ON CONVEX FUNCTIONS IN AN ELLIPTICAL DOMAIN

NICOLAE N. PASCU, DORINA RĂDUCANU, MIHAI N. PASCU, RADU N. PASCU

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. In this note we define the notions of convexity for analytic functions in the ellipse $E = \left\{z = x + iy \in \mathbb{C} : \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 < 0\right\}, a > b > 0$. We obtain sufficient conditions for an analytic function to be a convex function in the ellipse E.

1. Introduction and preliminaries

Let g be a complex function defined in the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$. For $z = x + iy \in U$ we consider $u(x, y) = \operatorname{Re}g(z)$ and $v(x, y) = \operatorname{Im}g(z)$. The function g belongs to the class $C^1(U)$, respectively $C^2(U)$ if the functions u and v of the real variables x and y have continuous first order, respectively second order, partial derivatives in U [1].

For $g \in C^1(U)$ the following operators are defined

$$Dg(z) = z \frac{\partial g}{\partial z} - \overline{z} \frac{\partial g}{\partial \overline{z}}$$
 and $Jg = \left| \frac{\partial g}{\partial z} \right|^2 - \left| \frac{\partial g}{\partial \overline{z}} \right|^2$

where

$$\frac{\partial g}{\partial z} = \frac{1}{2} \left(\frac{\partial g}{\partial x} - i \frac{\partial g}{\partial y} \right) \quad \text{and} \quad \frac{\partial g}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\partial g}{\partial x} + i \frac{\partial g}{\partial y} \right)$$

P.T. Mocanu [1] obtained sufficient conditions for a non-analytic function in the unit disc, to be univalent and convex.

Definition 1. [1] A function g of the class $C^1(U)$ is a convex function in U if it is univalent and g(U) is a convex domain.

A sufficient condition for convexity is given in the following theorem.

Theorem 1. [1] If the function $g \in C^1(U)$ satisfies the conditions

(i) g(0) = 0, $Dg \in C^{1}(U)$ and $g(z)Dg(z) \neq 0$, for all $z \in U \setminus \{0\}$,

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish Seminar, Iaşi, 23-27 August 1999.

NICOLAE N. PASCU, DORINA RĂDUCANU, MIHAI N. PASCU, RADU N. PASCU

(ii)
$$Jg(z) > 0$$
, for all $z \in U$
(iii) $\operatorname{Re} \frac{D^2 g(z)}{Dg(z)} > 0$, for all $z \in U \setminus \{0\}$

then g is a convex function in U.

2. Main results

Let f be an analytic function in the ellipse E.

Definition 2. The function f is a convex function in E if it is an univalent function in E and f(E) is a convex domain.

In the next two theorems, sufficient conditions for an analytic function in E to be convex in E, are given.

Theorem 2. If the analytic function $f: E \to \mathbb{C}$ satisfies the conditions

(i) f(0) = 0 and $f'(z) \neq 0$, for all $z \in E$,

(ii) the inequality

$$(a^{2} + b^{2})\operatorname{Re}\left[\frac{zf''(z)}{f'(z)} + 1\right] - (a^{2} - b^{2})\operatorname{Re}\left[\frac{\overline{z}f''(z)}{f'(z)} + 1\right] > 0$$
(1)

holds for all $z \in E$, then f is a convex function in E.

Proof. Let $h: U \to E$ be the function defined by

$$h(z) = \frac{a+b}{2}z + \frac{a-b}{2}\overline{z}.$$
(2)

Then h belongs to the class $C^{1}(U)$, is an univalent function in U and h(U) =

We consider the functions $g: U \to \mathbb{C}$, $g = f \circ h$. In order to prove that f is a convex function in E it is sufficient to show that the function g satisfies the conditions from theorem 1. We have

$$Dg(z) = f'(u) \left(\frac{a+b}{2}z - \frac{a-b}{2}\overline{z}\right)$$
(3)

where $u = h(z) \in E$. Since $f'(u) \neq 0$, for all $u \in E$, then $g(z)Dg(z) \neq 0$, for all $z \in U \setminus \{0\}$. The Jacobian of g is

$$Jg(z) = ab|f'(u)|^2 > 0$$
, for all $z \in U$.

We also have

$$\frac{D^2 g(z)}{Dg(z)} = \frac{f''(u)}{f'(u)} \left(\frac{a+b}{2}z - \frac{a-b}{2}\overline{z}\right) + \frac{(a+b)z + (a-b)\overline{z}}{(a+b)z - (a-b)\overline{z}}.$$
(4)

98

E.

From
$$u = \frac{a+b}{2}z + \frac{a-b}{2}\overline{z}$$
 and $\overline{u} = \frac{a-b}{2}z + \frac{a+b}{2}\overline{z}$ we obtain
 $z = \frac{1}{2ab}[(a+b)u - (a-b)\overline{u}]$
(5)

and hence $\operatorname{Re} \frac{D^2 g(z)}{Dg(z)} > 0$, for all $z \in U$, holds only if

$$(a^{2}+b^{2})\operatorname{Re}\left[\frac{uf''(u)}{f'(u)}+1\right] - (a^{2}-b^{2})\operatorname{Re}\left[\frac{\overline{u}f''(u)}{f'(u)}+1\right] > 0, \quad \text{for all} \quad u \in E.$$

Remark. For a = b (E = U), the conditions from above are the same with the well-known conditions for convexity for analytic functions in the unit disc.

Theorem 3. If the analytic function $f: E \to \mathbb{C}$ satisfies the conditions

- (i) f(0) = 0 and $f'(z) \neq 0$, for all $z \in E$,
- (ii) the inequalities

$$\operatorname{Re}\left[\frac{zf''(z)}{f'(z)} + 1\right] > \frac{1}{2} \tag{6}$$

and

$$\left|\arg\left[\frac{zf''(z)}{f'(z)}+1\right]\right| \le \arccos\frac{3(a^2-b^2)}{a^2+b^2} \tag{7}$$

are true, for all $z \in E$, then f is a convex function in E.

Proof. In order to prove that the function f is convex in E it is sufficient to show that the inequality (1) is true. From (6) we have

$$\left|\frac{zf''(z)}{f'(z)} + 1\right| \ge \left|\frac{zf''(z)}{f'(z)}\right| = \left|\frac{\overline{z}f''(z)}{f'(z)}\right| \ge \operatorname{Re}\frac{\overline{z}f''(z)}{f'(z)}$$
(8)

 $\quad \text{and} \quad$

$$\left|\frac{zf''(z)}{f'(z)} + 1\right| > \frac{1}{2},\tag{9}$$

for all $z \in E$.

From (17) we also have

$$\frac{\operatorname{Re}\left[\frac{zf''(z)}{f'(z)}+1\right]}{\left|\frac{zf''(z)}{f'(z)}+1\right|} > \frac{3(a^2-b^2)}{a^2+b^2},\tag{10}$$

for all $z \in E$.

Using the inequalities (8), (9) and (10) we obtain

$$(a^{2}+b^{2})\operatorname{Re}\left[\frac{zf''(z)}{f'(z)}+1\right] - (a^{2}-b^{2}\operatorname{Re}\left[\frac{\overline{z}f''(z)}{f'(z)}+1\right] >$$

99

NICOLAE N. PASCU, DORINA RĂDUCANU, MIHAI N. PASCU, RADU N. PASCU

$$> (a^{2} + b^{2}) \operatorname{Re} \left[\frac{zf''(z)}{f'(z)} + 1 \right] - (a^{2} - b^{2}) \left[\left| \frac{zf''(z)}{f'(z)} \right| + 1 \right] >$$

$$> (a^{2} + b^{2}) \operatorname{Re} \left[\frac{zf''(z)}{f'(z)} + 1 \right] - (a^{2} - b^{2}) \left[\left| \frac{zf''(z)}{f'(z)} + 1 \right| + 1 \right] >$$

$$> 3(a^{2} - b^{2}) \left| \frac{zf''(z)}{f'(z)} + 1 \right| - (a^{2} - b^{2}) \left[\left| \frac{zf''(z)}{f'(z)} + 1 \right| + 1 \right] > 0,$$

for all $z \in E$.

References

- P.T. Mocanu, Starlikeness and convexity for non-analytic functions in the unit disc, Mathematica 22(45), no.1(1980), 77-83.
- [2] W.C. Royster, Convexity and starlikeness of analytic functions, Duke Math., 19(1952), 447-457.

"TRANSILVANIA" UNIVERSITY OF BRAŞOV, DEPARTMENT OF MATHEMATICS, 2200 BRAŞOV, ROMANIA