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CONVOLUTIONS OF PRESTARLIKE FUNCTIONS
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1.Introduction

We denote the class of starlike functions of order α by S∗(α), and the

class of convex functions of order α by K(α). The function

sα(z) =
z

(1− z)2(1−α)
= z +

∞∑
n=2

C(α, n)zn

is the well-known extremal function for S∗(α), where

C(α, n) =

n∏
k=2

(k − 2α)

(n− 1)!
(n ≥ 2).

Let (f ∗ g)(z) denote the Hadamard product of two functions f(z) and g(z), that

is, if f(z) and g(z) are given by

f(z) = z +
∞∑

n=2

anz
n, and g(z) = z +

∞∑
n=2

bnz
n,

then

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n.

Let T denote the class of functions of the form

f(z) = z −
∞∑

n=2

anz
n (an ≥ 0), (1)

which are analytic in the unit disc U = {z ∈ C : |z| < 1}.

If f(z) is given by (1) and

g(z) = z −
∞∑

n=2

bnz
n (bn ≥ 0),

then the Hadamard product of f and g is defined by

(f ∗ g)(z) = z −
∞∑

n=2

anbnz
n.
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Let R[α, β] be a subclass of T , consisting functions which satisfies

(f ∗ sα)(z) ∈ S∗(β) for 0 ≤ α < 1 and 0 ≤ β < 1. Futher let C[α, β]

be a subclass of T of functions satisfying zf ′(z) ∈ R[α, β] for 0 ≤ α < 1 and 0 ≤

β < 1. R[α, β] is called the class of functions α-prestarlike of order β with negative

coefficients.

Lemma 1.[7] Let the function f(z) be defined by (1). Then f(z) is in the

class R[α, β] if and only if

∞∑
n=2

(n− β)C(α, n)an ≤ 1− β.

Lemma 2.[3] Let the function f(z) be defined by (1). Then f(z) is in the class

C[α, β] if and only if
∞∑

n=2

n(n− β)C(α, n)an ≤ 1− β.

Since f(z) defined by (1) is univalent in the unit disc if
∞∑

n=2
nan ≤ 1; we can see

that f ∈ R[α, β] is univalent if 0 ≤ α ≤ 1
2 ; and a function f(z) ∈ C[α, β] is univalent

in the unit disc if 0 ≤ α ≤ 3−β
2(2−β) .

Lemma 3.[2, Th.8] Let f(z) a function defined by (1) be in the class

C[α, β]. Then f belongs to the class R[α, γ], where

γ =
2

3− β
.

2.Convolutions

Theorem 1. If a function f(z) defined by (1) belongs to the class R[α, β]

with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) , then (f ∗ f ∗ ... ∗ f︸ ︷︷ ︸

m

)(z), m ∈ N= {1, 2, ...} belongs

to the class R[α, β], too.

Proof. Using Lemma 1 we have
∞∑

n=2

(n− β)C(α, n)am
n ≤

[
1− β

2(1− α)(2− β)

]m−1

(1− β) ≤ 1− β

with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) .

Theorem 2. If a function f(z) defined by (1) belongs to the class C[α, β]

cu 0 ≤ β < 1 and 0 ≤ α ≤ 7−3β
4(2−β) , then (f ∗ f ∗ ... ∗ f︸ ︷︷ ︸

m

)(z) ∈ C[α, β],

(m ∈ N).
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Proof. Using Lemma 2 we have

∞∑
n=2

n(n− β)C(α, n)am
n ≤

[
1− β

4(1− α)(2− β)

]m−1

(1− β) ≤ 1− β

with 0 ≤ β < 1 and 0 ≤ α ≤ 7−3β
4(2−β) .

Theorem 3. Let a function f(z) defined by (1) be in the class R[α, β]

with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) ; and let the function g(z) defined by

g(z) = z −
∞∑

n=2

bnz
n (bn ≥ 0)

be in the class C[α, β] with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) . Then we have

(f ∗ f ∗ ... ∗ f︸ ︷︷ ︸
p

∗ g ∗ g ∗ ... ∗ g︸ ︷︷ ︸
q

)(z) ∈ C[α, β], p, q ∈ N.

Proof. Applying Lemma 1 and Lemma 2 we have

∞∑
n=2

n(n− β)C(α, n)ap
nb

q
n ≤

≤
[

1− β

2(1− α)(2− β)

]p [
1− β

4(1− α)(2− β)

]q−1

(1− β) ≤ 1− β

if 0 ≤ β < 1, 0 ≤ α ≤ 3−β
2(2−β) and 0 ≤ α ≤ 7−3β

4(2−β) .

But we have 3−β
2(2−β) <

7−3β
4(2−β) , and results 0 ≤ α ≤ 3−β

2(2−β) .

We need the following notation

fi(z) = z −
∞∑

n=2

an,iz
n (an,i ≥ 0, i = 1, 2) (2)

and the following results from [1]:

Theorem 4.[1] Let the function f1(z) defined by (2) be in the class R[α, β]

with 0 ≤ α ≤ 1
2 and 0 ≤ β < 1 and let the function f2(z) defined by (2) be in the class

R[α, τ ] with 0 ≤ α ≤ 1
2 and 0 ≤ τ < 1. Then (f1 ∗ f2)(z) ∈ R[α, ψ], where

ψ = 1− (1− β)(1− τ)
2(1− α)(2− β)(2− τ)− (1− β)(1− τ)

.

The result is sharp for the functions

f1(z) = z − 1− β

2(1− α)(2− β)
z2 and f2(z) = z − 1− τ

2(1− α)(2− τ)
z2.
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Theorem 5.[1] Let the function f1(z) defined by (2) be in the class C[α, β] with

0 ≤ α ≤ 1
2 and 0 ≤ β < 1 and let the function f2(z) defined by (2) be in the class

C[α, τ ] with 0 ≤ α ≤ 1
2 and 0 ≤ τ < 1. Then (f1 ∗ f2)(z) ∈ C[α, ψ], where

ψ = 1− (1− β)(1− τ)
4(1− α)(2− β)(2− τ)− (1− β)(1− τ)

.

The result is sharp for the functions

f1(z) = z − 1− β

4(1− α)(2− β)
z2 and f2(z) = z − 1− τ

4(1− α)(2− τ)
z2.

The following two theorems are generalizations of the Theorem 4 and Theorem

5.

Theorem 6. Let the functions fi(z) (i = 1, 2, ...,m) defined by (2)

be in the classes R[α, βi] with 0 ≤ α ≤ 1
2 and 0 ≤ βi < 1 for all i = 1, 2, ...,m.

Then(f1 ∗ f2 ∗ ... ∗ fm)(z) belongs to the class R[α, ψ], where

ψ = 1−

m∏
i=1

(1− βi)

2m−1(1− α)m−1
m∏

i=1

(2− βi)−
m∏

i=1

(1− βi)
.

The result is sharp for the extremal functions defined by

fi(z) = z − 1− βi

2(1− α)(2− βi)
z2 (i = 1, 2, ...m).

Proof. We apply the method of the mathematical induction.

For m = 2 and β1 = β, β2 = τ , our theorem is reduced to Theorem 4, which

is true. Suppose that

fi(z) ∈ R[α, βi] (i = 1, 2, ..., k; k ∈ N, k ≥ 2) ⇒

⇒ (f1 ∗ f2 ∗ ... ∗ fk)(z) ∈ R[α, ψ′],

where

ψ′ = 1−

k∏
i=1

(1− βi)

2k−1(1− α)k−1
k∏

i=1

(2− βi)−
k∏

i=1

(1− βi)
.

If fk+1 ∈ R[α, βk+1], then from Theorem 4, we have

((f1 ∗ f2 ∗ ... ∗ fk) ∗ fk+1)(z) ∈ R[α, ψ],
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where

ψ = 1− (1− ψ′)(1− βk+1)
2(1− α)(2− ψ′)(2− βk+1)− (1− ψ′)(1− βk+1)

,

which is equivalent to

ψ = 1−

k+1∏
i=1

(1− βi)

2k(1− α)k
k+1∏
i=1

(2− βi)−
k+1∏
i=1

(1− βi)
.

This means that if the theorem is true for m = k, then it is true for m = k + 1, so

that it is true for all m ≥ 2.

Theorem 7. Let the functions fi(z) (i = 1, 2, ...,m) defined by (2)

be in the classes C[α, βi] with 0 ≤ α ≤ 1
2 and 0 ≤ βi < 1 for all i = 1, 2, ...,m.

Then(f1 ∗ f2 ∗ ... ∗ fm)(z) belongs to the class C[α, ψ], where

ψ = 1−

m∏
i=1

(1− βi)

4m−1(1− α)m−1
m∏

i=1

(2− βi)−
m∏

i=1

(1− βi)
.

The result is sharp for the functions

fi(z) = z − 1− βi

4(1− α)(2− βi)
z2 (i = 1, 2, ...m).

Proof. For m = 2 and β1 = β, β2 = τ , our theorem is reduced to Theorem 5,

which is true.

Suppose that

fi(z) ∈ C[α, βi] (i = 1, 2, ..., k; k ∈ N, k ≥ 2) ⇒

⇒ (f1 ∗ f2 ∗ ... ∗ fk)(z) ∈ C[α, ψ′],

where

ψ′ = 1−

k∏
i=1

(1− βi)

4k−1(1− α)k−1
k∏

i=1

(2− βi)−
k∏

i=1

(1− βi)
.

If fk+1 ∈ C[α, βk+1], then from Theorem 5, we have

((f1 ∗ f2 ∗ ... ∗ fk) ∗ fk+1)(z) ∈ C[α, ψ],

where

ψ = 1− (1− ψ′)(1− βk+1)
4(1− α)(2− ψ′)(2− βk+1)− (1− ψ′)(1− βk+1)

,
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which is equivalent to

ψ = 1−

k+1∏
i=1

(1− βi)

4k(1− α)k
k+1∏
i=1

(2− βi)−
k+1∏
i=1

(1− βi)
,

which means that the theorem is true for all m ≥ 2.

Theorem 8. If f(z) ∈ C[α, βi] (i = 1, 2, ...,m) with0 ≤ α ≤ 1
2 and

0 ≤ βi < 1 for all i = 1, 2, ...,m, then(f1 ∗ f2 ∗ ... ∗ fm)(z) ∈ R[α, τ ], where

τ = 1−

m∏
i=1

(1− βi)

2 · 4m−1(1− α)m−1
m∏

i=1

(2− βi)−
m∏

i=1

(1− βi)
.

The result is sharp.

From Theorem 6 (or Theorem 7) and Lemma 3 we obtain the result.

Theorem 9. Let the functions fi(z) (i = 1, 2) defined by (2) be in the

class C[α, β] with 0 ≤ α ≤ 1
2 and 0 ≤ β < 1. Then the function h(z) defined by

h(z) = z −
∞∑

n=2

[
a2

n,1 + a2
n,2

]
zn

belongs to the class R[α, γ], where

γ = 1− (1− β)2

4(1− α)(2− β)2 − (1− β)2
.

The result is sharp.

Using Theorem 9 (or Theorem 10) from [1] and Lemma 3 we obtain

immediately the result.
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