ON UNIVALENT FUNCTIONS IN A HALF-PLANE

NICOLAE N. PASCU

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. A basic result in the theory of univalent functions is well-known inequality $|-2|z^2| + (1 - |z|^2) zf''(z)/f'(z)| \le 4|z|$ where f is an univalent function in the unit disc. In this note we obtain a similar result for univalent functions in the upper half-plane.

1. Introduction.

Let U be the unit disc $\{z : z \in C, |z| < 1\}$ and let A be the class of analytic and univalent functions in U. We denote by S the class of the functions $f, f \in A$, normalized by conditions f(0) = f'(0) - 1 = 0.

As a corollary of the inequality of the second coefficient, for the functions in the class S, it results the following well-known theorem:

Theorem A. If the function f belongs to the class A, then for all $z \in U$ we have

$$\left|-2|z|^{2}+\left(1-|z|^{2}\right)zf''(z)/f'(z)\right|\leq4|z|.$$

The Theorem A is the starting point for solving some problems (distortion theorem, rotation theorem) in the class S.

We denote by D the upper half-plane $\{z : Im(z) > 0\}$ and by S_D the class of analytic and univalent functions in the domain D. In this note we obtain a result, similar to the Theorem A, for functions in the class S_D .

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish Seminar, Iaşi, 23-27 August 1999.

2. Main results.

Let $g: U \to D$ be the function defined from

$$g\left(z\right) = i\frac{1-z}{1+z} \tag{1}$$

The function g belongs to the class A and g(U) = D.

We denote by D_r the disc $g(U_r)$, where $r \in (0,1]$, $U_r = \{z : |z| < r\}$ and $U_1 = U$. We observe that, for all $0 < r < s \le 1$ we have $D_r \subset D_s \subset D_1 = D$ and hence for all $\xi \in D$, there exists $r_0 \in (0,1)$ such that $\xi \in D_r$, for all $r \in (r_0,1)$.

Let ξ_r and R_r be the numbers defined from

$$\xi_r = i \frac{1+r^2}{1-r^2}, \quad R_r = \frac{2r}{1-r^2} \tag{2}$$

For $\xi = g(z)$, where |z| = r, we have

$$\left|\xi - \xi_r\right|^2 = \frac{4\left|z + r^2\right|^2}{\left|1 + z\right|^2 \left(1 - r^2\right)^2} \tag{3}$$

Because for all z, |z| = r < 1, we have

$$\left|z+r^{2}\right| = \left|r+rz\right| \tag{4}$$

it result that

$$|\xi - \xi_r| = R_r \tag{5}$$

and hence D_r is the disc with the center at the point ξ_r and the radius R_r .

Lemma. For all fixed point $\xi \in D$ there exists $r_0 \in (0, 1)$ and $u_r \in U$ such that for all $r \in (r_0, 1)$

$$\xi = \xi_r + R_r u_r \tag{6}$$

and

$$\lim_{r \to 1} u_r = -i, \quad \lim_{r \to 1} [R_r \left(1 - |u_r| \right)] = \operatorname{Im}\left(\xi\right).$$
(7)

Proof. If $\xi \in D$, then $|g^{-1}(\xi)| < 1$ and hence for all r_0 , $|g^{-1}(\xi)| < r_0 < 1$ we have $\xi \in D_r$, for all $r, r_0 < r < 1$.

For $x_r = \operatorname{Re}(u_r)$, $y_r = \operatorname{Im}(u_r)$, $X = \operatorname{Re}(\xi)$, $Y = \operatorname{Im}(\xi)$ we have

$$X = x_r \frac{2r}{1 - r^2}, \quad Y = \frac{1 + r^2}{1 - r^2} + y_r \frac{2r}{1 - r^2}$$
(8)

for all $r, r_0 < r < 1$ and hence

$$\lim_{r \to 1} x_r = \lim_{r \to 1} \frac{\left(1 - r^2\right) X}{2r} = 0, \quad \lim_{r \to 1} y_r = \lim_{r \to 1} \frac{\left(1 - r^2\right) Y - 1 - r^2}{2r} = -1 \tag{9}$$

From (8) we have

$$\left(1 - \left|u_{r}\right|^{2}\right)R_{r} = \left[1 - \frac{\left(1 - r^{2}\right)^{2}X^{2} + \left(\left(1 - r^{2}\right)Y - \left(1 + r^{2}\right)\right)^{2}}{4r^{2}}\right] \cdot \frac{2r}{1 - r^{2}}$$
(10)

It result that

$$\lim_{r \to 1} \left(1 - |u_r|^2 \right) R_r = \lim_{r \to 1} \frac{2\left(1 + r^2 \right) \operatorname{Im}\left(\xi\right) - \left(1 - r^2 \right) |\xi|^2 - 1 + r^2}{2r} = 2\operatorname{Im}\left(\xi\right) \quad (11)$$

and hence

$$\lim_{r \to 1} [(1 - |u_r|) R_r] = \operatorname{Im}(\xi)$$
(12)

Theorem. If the function f is analytic and univalent in the domain D, for all $\xi \in D$ we have

$$\left|i - \operatorname{Im}\left(\xi\right) \frac{f''\left(\xi\right)}{f'\left(\xi\right)}\right| \le 2 \tag{13}$$

Proof. Let ξ be a fixed point in the domain D. From Lemma it result that there exists $r_0 \in (0, 1)$ such that $\xi \in D_r$ for all $r \in (r_0, 1)$. We consider the function $g_r: U \to C$ defined from

$$g_r(u) = f\left(\xi_r + R_r u\right) \tag{14}$$

where $r \in (r_0, 1)$.

For all fixed $r, r \in (r_0, 1)$ the function g_r is analytic and univalent in U and from Theorem A it result that

$$\left|-2\left|u\right|^{2} + \left(1 - \left|u\right|^{2}\right) R_{r} \frac{uf''\left(\xi_{r} + R_{r}u\right)}{f'\left(\xi_{r} + R_{r}u\right)}\right| \le 4\left|u\right|$$
(15)

From Lemma it result that for fixed point $\xi \in D$ there exists $u_r \in U$ such that $\xi = \xi_r + R_r u_r$ and hence, from (15) we obtain

$$\lim_{r \to 1} \left| -2 \left| u_r \right|^2 + \left(1 - \left| u_r \right|^2 \right) R_r \frac{u_r f''(\xi)}{f'(\xi)} \right| \le 4 \lim_{r \to 1} \left| u_r \right| \tag{16}$$

Because $\lim_{r\to 1} u_r = -i$ and $\lim_{r\to 1} [(1-|u_r|)R_r] = \operatorname{Im}(\xi)$, form (16) we obtain the inequality (13).

Remark. The function f defined from

$$f\left(\xi\right) = \xi^2 \tag{17}$$

is analytic and univalent in the domain D and

$$\left|i - \operatorname{Im}\left(\xi\right) \frac{f''\left(\xi\right)}{f'\left(\xi\right)}\right| = \left|i - \operatorname{Im}\left(\xi\right) \frac{1}{\xi}\right|$$
(18)

95

NICOLAE N. PASCU

If we observe that $\left|i - \operatorname{Im}(\xi) \frac{1}{\xi}\right| = 2$ for $\xi = i$, it result that the inequality (13) is best possible.

UNIV. "TRANSILVANIA" BRAŞOV, FACULTY OF SCIENCES, ROMANIA