NON-ANALYTIC FUNCTIONS IN AN ELLIPSE

MIHAI N. PASCU AND VERONICA ŞERBU
Dedicated to Professor Petru T. Mocanu on his $70^{\text {th }}$ birthday

The purpose of this paper is to generalize some results about functions of class C^{1} on the unit disc obtained by P.T.Mocanu in [1], considering functions of class C^{1} on an elliptic domain. We also obtained a sufficient condition for univalency, by introducing the notion of starlikeness with respect to the origin for functions of class C^{1} on the elliptic domain.

Let E denote the elliptic domain
$E:=\left\{z=x+i y \in C: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1<0\right\}$.
Consider a complex function defined on E of the form $f(z)=u(x, y)+i v(x, y)$.
For $r \in(0,1)$ and $\theta \in[0,2 \pi]$, the elliptic coordinates of a point $z=x+i y$ from E are $\left\{\begin{array}{l}x=a r \cos \theta \\ y=b r \sin \theta .\end{array}\right.$

Definition 1. The function $f: E \rightarrow C$ is said to be of class $C^{1}(E)$ if the real functions $u=\operatorname{Ref}$ and $v=\operatorname{Imf}$, of the real variables $x=\operatorname{Rez}, y=\operatorname{Imz}$, are continuous and have continuous first order partial derivatives in E.

For $f \in C^{1}(E)$, we denote

$$
\begin{gather*}
D f(z)=z \frac{\partial f}{\partial z}-\bar{z} \frac{\partial f}{\partial \bar{z}} \tag{1}\\
\mathcal{D} f(z)=\frac{z\left(a^{2}+b^{2}\right)-\bar{z}\left(a^{2}-b^{2}\right)}{2 a b} \frac{\partial f}{\partial z}+\frac{\bar{z}\left(a^{2}+b^{2}\right)-z\left(a^{2}-b^{2}\right)}{2 a b} \frac{\partial f}{\partial \bar{z}} \tag{2}
\end{gather*}
$$

where

$$
\frac{\partial}{\partial z}=\frac{1}{2 a b}\left(a^{2} \frac{\partial}{\partial x}-i b^{2} \frac{\partial}{\partial y}\right)
$$

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish Seminar, Iaşi, 23-27 August 1999.
and

$$
\frac{\partial}{\partial \bar{z}}=\frac{1}{2 a b}\left(a^{2} \frac{\partial}{\partial x}+i b^{2} \frac{\partial}{\partial y}\right) .
$$

The linear differential operators defined by (1) and (2) verify the rules of the differential calculus, for example:

$$
\begin{aligned}
& D(f+g)=D f+D g \\
& D(f g)=f D g+g D f, \\
& D\left(\frac{f}{g}\right)=\frac{g D f-f D g}{g^{2}}, \\
& D(f \circ g)=\frac{\partial f}{\partial g} D g+\frac{\partial f}{\partial \bar{g}} D \bar{g} ;
\end{aligned}
$$

For $a=1$ and $b=1$, from (1) and (2), we obtain the differential operators defined in [Mo].

The two operators have the following properties:

$$
\begin{array}{ll}
D \bar{f}=-\overline{D f} & \mathcal{D} \bar{f}=\overline{\mathcal{D} f} \\
D \operatorname{Re} f=i \operatorname{Im} D f & \mathcal{D} \operatorname{Re} f=\operatorname{Re} \mathcal{D} f \\
D \operatorname{Im} f=-i \operatorname{Re} D f & \mathcal{D} \operatorname{Im} f=\operatorname{Im} \mathcal{D} f \\
D|f|=i|f| \operatorname{Im} \frac{D f}{f} & \mathcal{D}|f|=|f| \operatorname{Re} \frac{\mathcal{D} f}{f} \\
D \arg f=-i \operatorname{Re} \frac{D f}{f} & \mathcal{D} \arg f=\operatorname{Im} \frac{\mathcal{D} f}{f}
\end{array}
$$

We also have:

$$
\frac{\partial f}{\partial \theta}=i D f \quad \text { and } \quad \frac{\partial f}{\partial r}=\frac{1}{r} D f
$$

where $z=r(a \cos \theta+i b \sin \theta)$.
From here we deduce that

$$
\begin{align*}
& \frac{\partial|f|}{\partial \theta}=-|f| \operatorname{Im} \frac{D f}{f} \quad \text { and } \quad \frac{\partial|f|}{\partial r}=\frac{|f|}{r} \operatorname{Re} \frac{\mathcal{D} f}{f} \tag{3}\\
& \frac{\partial}{\partial \theta} \arg f=\operatorname{Re} \frac{D f}{f} \quad \text { and } \quad \frac{\partial}{\partial r} \arg f=\frac{1}{r} \operatorname{Re} \frac{\mathcal{D} f}{f} \tag{4}
\end{align*}
$$

The Jacobian of the function $f \in C^{1}(E)$ is given by

$$
J f=\left|\frac{\partial f}{\partial z}\right|^{2}-\left|\frac{\partial f}{\partial \bar{z}}\right|^{2}
$$

It is known that a function verifying $J f>0, z \in E$, is locally univalent and preserves the orientation.

Definition 2. The continuous function $f: E \rightarrow C, f(0)=0$, is called starlike in E with respect to the origin if it is univalent in E and $f(E)$ is a starlike set.

Theorem 3. A functionf $\in C^{1}(E)$ that satisfies the conditions:
(i) $f(0)=0$ and $f(z) \neq 0$ for all $z \in E \backslash\{0\}$,
(ii) $J f(z)>0$ for all $z \in E$,
(iii) $\operatorname{Re} \frac{D f(z)}{f(z)}>0$ for all $z \in E \backslash\{0\}$,
is starlike in E.
Proof. We denote $E_{r}:=\left\{z=x+i y \in C: \frac{x^{2}}{(a r)^{2}}+\frac{y^{2}}{(b r)^{2}}-1<0\right\}$ and $C_{\mathrm{r}}=$ $f\left(\partial E_{\mathrm{r}}\right)$ for $r \in(0,1)$. From (4) and (iii) we deduce that

$$
\frac{\partial}{\partial \theta} \arg f(r(a \cos \theta+i b \sin \theta))>0, \text { for all } \theta \in[0,2 \pi] \text { and all } r \in(0,1) .
$$

Therefore C_{r} is a starlike curve (not necesarry simple) with respect to the origin, for all $r \in(0,1)$.

In order to prove the univalency of f it is enough to show that C_{r} are Jordan curves and they are each two disjoint. From the condition (i) follows that the curves $C_{r}, r \in(0,1)$, are homotopic in $C \backslash\{0\}$, therefore the index of C_{r} with respect to the origin is the same, for each $r \in(0,1)$, i.e. $n\left(C_{r}, 0\right)=$ const. Because of the condition (ii) there exists a neighbourhood of the origin such that f is univalent and preserves orientation in this neighbourhood. Thus we have an $r_{0} \in(0,1)$ such that for every $r<r_{0}, n\left(C_{r}, 0\right)=1$, meaning that the variation of the argument along C_{r} is 2π. We conclude that C_{r} is a Jordan curve, for each $r \in(0,1)$.

In order to prove that every two different curves C_{r} and C_{r} are disjoint, we will show that for any ray starting from the origin, the modulus of the unique point of intersection of this ray with the curve C_{r} is a strictly increasing function of r, as r increases in the interval $(0,1)$.

Let us fix $\varphi \in(0,2 \pi)$. The system

$$
\left\{\begin{array}{c}
\arg f(z)=\varphi \\
z=r(a \cos \theta+i b \sin \theta)
\end{array}, r \in(0,1)\right.
$$

has a unique solution $\theta=\theta(r)$, that gives us the unique point $z=r(a \cos \theta+$ $i b \sin \theta$). For this value of z we consider

$$
\begin{equation*}
R(r)=|f(z)| \tag{5}
\end{equation*}
$$

We will show that $R(r)$ is strictly increasing in $(0,1)$.
From (5), by differentiating with respect to r, we get

$$
\begin{equation*}
\frac{d R}{d r}=R\left(\frac{1}{r} \operatorname{Re} \frac{\mathcal{D} f}{f}-\frac{d \theta}{d r} \operatorname{Im} \frac{D f}{f}\right) . \tag{6}
\end{equation*}
$$

From the relation $\arg f(z)=\varphi$, we obtain

$$
\begin{equation*}
\frac{1}{r} \operatorname{Im} \frac{\mathcal{D} f}{f}+\frac{d \theta}{d r} \operatorname{Re} \frac{D f}{f}=0 \tag{7}
\end{equation*}
$$

By eliminating $\frac{d \theta}{d r}$ between the equations (6) and (7) we get

$$
\frac{d R}{d r} \operatorname{Re} \frac{D f}{f}=\frac{R}{r}\left(\operatorname{Re} \frac{D f}{f} \operatorname{Re} \frac{\mathcal{D} f}{f}+\operatorname{Im} \frac{D f}{f} \operatorname{Im} \frac{\mathcal{D} f}{f}\right)
$$

or

$$
\frac{d R}{d r} \operatorname{Re} \frac{D f}{f}=\frac{1}{r} \operatorname{Re}(D f \overline{\mathcal{D} f})
$$

A simple calculus shows that $\operatorname{Re}(D f \overline{\mathcal{D} f})=a b r^{2} J f$, therefore

$$
\frac{d R}{d r} \operatorname{Re} \frac{D f}{f}==a b r J f
$$

Because $\frac{d R}{d r}>0, \mathrm{R}$ is a strictly increasing function in $(0,1)$. We proved the univalency of f.

We have that the domain $f\left(U_{r}\right)$ is starlike for each $r \in(0,1)$ and $f\left(U_{r}\right) \subset$ $f\left(U_{r^{\prime}}\right)$ for $0<r<r \prime<1$. It follows that $f(U)$ is also a starlike domain. Our theorem is proved.

References

[1] Petru T. Mocanu, Starlikeness and convexity for non-analytic functions in the unit disc, Mathematica 22(45), 1, 1980, 77-83.
"Transilvania University", Braşov
"Babeş-Bolyai University", Cluj-Napoca

