
STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 2, June 2001

ON CONVEX FUNCTIONS IN AN ELLIPTICAL DOMAIN
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Abstract. In this note we define the notions of convexity for analytic

functions in the ellipse E =

{
z = x + iy ∈ C :

x2

a2
+

y2

b2
− 1 < 0

}
, a >

b > 0. We obtain sufficient conditions for an analytic function to be a

convex function in the ellipse E.

1. Introduction and preliminaries

Let g be a complex function defined in the unit disc U = {z ∈ C : |z| <

1}. For z = x + iy ∈ U we consider u(x, y) = Reg(z) and v(x, y) = Img(z). The

function g belongs to the class C1(U), respectively C2(U) if the functions u and v

of the real variables x and y have continuous first order, respectively second order,

partial derivatives in U [1].

For g ∈ C1(U) the following operators are defined

Dg(z) = z
∂g

∂z
− z

∂g

∂z
and Jg =

∣∣∣∣∂g

∂z

∣∣∣∣2 − ∣∣∣∣∂g

∂z

∣∣∣∣2
where

∂g

∂z
=

1
2

(
∂g

∂x
− i

∂g

∂y

)
and

∂g

∂z
=

1
2

(
∂g

∂x
+ i

∂g

∂y

)
.

P.T. Mocanu [1] obtained sufficient conditions for a non-analytic function in

the unit disc, to be univalent and convex.

Definition 1. [1] A function g of the class C1(U) is a convex function in U

if it is univalent and g(U) is a convex domain.

A sufficient condition for convexity is given in the following theorem.

Theorem 1. [1] If the function g ∈ C1(U) satisfies the conditions

(i) g(0) = 0, Dg ∈ C1(U) and g(z)Dg(z) 6= 0, for all z ∈ U \ {0},
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(ii) Jg(z) > 0, for all z ∈ U

(iii) Re
D2g(z)
Dg(z)

> 0, for all z ∈ U \ {0}

then g is a convex function in U .

2. Main results

Let f be an analytic function in the ellipse E.

Definition 2. The function f is a convex function in E if it is an univalent

function in E and f(E) is a convex domain.

In the next two theorems, sufficient conditions for an analytic function in E

to be convex in E, are given.

Theorem 2. If the analytic function f : E → C satisfies the conditions

(i) f(0) = 0 and f ′(z) 6= 0, for all z ∈ E,

(ii) the inequality

(a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2)Re

[
zf ′′(z)
f ′(z)

+ 1
]

> 0 (1)

holds for all z ∈ E, then f is a convex function in E.

Proof. Let h : U → E be the function defined by

h(z) =
a + b

2
z +

a− b

2
z. (2)

Then h belongs to the class C1(U), is an univalent function in U and h(U) =

E.

We consider the functions g : U → C, g = f ◦ h. In order to prove that f is a

convex function in E it is sufficient to show that the function g satisfies the conditions

from theorem 1. We have

Dg(z) = f ′(u)
(

a + b

2
z − a− b

2
z

)
(3)

where u = h(z) ∈ E. Since f ′(u) 6= 0, for all u ∈ E, then g(z)Dg(z) 6= 0, for all

z ∈ U \ {0}. The Jacobian of g is

Jg(z) = ab|f ′(u)|2 > 0, for all z ∈ U.

We also have

D2g(z)
Dg(z)

=
f ′′(u)
f ′(u)

(
a + b

2
z − a− b

2
z

)
+

(a + b)z + (a− b)z
(a + b)z − (a− b)z

. (4)
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From u =
a + b

2
z +

a− b

2
z and u =

a− b

2
z +

a + b

2
z we obtain

z =
1

2ab
[(a + b)u− (a− b)u] (5)

and hence Re
D2g(z)
Dg(z)

> 0, for all z ∈ U , holds only if

(a2 + b2)Re
[
uf ′′(u)
f ′(u)

+ 1
]
− (a2 − b2)Re

[
uf ′′(u)
f ′(u)

+ 1
]

> 0, for all u ∈ E.

Remark. For a = b (E = U), the conditions from above are the same with

the well-known conditions for convexity for analytic functions in the unit disc.

Theorem 3. If the analytic function f : E → C satisfies the conditions

(i) f(0) = 0 and f ′(z) 6= 0, for all z ∈ E,

(ii) the inequalities

Re
[
zf ′′(z)
f ′(z)

+ 1
]

>
1
2

(6)

and ∣∣∣∣arg
[
zf ′′(z)
f ′(z)

+ 1
]∣∣∣∣ ≤ arccos

3(a2 − b2)
a2 + b2

(7)

are true, for all z ∈ E, then f is a convex function in E.

Proof. In order to prove that the function f is convex in E it is sufficient to

show that the inequality (1) is true. From (6) we have∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ ≥ ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ =
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≥ Re
zf ′′(z)
f ′(z)

(8)

and ∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ >

1
2
, (9)

for all z ∈ E.

From (17) we also have

Re
[
zf ′′(z)
f ′(z)

+ 1
]

∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ >

3(a2 − b2)
a2 + b2

, (10)

for all z ∈ E.

Using the inequalities (8), (9) and (10) we obtain

(a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2Re

[
zf ′′(z)
f ′(z)

+ 1
]

>
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> (a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2)

[∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ + 1
]

>

> (a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2)

[∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ + 1

]
>

> 3(a2 − b2)
∣∣∣∣zf ′′(z)

f ′(z)
+ 1

∣∣∣∣− (a2 − b2)
[∣∣∣∣zf ′′(z)

f ′(z)
+ 1

∣∣∣∣ + 1
]

> 0,

for all z ∈ E.
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