ON CONVEX FUNCTIONS IN AN ELLIPTICAL DOMAIN

NICOLAE N. PASCU, DORINA RĂDUCANU, MIHAI N. PASCU, RADU N. PASCU

Dedicated to Professor Petru T. Mocanu on his $70^{\text {th }}$ birthday

Abstract

In this note we define the notions of convexity for analytic functions in the ellipse $E=\left\{z=x+i y \in \mathbb{C}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-1<0\right\}, a>$ $b>0$. We obtain sufficient conditions for an analytic function to be a convex function in the ellipse E.

1. Introduction and preliminaries

Let g be a complex function defined in the unit disc $U=\{z \in \mathbb{C}:|z|<$ 1\}. For $z=x+i y \in U$ we consider $u(x, y)=\operatorname{Re} g(z)$ and $v(x, y)=\operatorname{Im} g(z)$. The function g belongs to the class $C^{1}(U)$, respectively $C^{2}(U)$ if the functions u and v of the real variables x and y have continuous first order, respectively second order, partial derivatives in U [1].

For $g \in C^{1}(U)$ the following operators are defined

$$
D g(z)=z \frac{\partial g}{\partial z}-\bar{z} \frac{\partial g}{\partial \bar{z}} \quad \text { and } \quad J g=\left|\frac{\partial g}{\partial z}\right|^{2}-\left|\frac{\partial g}{\partial \bar{z}}\right|^{2}
$$

where

$$
\frac{\partial g}{\partial z}=\frac{1}{2}\left(\frac{\partial g}{\partial x}-i \frac{\partial g}{\partial y}\right) \quad \text { and } \quad \frac{\partial g}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial g}{\partial x}+i \frac{\partial g}{\partial y}\right) .
$$

P.T. Mocanu [1] obtained sufficient conditions for a non-analytic function in the unit disc, to be univalent and convex.

Definition 1. [1] A function g of the class $C^{1}(U)$ is a convex function in U if it is univalent and $g(U)$ is a convex domain.

A sufficient condition for convexity is given in the following theorem.
Theorem 1. [1] If the function $g \in C^{1}(U)$ satisfies the conditions
(i) $g(0)=0, D g \in C^{1}(U)$ and $g(z) D g(z) \neq 0$, for all $z \in U \backslash\{0\}$,

[^0]NICOLAE N. PASCU, DORINA RĂDUCANU, MIHAI N. PASCU, RADU N. PASCU
(ii) $J g(z)>0$, for all $z \in U$
(iii) $\operatorname{Re} \frac{D^{2} g(z)}{D g(z)}>0$, for all $z \in U \backslash\{0\}$
then g is a convex function in U.

2. Main results

Let f be an analytic function in the ellipse E.
Definition 2. The function f is a convex function in E if it is an univalent function in E and $f(E)$ is a convex domain.

In the next two theorems, sufficient conditions for an analytic function in E to be convex in E, are given.

Theorem 2. If the analytic function $f: E \rightarrow \mathbb{C}$ satisfies the conditions
(i) $f(0)=0$ and $f^{\prime}(z) \neq 0$, for all $z \in E$,
(ii) the inequality

$$
\begin{equation*}
\left(a^{2}+b^{2}\right) \operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]-\left(a^{2}-b^{2}\right) \operatorname{Re}\left[\frac{\bar{z} f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]>0 \tag{1}
\end{equation*}
$$

holds for all $z \in E$, then f is a convex function in E.
Proof. Let $h: U \rightarrow E$ be the function defined by

$$
\begin{equation*}
h(z)=\frac{a+b}{2} z+\frac{a-b}{2} \bar{z} . \tag{2}
\end{equation*}
$$

Then h belongs to the class $C^{1}(U)$, is an univalent function in U and $h(U)=$ E.

We consider the functions $g: U \rightarrow \mathbb{C}, g=f \circ h$. In order to prove that f is a convex function in E it is sufficient to show that the function g satisfies the conditions from theorem 1. We have

$$
\begin{equation*}
D g(z)=f^{\prime}(u)\left(\frac{a+b}{2} z-\frac{a-b}{2} \bar{z}\right) \tag{3}
\end{equation*}
$$

where $u=h(z) \in E$. Since $f^{\prime}(u) \neq 0$, for all $u \in E$, then $g(z) D g(z) \neq 0$, for all $z \in U \backslash\{0\}$. The Jacobian of g is

$$
J g(z)=a b\left|f^{\prime}(u)\right|^{2}>0, \quad \text { for all } \quad z \in U
$$

We also have

$$
\begin{equation*}
\frac{D^{2} g(z)}{D g(z)}=\frac{f^{\prime \prime}(u)}{f^{\prime}(u)}\left(\frac{a+b}{2} z-\frac{a-b}{2} \bar{z}\right)+\frac{(a+b) z+(a-b) \bar{z}}{(a+b) z-(a-b) \bar{z}} . \tag{4}
\end{equation*}
$$

From $u=\frac{a+b}{2} z+\frac{a-b}{2} \bar{z}$ and $\bar{u}=\frac{a-b}{2} z+\frac{a+b}{2} \bar{z}$ we obtain

$$
\begin{equation*}
z=\frac{1}{2 a b}[(a+b) u-(a-b) \bar{u}] \tag{5}
\end{equation*}
$$

and hence $\operatorname{Re} \frac{D^{2} g(z)}{D g(z)}>0$, for all $z \in U$, holds only if

$$
\left(a^{2}+b^{2}\right) \operatorname{Re}\left[\frac{u f^{\prime \prime}(u)}{f^{\prime}(u)}+1\right]-\left(a^{2}-b^{2}\right) \operatorname{Re}\left[\frac{\bar{u} f^{\prime \prime}(u)}{f^{\prime}(u)}+1\right]>0, \quad \text { for all } \quad u \in E .
$$

Remark. For $a=b(E=U)$, the conditions from above are the same with the well-known conditions for convexity for analytic functions in the unit disc.

Theorem 3. If the analytic function $f: E \rightarrow \mathbb{C}$ satisfies the conditions
(i) $f(0)=0$ and $f^{\prime}(z) \neq 0$, for all $z \in E$,
(ii) the inequalities

$$
\begin{equation*}
\operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]>\frac{1}{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\arg \left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]\right| \leq \arccos \frac{3\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}} \tag{7}
\end{equation*}
$$

are true, for all $z \in E$, then f is a convex function in E.
Proof. In order to prove that the function f is convex in E it is sufficient to show that the inequality (1) is true. From (6) we have

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right| \geq\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=\left|\frac{\bar{z} f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \geq \operatorname{Re} \frac{\bar{z} f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right|>\frac{1}{2} \tag{9}
\end{equation*}
$$

for all $z \in E$.
From (17) we also have

$$
\begin{equation*}
\frac{\operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]}{\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right|}>\frac{3\left(a^{2}-b^{2}\right)}{a^{2}+b^{2}} \tag{10}
\end{equation*}
$$

for all $z \in E$.
Using the inequalities (8), (9) and (10) we obtain

$$
\left(a^{2}+b^{2}\right) \operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]-\left(a^{2}-b^{2} \operatorname{Re}\left[\frac{\bar{z} f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]>\right.
$$

NICOLAE N. PASCU, DORINA RĂDUCANU, MIHAI N. PASCU, RADU N. PASCU

$$
\begin{aligned}
& >\left(a^{2}+b^{2}\right) \operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]-\left(a^{2}-b^{2}\right)\left[\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+1\right]> \\
> & \left(a^{2}+b^{2}\right) \operatorname{Re}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right]-\left(a^{2}-b^{2}\right)\left[\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right|+1\right]> \\
> & 3\left(a^{2}-b^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right|-\left(a^{2}-b^{2}\right)\left[\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right|+1\right]>0,
\end{aligned}
$$

for all $z \in E$.

References

[1] P.T. Mocanu, Starlikeness and convexity for non-analytic functions in the unit disc, Mathematica 22(45), no.1(1980), 77-83.
[2] W.C. Royster, Convexity and starlikeness of analytic functions, Duke Math., 19(1952), 447-457.
"Transilvania" University of Braşov, Department of Mathematics, 2200 Braşov, Romania

[^0]: Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish Seminar, Iaşi, 23-27 August 1999.

