ON THE UNIVALENCE OF CONVEX FUNCTIONS OF COMPLEX ORDER

HORIANA OVESEA, IRINEL RADOMIR

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. In this note we study the univalence of the functions f who belong to the class of convex functions of complex order introduced by Nasr and Aouf [2]. The results obtained improve the results from paper [3].

1. Introduction

Let A be the class of functions f analytic in the unit disk $U = \{z \in C : |z| < 1\}$ and such that f(0) = 0, f'(0) = 1.

Let S denote the class of functions $f \in A$, f univalent in U.

Nasr and Aouf defined the class of functions $f \in A$, $f'(z) \neq 0$ in U, for which $Re[1 + zf''(z)/(\alpha f'(z))] > 0$, where $\alpha \in C$. For a fixed complex number α , $\alpha \neq 0$, let us denote this class by $N(\alpha)$,

$$N(\alpha) = \left\{ f \in A : \quad Re\left(1 + \frac{1}{\alpha} \frac{zf''(z)}{f'(z)}\right) > 0, \quad f'(z) \neq 0, \quad (\forall)z \in U \right\}$$
(1)

Theorem 1.1 ([3]). Let α be a complex number, $\alpha \neq 0$ and let $f \in N(\alpha)$. If $\alpha \in D$, where

$$D = D_1 \cup D_2 \cup [-1/2, \ -1/4] \cup [1/4, \ 3/2] \quad and \tag{2}$$

$$D_1 = \{ \alpha \in C : |\alpha| \le 1/4 \}$$

$$D_2 = \{ \alpha \in C : |\alpha - 1/2| \le 1/2 \text{ and } \pi/3 \le |\arg \alpha| \le \pi/2 \},\$$

then the function f is univalent in U.

2. Preliminaries

Theorem 2.1 ([4]). Let $f \in A$. Let α , β , c be complex numbers, $Re\beta > 0$, $Re(2\alpha + \beta) > 0$, $Re\frac{\alpha}{\beta} > -1/2$, $|c(\alpha + \beta) + \alpha| + |\alpha| \le |\alpha + \beta|$. If there exists an analytic function $g, g \in A$, such that

$$\left| (1+c)\frac{f'(z)}{g'(z)} - 1 \right| < 1, \qquad (\forall)z \in U,$$
$$\left[(1+c)\frac{f'(z)}{g'(z)} - 1 \right] |z|^{2(\alpha+\beta)} + \frac{1 - |z|^{2(\alpha+\beta)}}{\alpha+\beta} \left(\frac{zg''(z)}{g'(z)} - \alpha \right) \right| \le 1$$

for all $z \in U \setminus \{0\}$, then the function

$$F(z) = \left(\beta \int_0^z u^{\beta-1} f'(u) du\right)^{1/\beta}$$

is analytic and univalent in U.

The results obtained are proved by using Theorem 2.1 in the particular case $f \equiv g$ and $\alpha = 1 - \beta$. For this choise, from Theorem 2.1 we get the following

Corollary 2.1. Let $f \in A$ and let β , c be complex numbers. If $|\beta - 1| < 1$, |c| < 1, $|c + 1 - \beta| + |\beta - 1| \le 1$ and

$$\left| c|z|^2 + (1 - |z|^2) \left(\frac{zf''(z)}{f'(z)} + \beta - 1 \right) \right| \le 1, \qquad (\forall) z \in U, \tag{3}$$

then the function

$$F(z) = \left(\beta \int_0^z u^{\beta-1} f'(u) du\right)^{1/\beta} \tag{4}$$

is analytic and univalent in U.

Theorem 2.2 ([1]). If g is a starlike function in U and $-1/2 \le \alpha \le 3/2$, then the function

$$G(z) = \int_0^z \left(\frac{g(u)}{u}\right)^\alpha du$$

is a close-to-convex function in U.

Lemma 2.1. If g is a starlike function in U and a is a fixed point from the unit disk U, then the function

$$h(z) = \frac{a \cdot z}{(a+z)(1+\overline{a}z)g(a)} \cdot g\left(\frac{a+z}{1+\overline{a}z}\right)$$
(5)

is a starlike function in U.

88

3. Main results

Theorem 3.1. Let α , β be complex numbers, $\alpha \neq 0$, $|\beta - 1| < 1$ and let $f \in N(\alpha)$. If

$$|\alpha| < \frac{1 - |\beta - 1|}{2},\tag{6}$$

then it exists an univalent function F in U, such that

$$f(z) = \int_0^z \left(\frac{F(u)}{u}\right)^{\beta-1} F'(u) du , \quad z \in U.$$
(7)

Proof. Let us consider the function

$$g(z) = z \cdot (f'(z))^{1/\alpha} , \ \alpha \neq 0.$$

We have

$$\frac{zg'(z)}{g(z)} = 1 + \frac{1}{\alpha} \frac{zf''(z)}{f'(z)}$$
(8)

Because $f \in N(\alpha)$ it follows that Re[zg'(z)/g(z)] > 0 in U and hence g is a starlike function in U. Let h be the function defined by (5), $h(z) = z + a_2 z^2 + \dots$ We obtain

$$a_2 = \frac{h''(0)}{2} = (1 - |a|^2) \frac{g'(a)}{g(a)} - \frac{1 + |a|^2}{a}$$

and then

$$\frac{zg'(z)}{g(z)} = \frac{1 + a_2 z + |z|^2}{1 - |z|^2} \tag{9}$$

The relations (8) and (9) lead to

$$\frac{zf''(z)}{f'(z)} = \alpha \left(\frac{zg'(z)}{g(z)} - 1\right) = \alpha \frac{a_2 z + 2|z|^2}{1 - |z|^2} \tag{10}$$

Taking into account (10) it results

$$c|z|^{2} + (1 - |z|^{2}) \left(\frac{zf''(z)}{f'(z)} + \beta - 1 \right) =$$

$$= (c + 2\alpha + 1 - \beta)|z|^{2} + \alpha a_{2}z + \beta - 1.$$
(11)

If $c = \beta - 1 - 2\alpha$, from (6) it follows that |c| < 1 and also

$$|c+1-\beta|+|\beta-1| = |2\alpha|+|\beta-1| < 1 \; .$$

Since h is a starlike function, then $|a_2| \leq 2$ and in view of (6) , the relation (11) becomes

$$\left| c|z|^{2} + (1 - |z|^{2}) \left(\frac{zf''(z)}{f'(z)} + \beta - 1 \right) \right| =$$

89

HORIANA OVESEA, IRINEL RADOMIR

$$= |\alpha a_2 z + \beta - 1| \le 2|\alpha| + |\beta - 1| < 1.$$

From Corollary 2.1 we conclude that the function

$$F(z) = \left(\beta \int_0^z u^{\beta-1} f'(u) du\right)^{1/\beta}$$

is analytic and univalent in U.

We have $F^{\beta-1}(z)F'(z) = z^{\beta-1}f'(z)$ and therefore

$$f'(z) = \left(\frac{F(z)}{z}\right)^{\beta-1} F'(z).$$

It follows that the function f is given by (7), where F is analytic and univalent in U.

If in Theorem 3.1 we take $\beta = 1$, then we have f(z) = F(z) and we get the following result

Corollary 3.1. Let α be a complex number, $\alpha \neq 0$ and let $f \in N(\alpha)$. If $|\alpha| < 1/2$, then the function f is univalent in U.

Theorem 3.2. Let α be a complex number, $\alpha \neq 0$ and let $f \in N(\alpha)$. If $\alpha \in D$, where

$$D = D_1 \cup [1/2, 3/2] \cup \{-1/2\}, \qquad (12)$$
$$D_1 = \{\alpha \in C : |\alpha| < 1/2\},$$

then the function f is univalent in U.

If α is a real number, $\alpha \notin D$, then the function

$$f(z) = \int_0^z (1-u)^{-2\alpha} du$$
 (13)

belongs to the class $N(\alpha)$ but it is not univalent in U.

Proof. If $\alpha \in D_1$, from Corollary 3.1 it follows that f is an univalent function. Let α be a real number, $\alpha \in [-1/2, 3/2] \setminus \{0\}$. In the same manner as in Theorem 3.1 we consider the function $g(z) = z(f'(z))^{1/\alpha}$. The function g being a starlike function, from Theorem 2.2 it follows that the function

$$G(z) = \int_0^z \left(\frac{g(u)}{u}\right)^\alpha du = \int_0^z f'(u)du = f(z)$$

is a close-to-convex function. For the function f defined by (13) a short computation gives

$$1 + \frac{1}{\alpha} \frac{zf''(z)}{f'(z)} = \frac{1+z}{1-z}$$

90

For $z \in U$ we have Re(1+z)/(1-z) > 0 and hence $f \in N(\alpha)$.

For $\beta \in R$, $\beta \neq 0$, we know that the function $h(z) = (1-z)^{\beta}$ is univalent in U if and only if $\beta \in [-2, 2]$. From (13) we get

$$f(z) = \frac{1}{2\alpha - 1} \left[(1 - z)^{-2\alpha + 1} - 1 \right] , \qquad \alpha \neq 1/2$$

and then the function f is not univalent if $\alpha < -1/2$ or $\alpha > 3/2$.

References

- [1] A.W.Goodman, Univalent functions, Mariner Publishing Company Inc., 1984.
- M.A.Nasr, M.K.Aouf, Caracterisation for convex and starlike functions of complex order in U, Bull. Fac. Sci. Assiut Univ., A11(1982), nr.2, 117-121.
- [3] H.Ovesea, N.N.Pascu, I.Radomir, On the univalence of Nasr's function, Sem.geom. function theory, Preprint 2(1991), Braşov, 73-76.
- [4] H. Ovesea, An extension of Lewandowski's univalence criteria, Demonstratio Mathematica, XXXIX, 4(1996),699-706.

Department of Mathematics, "Transilvania" University, 2200 Braşov, Romania