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Abstract. In this note we study the univalence of the functions f who

belong to the class of convex functions of complex order introduced by

Nasr and Aouf [2]. The results obtained improve the results from paper

[3].

1. Introduction

Let A be the class of functions f analytic in the unit disk U = {z ∈ C : |z| <

1} and such that f(0) = 0, f ′(0) = 1.

Let S denote the class of functions f ∈ A, f univalent in U .

Nasr and Aouf defined the class of functions f ∈ A, f ′(z) 6= 0 in U , for which

Re[1 + zf ′′(z)/(αf ′(z))] > 0, where α ∈ C. For a fixed complex number α,

α 6= 0 , let us denote this class by N(α),

N(α) =
{

f ∈ A : Re

(
1 +

1
α

zf ′′(z)
f ′(z)

)
> 0, f ′(z) 6= 0, (∀)z ∈ U

}
(1)

Theorem 1.1 ([3]). Let α be a complex number, α 6= 0 and let f ∈ N(α). If

α ∈ D, where

D = D1 ∪D2 ∪ [−1/2, −1/4] ∪ [1/4, 3/2] and (2)

D1 = {α ∈ C : |α| ≤ 1/4}

D2 = {α ∈ C : |α− 1/2| ≤ 1/2 and π/3 ≤ | arg α| ≤ π/2},

then the function f is univalent in U .
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2. Preliminaries

Theorem 2.1 ([4]). Let f ∈ A. Let α, β, c be complex numbers, Reβ >

0, Re(2α + β) > 0, Reα
β > −1/2, |c(α + β) + α| + |α| ≤ |α + β|. If there exists an

analytic function g, g ∈ A, such that∣∣∣∣(1 + c)
f ′(z)
g′(z)

− 1
∣∣∣∣ < 1, (∀)z ∈ U,

∣∣∣∣[(1 + c)
f ′(z)
g′(z)

− 1
]
|z|2(α+β) +

1− |z|2(α+β)

α + β

(
zg′′(z)
g′(z)

− α

)∣∣∣∣ ≤ 1

for all z ∈ U \ {0}, then the function

F (z) =
(

β

∫ z

0

uβ−1f ′(u)du

)1/β

is analytic and univalent in U .

The results obtained are proved by using Theorem 2.1 in the particular case

f ≡ g and α = 1− β. For this choise, from Theorem 2.1 we get the following

Corollary 2.1. Let f ∈ A and let β, c be complex numbers. If |β − 1| < 1,

|c| < 1, |c + 1− β|+ |β − 1| ≤ 1 and∣∣∣∣c|z|2 + (1− |z|2)
(

zf ′′(z)
f ′(z)

+ β − 1
)∣∣∣∣ ≤ 1, (∀)z ∈ U, (3)

then the function

F (z) =
(

β

∫ z

0

uβ−1f ′(u)du

)1/β

(4)

is analytic and univalent in U .

Theorem 2.2 ([1]). If g is a starlike function in U and −1/2 ≤ α ≤ 3/2,

then the function

G(z) =
∫ z

0

(
g(u)
u

)α

du

is a close-to-convex function in U .

Lemma 2.1. If g is a starlike function in U and a is a fixed point from the

unit disk U , then the function

h(z) =
a · z

(a + z)(1 + az)g(a)
· g

(
a + z

1 + az

)
(5)

is a starlike function in U .
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3. Main results

Theorem 3.1. Let α, β be complex numbers, α 6= 0, |β − 1| < 1 and let

f ∈ N(α). If

|α| < 1− |β − 1|
2

, (6)

then it exists an univalent function F in U , such that

f(z) =
∫ z

0

(
F (u)

u

)β−1

F ′(u)du , z ∈ U. (7)

Proof. Let us consider the function

g(z) = z · (f ′(z))1/α
, α 6= 0.

We have
zg′(z)
g(z)

= 1 +
1
α

zf ′′(z)
f ′(z)

(8)

Because f ∈ N(α) it follows that Re[zg′(z)/g(z)] > 0 in U and hence g is a starlike

function in U . Let h be the function defined by (5), h(z) = z + a2z
2 + . . . . We obtain

a2 =
h′′(0)

2
= (1− |a|2)g′(a)

g(a)
− 1 + |a|2

a

and then
zg′(z)
g(z)

=
1 + a2z + |z|2

1− |z|2
(9)

The relations (8) and (9) lead to

zf ′′(z)
f ′(z)

= α

(
zg′(z)
g(z)

− 1
)

= α
a2z + 2|z|2

1− |z|2
(10)

Taking into account (10) it results

c|z|2 + (1− |z|2)
(

zf ′′(z)
f ′(z)

+ β − 1
)

= (11)

= (c + 2α + 1− β)|z|2 + αa2z + β − 1 .

If c = β − 1− 2α, from (6) it follows that |c| < 1 and also

|c + 1− β|+ |β − 1| = |2α|+ |β − 1| < 1 .

Since h is a starlike function, then |a2| ≤ 2 and in view of (6) , the relation (11)

becomes ∣∣∣∣ c|z|2 + (1− |z|2)
(

zf ′′(z)
f ′(z)

+ β − 1
)∣∣∣∣ =
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= |αa2z + β − 1| ≤ 2|α|+ |β − 1| < 1 .

From Corollary 2.1 we conclude that the function

F (z) =
(

β

∫ z

0

uβ−1f ′(u)du

)1/β

is analytic and univalent in U .

We have F β−1(z)F ′(z) = zβ−1f ′(z) and therefore

f ′(z) =
(

F (z)
z

)β−1

F ′(z).

It follows that the function f is given by (7), where F is analytic and univalent in U .

If in Theorem 3.1 we take β = 1, then we have f(z) = F (z) and we get the

following result

Corollary 3.1. Let α be a complex number, α 6= 0 and let f ∈ N(α).

If |α| < 1/2, then the function f is univalent in U .

Theorem 3.2. Let α be a complex number , α 6= 0 and let f ∈ N(α). If

α ∈ D, where

D = D1 ∪ [1/2, 3/2] ∪ {−1/2} , (12)

D1 = {α ∈ C : |α| < 1/2} ,

then the function f is univalent in U .

If α is a real number, α 6∈ D, then the function

f(z) =
∫ z

0

(1− u)−2αdu (13)

belongs to the class N(α) but it is not univalent in U .

Proof. If α ∈ D1, from Corollary 3.1 it follows that f is an univalent function.

Let α be a real number, α ∈ [−1/2, 3/2]\{0}. In the same manner as in Theorem 3.1

we consider the function g(z) = z(f ′(z))1/α. The function g being a starlike function,

from Theorem 2.2 it follows that the function

G(z) =
∫ z

0

(
g(u)
u

)α

du =
∫ z

0

f ′(u)du = f(z)

is a close-to-convex function. For the function f defined by (13) a short computation

gives

1 +
1
α

zf ′′(z)
f ′(z)

=
1 + z

1− z
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For z ∈ U we have Re(1 + z)/(1− z) > 0 and hence f ∈ N(α).

For β ∈ R, β 6= 0, we know that the function h(z) = (1− z)β is univalent in U if and

only if β ∈ [−2, 2]. From (13) we get

f(z) =
1

2α− 1
[

(1− z)−2α+1 − 1
]

, α 6= 1/2

and then the function f is not univalent if α < −1/2 or α > 3/2.
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