

integral operator.

1. INTRODUCTION

Let A be the class of the functions f which are analytic in the unit disc and

f(0) = f ′(0) − 1 = 0 . We denote by S the class of the functions f ∈ A which are

univalent in U.

In the theory of univalent functions an interesting problem is to find those

integral operators which preserve the univalence of the class S.

Many authors studied the problem of integral operators which preserve the

class S. In this sense, important results are due to Y. J. Kim, E.P. Merkes [1], M.

Nunokawa [3] and J. Pfaltzgraff [5].

2. PRELIMINARIES

We will need the following theorem in this paper.

THEOREM A[4]. Let α be a complex number, Reα > 0 and

f ∈ A.

If

(
1− |z|2Reα

) ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ Reα (1)

for all z ∈ U , then the function
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Fα(z) =
[
α

∫ z

0

uα−1f ′(u)du

] 1
α

(2)

is in the class S.

3. MAIN RESULT

THEOREM. Let g ∈ S and α = a + bi be a complex number and

a ∈ (0, 4]. If

a4 + a2b2 − 4 ≥ 0, a ∈
(

0,
1
2

)
and a2 + b2 − 16 ≥ 0, a ∈

[
1
2
, 4

]
(3)

then the function

Hα(z) =

[
α

∫ z

0

uα−1

(
g(u)
u

) 1
α

du

] 1
α

(4)

is in the class S.

Proof. Let us consider the function

f(z) =
∫ z

0

(
g(u)
u

) 1
α

du. (5)

The function f is regular in U.From (5) we have

f ′(z) =
(

g(z)
z

) 1
α

, f ′′(z) = ( 1
α

(
g(z)

z

) 1
α−1

zg′(z)−g(z)
z2

and

1− |z|2a

a

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1− |z|2a

a
√

a2 + b2

(
z(g′(z))

g(z)
+ 1

)
. (6)

for all z ∈ U .

From (6) we obtain

1− |z|2a

a

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1− |z|2a

a
√

a2 + b2

(
1 + |z|
1− |z|

+ 1
)

. (7)

and hence we get

1− |z|2a

a

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 2
a
√

a2 + b2

1− |z|2a

1− |z|
(8)

for all z ∈ U .
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Let us note |z| = x, x ∈ (0, 1) and φ(x) = 1−x2a

1−x , a > 0. It easy to prove that

φ(x) ≤

 1 if a ∈
(
0, 1

2

)
2a if a ∈ [ 12 ,∞)

(9)

Using a ∈ (0, 4] and the relations (8),(9),(3) we obtain

(
1− |z|2a

a

) ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (10)

for all z ∈ U.

From (5) we have f ′(z) =
(

g(z)
z

) 1
α

and using (10) by Theorem A it results

that the function Hα is in the class S.
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