CONVOLUTIONS OF PRESTARLIKE FUNCTIONS

TÜNDE JAKAB

Dedicated to Professor Petru T. Mocanu on his 70th birthday

1.Introduction

We denote the class of starlike functions of order α by $S^*(\alpha)$, and the class of convex functions of order α by $K(\alpha)$. The function

$$s_{\alpha}(z) = \frac{z}{(1-z)^{2(1-\alpha)}} = z + \sum_{n=2}^{\infty} C(\alpha, n) z^n$$

is the well-known extremal function for $S^*(\alpha)$, where

$$C(\alpha, n) = \frac{\prod\limits_{k=2}^{n} (k - 2\alpha)}{(n-1)!} \qquad (n \ge 2).$$

Let (f * g)(z) denote the Hadamard product of two functions f(z) and g(z), that is, if f(z) and g(z) are given by

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
, and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$,

then

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

Let T denote the class of functions of the form

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n \qquad (a_n \ge 0),$$
 (1)

which are analytic in the unit disc $U = \{z \in \mathbf{C} : |z| < 1\}.$

If f(z) is given by (1) and

$$g(z) = z - \sum_{n=2}^{\infty} b_n z^n \qquad (b_n \ge 0),$$

then the Hadamard product of f and g is defined by

$$(f * g)(z) = z - \sum_{n=2}^{\infty} a_n b_n z^n.$$

TÜNDE JAKAB

Let $R[\alpha, \beta]$ be a subclass of T, consisting functions which satisfies

 $(f * s_{\alpha})(z) \in S^*(\beta)$ for $0 \leq \alpha < 1$ and $0 \leq \beta < 1$. Futher let $C[\alpha, \beta]$ be a subclass of T of functions satisfying $zf'(z) \in R[\alpha, \beta]$ for $0 \leq \alpha < 1$ and $0 \leq \beta < 1$. $R[\alpha, \beta]$ is called the class of functions α -prestarlike of order β with negative coefficients.

LEMMA 1.[7] Let the function f(z) be defined by (1). Then f(z) is in the class $R[\alpha, \beta]$ if and only if

$$\sum_{n=2}^{\infty} (n-\beta)C(\alpha,n)a_n \le 1-\beta.$$

LEMMA 2.[3] Let the function f(z) be defined by (1). Then f(z) is in the class $C[\alpha,\beta]$ if and only if

$$\sum_{n=2}^{\infty} n(n-\beta)C(\alpha,n)a_n \le 1-\beta.$$

Since f(z) defined by (1) is univalent in the unit disc if $\sum_{n=2}^{\infty} na_n \leq 1$; we can see that $f \in R[\alpha, \beta]$ is univalent if $0 \leq \alpha \leq \frac{1}{2}$; and a function $f(z) \in C[\alpha, \beta]$ is univalent in the unit disc if $0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$.

LEMMA 3.[2, Th.8] Let f(z) a function defined by (1) be in the class $C[\alpha, \beta]$. Then f belongs to the class $R[\alpha, \gamma]$, where

$$\gamma = \frac{2}{3-\beta}$$

2. Convolutions

THEOREM 1. If a function f(z) defined by (1) belongs to the class $R[\alpha, \beta]$ with $0 \le \beta < 1$ and $0 \le \alpha \le \frac{3-\beta}{2(2-\beta)}$, then $(\underbrace{f * f * \ldots * f}_{m})(z), m \in \mathbf{N} = \{1, 2, \ldots\}$ belongs to the class $R[\alpha, \beta]$, too.

Proof. Using Lemma 1 we have

$$\sum_{n=2}^{\infty} (n-\beta)C(\alpha, n)a_n^m \le \left[\frac{1-\beta}{2(1-\alpha)(2-\beta)}\right]^{m-1} (1-\beta) \le 1-\beta$$

with $0 \le \beta < 1$ and $0 \le \alpha \le \frac{3-\beta}{2(2-\beta)}$.

THEOREM 2. If a function f(z) defined by (1) belongs to the class $C[\alpha, \beta]$ cu $0 \le \beta < 1$ and $0 \le \alpha \le \frac{7-3\beta}{4(2-\beta)}$, then $(\underbrace{f * f * \dots * f}_{m})(z) \in C[\alpha, \beta],$ $(m \in \mathbf{N}).$ *Proof.* Using Lemma 2 we have

$$\sum_{n=2}^{\infty} n(n-\beta)C(\alpha,n)a_n^m \le \left[\frac{1-\beta}{4(1-\alpha)(2-\beta)}\right]^{m-1}(1-\beta) \le 1-\beta$$

with $0 \le \beta < 1$ and $0 \le \alpha \le \frac{7-3\beta}{4(2-\beta)}$.

THEOREM 3. Let a function f(z) defined by (1) be in the class $R[\alpha, \beta]$ with $0 \le \beta < 1$ and $0 \le \alpha \le \frac{3-\beta}{2(2-\beta)}$; and let the function g(z) defined by

$$g(z) = z - \sum_{n=2}^{\infty} b_n z^n \qquad (b_n \ge 0)$$

be in the class $C[\alpha,\beta]$ with $0 \le \beta < 1$ and $0 \le \alpha \le \frac{3-\beta}{2(2-\beta)}$. Then we have

$$(\underbrace{f*f*\ldots*f}_{p}*\underbrace{g*g*\ldots*g}_{q})(z)\in C[\alpha,\beta], \qquad p,q\in \mathbf{N}.$$

Proof. Applying Lemma 1 and Lemma 2 we have

$$\sum_{n=2}^{\infty} n(n-\beta)C(\alpha,n)a_n^p b_n^q \le$$

$$\leq \left[\frac{1-\beta}{2(1-\alpha)(2-\beta)}\right]^p \left[\frac{1-\beta}{4(1-\alpha)(2-\beta)}\right]^{q-1} (1-\beta) \leq 1-\beta$$

 $\begin{array}{l} \text{if } 0 \leq \beta < 1, \, 0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)} \text{ and } 0 \leq \alpha \leq \frac{7-3\beta}{4(2-\beta)}. \\ \text{But we have } \frac{3-\beta}{2(2-\beta)} < \frac{7-3\beta}{4(2-\beta)}, \text{ and results } 0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}. \end{array} \end{array}$

We need the following notation

$$f_i(z) = z - \sum_{n=2}^{\infty} a_{n,i} z^n \qquad (a_{n,i} \ge 0, i = 1, 2)$$
(2)

and the following results from [1]:

THEOREM 4.[1] Let the function $f_1(z)$ defined by (2) be in the class $R[\alpha, \beta]$ with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \beta < 1$ and let the function $f_2(z)$ defined by (2) be in the class $R[\alpha, \tau]$ with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \tau < 1$. Then $(f_1 * f_2)(z) \in R[\alpha, \psi]$, where

$$\psi = 1 - \frac{(1-\beta)(1-\tau)}{2(1-\alpha)(2-\beta)(2-\tau) - (1-\beta)(1-\tau)}.$$

The result is sharp for the functions

$$f_1(z) = z - \frac{1 - \beta}{2(1 - \alpha)(2 - \beta)} z^2 \quad and \quad f_2(z) = z - \frac{1 - \tau}{2(1 - \alpha)(2 - \tau)} z^2.$$
75

TÜNDE JAKAB

THEOREM 5.[1] Let the function $f_1(z)$ defined by (2) be in the class $C[\alpha, \beta]$ with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \beta < 1$ and let the function $f_2(z)$ defined by (2) be in the class $C[\alpha, \tau]$ with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \tau < 1$. Then $(f_1 * f_2)(z) \in C[\alpha, \psi]$, where

$$\psi = 1 - \frac{(1-\beta)(1-\tau)}{4(1-\alpha)(2-\beta)(2-\tau) - (1-\beta)(1-\tau)}.$$

The result is sharp for the functions

$$f_1(z) = z - \frac{1-\beta}{4(1-\alpha)(2-\beta)}z^2$$
 and $f_2(z) = z - \frac{1-\tau}{4(1-\alpha)(2-\tau)}z^2$.

The following two theorems are generalizations of the Theorem 4 and Theorem 5.

THEOREM 6. Let the functions $f_i(z)$ (i = 1, 2, ..., m) defined by (2) be in the classes $R[\alpha, \beta_i]$ with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \beta_i < 1$ for all i = 1, 2, ..., m. Then $(f_1 * f_2 * ... * f_m)(z)$ belongs to the class $R[\alpha, \psi]$, where

$$\psi = 1 - \frac{\prod_{i=1}^{m} (1 - \beta_i)}{2^{m-1} (1 - \alpha)^{m-1} \prod_{i=1}^{m} (2 - \beta_i) - \prod_{i=1}^{m} (1 - \beta_i)}.$$

The result is sharp for the extremal functions defined by

$$f_i(z) = z - \frac{1 - \beta_i}{2(1 - \alpha)(2 - \beta_i)} z^2 \qquad (i = 1, 2, \dots m).$$

Proof. We apply the method of the mathematical induction.

For m = 2 and $\beta_1 = \beta$, $\beta_2 = \tau$, our theorem is reduced to Theorem 4, which is true. Suppose that

$$\begin{split} f_i(z) \in R[\alpha,\beta_i] & (i=1,2,...,k; k \in \mathbf{N}, k \geq 2) \Rightarrow \\ \Rightarrow (f_1 * f_2 * ... * f_k)(z) \in R[\alpha,\psi'], \end{split}$$

where

$$\psi' = 1 - \frac{\prod_{i=1}^{k} (1 - \beta_i)}{2^{k-1} (1 - \alpha)^{k-1} \prod_{i=1}^{k} (2 - \beta_i) - \prod_{i=1}^{k} (1 - \beta_i)}.$$

If $f_{k+1} \in R[\alpha, \beta_{k+1}]$, then from Theorem 4, we have

$$((f_1 * f_2 * \dots * f_k) * f_{k+1})(z) \in R[\alpha, \psi],$$

76

where

$$= 1 - \frac{(1-\psi')(1-\beta_{k+1})}{2(1-\alpha)(2-\psi')(2-\beta_{k+1}) - (1-\psi')(1-\beta_{k+1})},$$

which is equivalent to

 ψ

$$\psi = 1 - \frac{\prod_{i=1}^{k+1} (1 - \beta_i)}{2^k (1 - \alpha)^k \prod_{i=1}^{k+1} (2 - \beta_i) - \prod_{i=1}^{k+1} (1 - \beta_i)}.$$

This means that if the theorem is true for m = k, then it is true for m = k + 1, so that it is true for all $m \ge 2$.

THEOREM 7. Let the functions $f_i(z)$ (i = 1, 2, ..., m) defined by (2) be in the classes $C[\alpha, \beta_i]$ with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \beta_i < 1$ for all i = 1, 2, ..., m. Then $(f_1 * f_2 * ... * f_m)(z)$ belongs to the class $C[\alpha, \psi]$, where

$$\psi = 1 - \frac{\prod_{i=1}^{m} (1 - \beta_i)}{4^{m-1} (1 - \alpha)^{m-1} \prod_{i=1}^{m} (2 - \beta_i) - \prod_{i=1}^{m} (1 - \beta_i)}.$$

The result is sharp for the functions

$$f_i(z) = z - \frac{1 - \beta_i}{4(1 - \alpha)(2 - \beta_i)} z^2 \qquad (i = 1, 2, \dots m).$$

Proof. For m = 2 and $\beta_1 = \beta$, $\beta_2 = \tau$, our theorem is reduced to Theorem 5, which is true.

Suppose that

$$f_i(z) \in C[\alpha, \beta_i] \qquad (i = 1, 2, \dots, k; k \in \mathbf{N}, k \ge 2) \Rightarrow$$
$$\Rightarrow (f_1 * f_2 * \dots * f_k)(z) \in C[\alpha, \psi'],$$

where

$$\psi' = 1 - \frac{\prod_{i=1}^{k} (1 - \beta_i)}{4^{k-1} (1 - \alpha)^{k-1} \prod_{i=1}^{k} (2 - \beta_i) - \prod_{i=1}^{k} (1 - \beta_i)}$$

If $f_{k+1} \in C[\alpha, \beta_{k+1}]$, then from Theorem 5, we have

$$((f_1 * f_2 * \dots * f_k) * f_{k+1})(z) \in C[\alpha, \psi]$$

where

$$\psi = 1 - \frac{(1 - \psi')(1 - \beta_{k+1})}{4(1 - \alpha)(2 - \psi')(2 - \beta_{k+1}) - (1 - \psi')(1 - \beta_{k+1})},$$

77

TÜNDE JAKAB

which is equivalent to

$$\psi = 1 - \frac{\prod_{i=1}^{k+1} (1 - \beta_i)}{4^k (1 - \alpha)^k \prod_{i=1}^{k+1} (2 - \beta_i) - \prod_{i=1}^{k+1} (1 - \beta_i)},$$

which means that the theorem is true for all $m \geq 2$.

THEOREM 8. If $f(z) \in C[\alpha, \beta_i]$ (i = 1, 2, ..., m) with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \beta_i < 1$ for all i = 1, 2, ..., m, then $(f_1 * f_2 * ... * f_m)(z) \in R[\alpha, \tau]$, where

$$\tau = 1 - \frac{\prod_{i=1}^{m} (1 - \beta_i)}{2 \cdot 4^{m-1} (1 - \alpha)^{m-1} \prod_{i=1}^{m} (2 - \beta_i) - \prod_{i=1}^{m} (1 - \beta_i)}$$

The result is sharp.

From Theorem 6 (or Theorem 7) and Lemma 3 we obtain the result.

THEOREM 9. Let the functions $f_i(z)$ (i = 1, 2) defined by (2) be in the class $C[\alpha, \beta]$ with $0 \le \alpha \le \frac{1}{2}$ and $0 \le \beta < 1$. Then the function h(z) defined by

$$h(z) = z - \sum_{n=2}^{\infty} \left[a_{n,1}^2 + a_{n,2}^2 \right] z^n$$

belongs to the class $R[\alpha, \gamma]$, where

$$\gamma = 1 - \frac{(1-\beta)^2}{4(1-\alpha)(2-\beta)^2 - (1-\beta)^2}.$$

The result is sharp.

Using Theorem 9 (or Theorem 10) from [1] and Lemma 3 we obtain immediately the result.

References

- M. K. Aouf and G. S. Sălăgean, Certain subclasses of prestarlike functions with negative coefficients, Studia Univ. Babeş-Bolyai, Math., 39 (1994), no. 1, 19-30.
- [2] T. Jakab, Subclasses of prestarlike functions with negative coefficients (to appear).
- [3] S. Owa and B. A. Uralegaddi, A class of functions α-prestarlike of order β, Bull. Korean Math. Soc. 21 (1984), No.2, 77-85.
- [4] S. M. Sarangi and B. A. Uralegaddi, Certain generalization of prestarlike functions with negative coefficients, Ganita, 34 (1983), 99-105.
- [5] T. Sheil-Small, H. Silverman and E. Silvia, Convolution multipliers and starlike functions, J. Analyse Math. 41 (1982), 181-192.
- [6] H. Silverman and E. Silvia, Prestarlike functions with negative coefficients, Internat. J. Math. & Math. Sci. (3) 2 (1979), 427-439.
- [7] H. Silverman and E. Silvia, Subclasses of prestarlike functions, Math. Japon. 29 (1984), No.6, 929-935.

CONVOLUTIONS OF PRESTARLIKE FUNCTIONS

BABEŞ-BOLYAI UNIVERSITY, 3400 CLUJ-NAPOCA, KOGĂLNICEANU NR.1, ROMANIA