ON UNIVALENT FUNCTIONS IN A HALF-PLANE

NICOLAE N. PASCU
Dedicated to Professor Petru T. Mocanu on his $70^{\text {th }}$ birthday

Abstract

A basic result in the theory of univalent functions is well-known inequality $|-2| z^{2}\left|+\left(1-|z|^{2}\right) z f^{\prime \prime}(z) / f^{\prime}(z)\right| \leq 4|z|$ where f is an univalent function in the unit disc. In this note we obtain a similar result for univalent functions in the upper half-plane.

1. Introduction.

Let U be the unit disc $\{z: z \in C,|z|<1\}$ and let A be the class of analytic and univalent functions in U. We denote by S the class of the functions $f, f \in A$, normalized by conditions $f(0)=f^{\prime}(0)-1=0$.

As a corollary of the inequality of the second coefficient, for the functions in the class S, it results the following well-known theorem:

Theorem A. If the function f belongs to the class A, then for all $z \in U$ we have

$$
\left.|-2| z\right|^{2}+\left(1-|z|^{2}\right) z f^{\prime \prime}(z) / f^{\prime}(z)|\leq 4| z \mid .
$$

The Theorem A is the starting point for solving some problems (distortion theorem, rotation theorem) in the class S.

We denote by D the upper half-plane $\{z: \operatorname{Im}(z)>0\}$ and by S_{D} the class of analytic and univalent functions in the domain D. In this note we obtain a result, similar to the Theorem A , for functions in the class S_{D}.

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish Seminar, Iaşi, 23-27 August 1999.

NICOLAE N. PASCU

2. Main results.

Let $g: U \rightarrow D$ be the function defined from

$$
\begin{equation*}
g(z)=i \frac{1-z}{1+z} \tag{1}
\end{equation*}
$$

The function g belongs to the class A and $g(U)=D$.
We denote by D_{r} the disc $g\left(U_{r}\right)$, where $r \in(0,1], U_{r}=\{z:|z|<r\}$ and $U_{1}=U$. We observe that, for all $0<r<s \leq 1$ we have $D_{r} \subset D_{s} \subset D_{1}=D$ and hence for all $\xi \in D$, there exists $r_{0} \in(0,1)$ such that $\xi \in D_{r}$, for all $r \in\left(r_{0}, 1\right)$.

Let ξ_{r} and R_{r} be the numbers defined from

$$
\begin{equation*}
\xi_{r}=i \frac{1+r^{2}}{1-r^{2}}, \quad R_{r}=\frac{2 r}{1-r^{2}} \tag{2}
\end{equation*}
$$

For $\xi=g(z)$, where $|z|=r$, we have

$$
\begin{equation*}
\left|\xi-\xi_{r}\right|^{2}=\frac{4\left|z+r^{2}\right|^{2}}{|1+z|^{2}\left(1-r^{2}\right)^{2}} \tag{3}
\end{equation*}
$$

Because for all $z,|z|=r<1$, we have

$$
\begin{equation*}
\left|z+r^{2}\right|=|r+r z| \tag{4}
\end{equation*}
$$

it result that

$$
\begin{equation*}
\left|\xi-\xi_{r}\right|=R_{r} \tag{5}
\end{equation*}
$$

and hence D_{r} is the disc with the center at the point ξ_{r} and the radius R_{r}.
Lemma. For all fixed point $\xi \in D$ there exists $r_{0} \in(0,1)$ and $u_{r} \in U$ such that for all $r \in\left(r_{0}, 1\right)$

$$
\begin{equation*}
\xi=\xi_{r}+R_{r} u_{r} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{r \rightarrow 1} u_{r}=-i, \quad \lim _{r \rightarrow 1}\left[R_{r}\left(1-\left|u_{r}\right|\right)\right]=\operatorname{Im}(\xi) \tag{7}
\end{equation*}
$$

Proof. If $\xi \in D$, then $\left|g^{-1}(\xi)\right|<1$ and hence for all $r_{0},\left|g^{-1}(\xi)\right|<r_{0}<1$ we have $\xi \in D_{r}$, for all $r, r_{0}<r<1$.

$$
\text { For } x_{r}=\operatorname{Re}\left(u_{r}\right), y_{r}=\operatorname{Im}\left(u_{r}\right), X=\operatorname{Re}(\xi), Y=\operatorname{Im}(\xi) \text { we have }
$$

$$
\begin{equation*}
X=x_{r} \frac{2 r}{1-r^{2}}, \quad Y=\frac{1+r^{2}}{1-r^{2}}+y_{r} \frac{2 r}{1-r^{2}} \tag{8}
\end{equation*}
$$

for all $r, r_{0}<r<1$ and hence

$$
\begin{equation*}
\lim _{r \rightarrow 1} x_{r}=\lim _{r \rightarrow 1} \frac{\left(1-r^{2}\right) X}{2 r}=0, \quad \lim _{r \rightarrow 1} y_{r}=\lim _{r \rightarrow 1} \frac{\left(1-r^{2}\right) Y-1-r^{2}}{2 r}=-1 \tag{9}
\end{equation*}
$$

From (8) we have

$$
\begin{equation*}
\left(1-\left|u_{r}\right|^{2}\right) R_{r}=\left[1-\frac{\left(1-r^{2}\right)^{2} X^{2}+\left(\left(1-r^{2}\right) Y-\left(1+r^{2}\right)\right)^{2}}{4 r^{2}}\right] \cdot \frac{2 r}{1-r^{2}} \tag{10}
\end{equation*}
$$

It result that

$$
\begin{equation*}
\lim _{r \rightarrow 1}\left(1-\left|u_{r}\right|^{2}\right) R_{r}=\lim _{r \rightarrow 1} \frac{2\left(1+r^{2}\right) \operatorname{Im}(\xi)-\left(1-r^{2}\right)|\xi|^{2}-1+r^{2}}{2 r}=2 \operatorname{Im}(\xi) \tag{11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\lim _{r \rightarrow 1}\left[\left(1-\left|u_{r}\right|\right) R_{r}\right]=\operatorname{Im}(\xi) \tag{12}
\end{equation*}
$$

Theorem. If the function f is analytic and univalent in the domain D, for all $\xi \in D$ we have

$$
\begin{equation*}
\left|i-\operatorname{Im}(\xi) \frac{f^{\prime \prime}(\xi)}{f^{\prime}(\xi)}\right| \leq 2 \tag{13}
\end{equation*}
$$

Proof. Let ξ be a fixed point in the domain D. From Lemma it result that there exists $r_{0} \in(0,1)$ such that $\xi \in D_{r}$ for all $r \in\left(r_{0}, 1\right)$. We consider the function $g_{r}: U \rightarrow C$ defined from

$$
\begin{equation*}
g_{r}(u)=f\left(\xi_{r}+R_{r} u\right) \tag{14}
\end{equation*}
$$

where $r \in\left(r_{0}, 1\right)$.
For all fixed $r, r \in\left(r_{0}, 1\right)$ the function g_{r} is analytic and univalent in U and from Theorem A it result that

$$
\begin{equation*}
\left.\left.|-2| u\right|^{2}+\left(1-|u|^{2}\right) R_{r} \frac{u f^{\prime \prime}\left(\xi_{r}+R_{r} u\right)}{f^{\prime}\left(\xi_{r}+R_{r} u\right)}|\leq 4| u \right\rvert\, \tag{15}
\end{equation*}
$$

From Lemma it result that for fixed point $\xi \in D$ there exists $u_{r} \in U$ such that $\xi=\xi_{r}+R_{r} u_{r}$ and hence, from (15) we obtain

$$
\begin{equation*}
\left.\left.\lim _{r \rightarrow 1}|-2| u_{r}\right|^{2}+\left(1-\left|u_{r}\right|^{2}\right) R_{r} \frac{u_{r} f^{\prime \prime}(\xi)}{f^{\prime}(\xi)}\left|\leq 4 \lim _{r \rightarrow 1}\right| u_{r} \right\rvert\, \tag{16}
\end{equation*}
$$

Because $\lim _{r \rightarrow 1} u_{r}=-i$ and $\lim _{r \rightarrow 1}\left[\left(1-\left|u_{r}\right|\right) R_{r}\right]=\operatorname{Im}(\xi)$, form (16) we obtain the inequality (13)

Remark. The function f defined from

$$
\begin{equation*}
f(\xi)=\xi^{2} \tag{17}
\end{equation*}
$$

is analytic and univalent in the domain D and

$$
\begin{equation*}
\left|i-\operatorname{Im}(\xi) \frac{f^{\prime \prime}(\xi)}{f^{\prime}(\xi)}\right|=\left|i-\operatorname{Im}(\xi) \frac{1}{\xi}\right| \tag{18}
\end{equation*}
$$

NICOLAE N. PASCU

If we observe that $\left|i-\operatorname{Im}(\xi) \frac{1}{\xi}\right|=2$ for $\xi=i$, it result that the inequality (13) is best possible.

Univ. "Transilvania" Braşov, Faculty of Sciences, Romania

