CONVOLUTIONS OF PRESTARLIKE FUNCTIONS

TÜNDE JAKAB

Dedicated to Professor Petru T. Mocanu on his $70^{t h}$ birthday

1.Introduction

We denote the class of starlike functions of order α by $S^{*}(\alpha)$, and the class of convex functions of order α by $K(\alpha)$. The function

$$
s_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}}=z+\sum_{n=2}^{\infty} C(\alpha, n) z^{n}
$$

is the well-known extremal function for $S^{*}(\alpha)$, where

$$
C(\alpha, n)=\frac{\prod_{k=2}^{n}(k-2 \alpha)}{(n-1)!} \quad(n \geq 2)
$$

Let $(f * g)(z)$ denote the Hadamard product of two functions $f(z)$ and $g(z)$, that is, if $f(z)$ and $g(z)$ are given by

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}, \quad \text { and } \quad g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}
$$

then

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} .
$$

Let T denote the class of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{n=2}^{\infty} a_{n} z^{n} \quad\left(a_{n} \geq 0\right) \tag{1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z \in \mathbf{C}:|z|<1\}$.
If $f(z)$ is given by (1) and

$$
g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \quad\left(b_{n} \geq 0\right)
$$

then the Hadamard product of f and g is defined by

$$
(f * g)(z)=z-\sum_{n=2}^{\infty} a_{n} b_{n} z^{n} .
$$

Let $R[\alpha, \beta]$ be a subclass of T, consisting functions which satisfies
$\left(f * s_{\alpha}\right)(z) \in S^{*}(\beta)$ for $0 \leq \alpha<1$ and $0 \leq \beta<1$. Futher let $C[\alpha, \beta]$ be a subclass of T of functions satisfying $z f^{\prime}(z) \in R[\alpha, \beta]$ for $0 \leq \alpha<1$ and $0 \leq$ $\beta<1$. $R[\alpha, \beta]$ is called the class of functions α-prestarlike of order β with negative coefficients.

Lemma 1.[7] Let the function $f(z)$ be defined by (1). Then $f(z)$ is in the class $R[\alpha, \beta]$ if and only if

$$
\sum_{n=2}^{\infty}(n-\beta) C(\alpha, n) a_{n} \leq 1-\beta
$$

Lemma 2.[3] Let the function $f(z)$ be defined by (1). Then $f(z)$ is in the class $C[\alpha, \beta]$ if and only if

$$
\sum_{n=2}^{\infty} n(n-\beta) C(\alpha, n) a_{n} \leq 1-\beta
$$

Since $f(z)$ defined by (1) is univalent in the unit disc if $\sum_{n=2}^{\infty} n a_{n} \leq 1$; we can see that $f \in R[\alpha, \beta]$ is univalent if $0 \leq \alpha \leq \frac{1}{2}$; and a function $f(z) \in C[\alpha, \beta]$ is univalent in the unit disc if $0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$.

Lemma 3.[2, Th.8] Let $f(z)$ a function defined by (1) be in the class $C[\alpha, \beta]$. Then f belongs to the class $R[\alpha, \gamma]$, where

$$
\gamma=\frac{2}{3-\beta} .
$$

2.Convolutions

Theorem 1. If a function $f(z)$ defined by (1) belongs to the class $R[\alpha, \beta]$ with $0 \leq \beta<1$ and $0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$, then $(\underbrace{f * f * \ldots * f}_{m})(z), m \in \mathbf{N}=\{1,2, \ldots\}$ belongs to the class $R[\alpha, \beta]$, too.

Proof. Using Lemma 1 we have

$$
\sum_{n=2}^{\infty}(n-\beta) C(\alpha, n) a_{n}^{m} \leq\left[\frac{1-\beta}{2(1-\alpha)(2-\beta)}\right]^{m-1}(1-\beta) \leq 1-\beta
$$

with $0 \leq \beta<1$ and $0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$.
Theorem 2. If a function $f(z)$ defined by (1) belongs to the class $C[\alpha, \beta]$ cu $0 \leq \beta<1$ and $0 \leq \alpha \leq \frac{7-3 \beta}{4(2-\beta)}$, then $(\underbrace{f * f * \ldots * f}_{m})(z) \in C[\alpha, \beta]$,

$$
(m \in \mathbf{N}) .
$$

Proof. Using Lemma 2 we have

$$
\sum_{n=2}^{\infty} n(n-\beta) C(\alpha, n) a_{n}^{m} \leq\left[\frac{1-\beta}{4(1-\alpha)(2-\beta)}\right]^{m-1}(1-\beta) \leq 1-\beta
$$

with $0 \leq \beta<1$ and $0 \leq \alpha \leq \frac{7-3 \beta}{4(2-\beta)}$.
Theorem 3. Let a function $f(z)$ defined by (1) be in the class $R[\alpha, \beta]$ with $0 \leq \beta<1$ and $0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$; and let the function $g(z)$ defined by

$$
g(z)=z-\sum_{n=2}^{\infty} b_{n} z^{n} \quad\left(b_{n} \geq 0\right)
$$

be in the class $C[\alpha, \beta]$ with $0 \leq \beta<1$ and $0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$. Then we have

$$
(\underbrace{f * f * \ldots * f}_{p} * \underbrace{g * g * \ldots * g}_{q})(z) \in C[\alpha, \beta], \quad p, q \in \mathbf{N} .
$$

Proof. Applying Lemma 1 and Lemma 2 we have

$$
\begin{gathered}
\sum_{n=2}^{\infty} n(n-\beta) C(\alpha, n) a_{n}^{p} b_{n}^{q} \leq \\
\leq\left[\frac{1-\beta}{2(1-\alpha)(2-\beta)}\right]^{p}\left[\frac{1-\beta}{4(1-\alpha)(2-\beta)}\right]^{q-1}(1-\beta) \leq 1-\beta
\end{gathered}
$$

if $0 \leq \beta<1,0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$ and $0 \leq \alpha \leq \frac{7-3 \beta}{4(2-\beta)}$.
But we have $\frac{3-\beta}{2(2-\beta)}<\frac{7-3 \beta}{4(2-\beta)}$, and results $0 \leq \alpha \leq \frac{3-\beta}{2(2-\beta)}$.
We need the following notation

$$
\begin{equation*}
f_{i}(z)=z-\sum_{n=2}^{\infty} a_{n, i} z^{n} \quad\left(a_{n, i} \geq 0, i=1,2\right) \tag{2}
\end{equation*}
$$

and the following results from [1]:
Theorem 4.[1] Let the function $f_{1}(z)$ defined by (2) be in the class $R[\alpha, \beta]$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \beta<1$ and let the function $f_{2}(z)$ defined by (2) be in the class $R[\alpha, \tau]$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \tau<1$. Then $\left(f_{1} * f_{2}\right)(z) \in R[\alpha, \psi]$, where

$$
\psi=1-\frac{(1-\beta)(1-\tau)}{2(1-\alpha)(2-\beta)(2-\tau)-(1-\beta)(1-\tau)}
$$

The result is sharp for the functions

$$
f_{1}(z)=z-\frac{1-\beta}{2(1-\alpha)(2-\beta)} z^{2} \quad \text { and } \quad f_{2}(z)=z-\frac{1-\tau}{2(1-\alpha)(2-\tau)} z^{2}
$$

Theorem 5.[1] Let the function $f_{1}(z)$ defined by (2) be in the class $C[\alpha, \beta]$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \beta<1$ and let the function $f_{2}(z)$ defined by (2) be in the class $C[\alpha, \tau]$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \tau<1$. Then $\left(f_{1} * f_{2}\right)(z) \in C[\alpha, \psi]$, where

$$
\psi=1-\frac{(1-\beta)(1-\tau)}{4(1-\alpha)(2-\beta)(2-\tau)-(1-\beta)(1-\tau)}
$$

The result is sharp for the functions

$$
f_{1}(z)=z-\frac{1-\beta}{4(1-\alpha)(2-\beta)} z^{2} \quad \text { and } \quad f_{2}(z)=z-\frac{1-\tau}{4(1-\alpha)(2-\tau)} z^{2} .
$$

The following two theorems are generalizations of the Theorem 4 and Theorem 5.

Theorem 6. Let the functions $f_{i}(z)(i=1,2, \ldots, m)$ defined by (2) be in the classes $R\left[\alpha, \beta_{i}\right]$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \beta_{i}<1$ for all $i=1,2, \ldots, m$. Then $\left(f_{1} * f_{2} * \ldots * f_{m}\right)(z)$ belongs to the class $R[\alpha, \psi]$, where

$$
\psi=1-\frac{\prod_{i=1}^{m}\left(1-\beta_{i}\right)}{2^{m-1}(1-\alpha)^{m-1} \prod_{i=1}^{m}\left(2-\beta_{i}\right)-\prod_{i=1}^{m}\left(1-\beta_{i}\right)} .
$$

The result is sharp for the extremal functions defined by

$$
f_{i}(z)=z-\frac{1-\beta_{i}}{2(1-\alpha)\left(2-\beta_{i}\right)} z^{2} \quad(i=1,2, \ldots m)
$$

Proof. We apply the method of the mathematical induction.
For $m=2$ and $\beta_{1}=\beta, \beta_{2}=\tau$, our theorem is reduced to Theorem 4, which is true. Suppose that

$$
\begin{gathered}
f_{i}(z) \in R\left[\alpha, \beta_{i}\right] \quad(i=1,2, \ldots, k ; k \in \mathbf{N}, k \geq 2) \Rightarrow \\
\Rightarrow\left(f_{1} * f_{2} * \ldots * f_{k}\right)(z) \in R\left[\alpha, \psi^{\prime}\right]
\end{gathered}
$$

where

$$
\psi^{\prime}=1-\frac{\prod_{i=1}^{k}\left(1-\beta_{i}\right)}{2^{k-1}(1-\alpha)^{k-1} \prod_{i=1}^{k}\left(2-\beta_{i}\right)-\prod_{i=1}^{k}\left(1-\beta_{i}\right)}
$$

If $f_{k+1} \in R\left[\alpha, \beta_{k+1}\right]$, then from Theorem 4, we have

$$
\left(\left(f_{1} * f_{2} * \ldots * f_{k}\right) * f_{k+1}\right)(z) \in R[\alpha, \psi]
$$

where

$$
\psi=1-\frac{\left(1-\psi^{\prime}\right)\left(1-\beta_{k+1}\right)}{2(1-\alpha)\left(2-\psi^{\prime}\right)\left(2-\beta_{k+1}\right)-\left(1-\psi^{\prime}\right)\left(1-\beta_{k+1}\right)}
$$

which is equivalent to

$$
\psi=1-\frac{\prod_{i=1}^{k+1}\left(1-\beta_{i}\right)}{2^{k}(1-\alpha)^{k} \prod_{i=1}^{k+1}\left(2-\beta_{i}\right)-\prod_{i=1}^{k+1}\left(1-\beta_{i}\right)}
$$

This means that if the theorem is true for $m=k$, then it is true for $m=k+1$, so that it is true for all $m \geq 2$.

Theorem 7. Let the functions $f_{i}(z)(i=1,2, \ldots, m)$ defined by (2) be in the classes $C\left[\alpha, \beta_{i}\right]$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \beta_{i}<1$ for all $i=1,2, \ldots, m$. Then $\left(f_{1} * f_{2} * \ldots * f_{m}\right)(z)$ belongs to the class $C[\alpha, \psi]$, where

$$
\psi=1-\frac{\prod_{i=1}^{m}\left(1-\beta_{i}\right)}{4^{m-1}(1-\alpha)^{m-1} \prod_{i=1}^{m}\left(2-\beta_{i}\right)-\prod_{i=1}^{m}\left(1-\beta_{i}\right)} .
$$

The result is sharp for the functions

$$
f_{i}(z)=z-\frac{1-\beta_{i}}{4(1-\alpha)\left(2-\beta_{i}\right)} z^{2} \quad(i=1,2, \ldots m)
$$

Proof. For $m=2$ and $\beta_{1}=\beta, \beta_{2}=\tau$, our theorem is reduced to Theorem 5, which is true.

Suppose that

$$
\begin{gathered}
f_{i}(z) \in C\left[\alpha, \beta_{i}\right] \quad(i=1,2, \ldots, k ; k \in \mathbf{N}, k \geq 2) \Rightarrow \\
\Rightarrow\left(f_{1} * f_{2} * \ldots * f_{k}\right)(z) \in C\left[\alpha, \psi^{\prime}\right]
\end{gathered}
$$

where

$$
\psi^{\prime}=1-\frac{\prod_{i=1}^{k}\left(1-\beta_{i}\right)}{4^{k-1}(1-\alpha)^{k-1} \prod_{i=1}^{k}\left(2-\beta_{i}\right)-\prod_{i=1}^{k}\left(1-\beta_{i}\right)}
$$

If $f_{k+1} \in C\left[\alpha, \beta_{k+1}\right]$, then from Theorem 5 , we have

$$
\left(\left(f_{1} * f_{2} * \ldots * f_{k}\right) * f_{k+1}\right)(z) \in C[\alpha, \psi]
$$

where

$$
\psi=1-\frac{\left(1-\psi^{\prime}\right)\left(1-\beta_{k+1}\right)}{4(1-\alpha)\left(2-\psi^{\prime}\right)\left(2-\beta_{k+1}\right)-\left(1-\psi^{\prime}\right)\left(1-\beta_{k+1}\right)}
$$

which is equivalent to

$$
\psi=1-\frac{\prod_{i=1}^{k+1}\left(1-\beta_{i}\right)}{4^{k}(1-\alpha)^{k} \prod_{i=1}^{k+1}\left(2-\beta_{i}\right)-\prod_{i=1}^{k+1}\left(1-\beta_{i}\right)}
$$

which means that the theorem is true for all $m \geq 2$.
Theorem 8. If $f(z) \in C\left[\alpha, \beta_{i}\right](i=1,2, \ldots, m)$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \beta_{i}<1$ for all $i=1,2, \ldots, m$, then $\left(f_{1} * f_{2} * \ldots * f_{m}\right)(z) \in R[\alpha, \tau]$, where

$$
\tau=1-\frac{\prod_{i=1}^{m}\left(1-\beta_{i}\right)}{2 \cdot 4^{m-1}(1-\alpha)^{m-1} \prod_{i=1}^{m}\left(2-\beta_{i}\right)-\prod_{i=1}^{m}\left(1-\beta_{i}\right)} .
$$

The result is sharp.
From Theorem 6 (or Theorem 7) and Lemma 3 we obtain the result.
Theorem 9. Let the functions $f_{i}(z) \quad(i=1,2)$ defined by (2) be in the class $C[\alpha, \beta]$ with $0 \leq \alpha \leq \frac{1}{2}$ and $0 \leq \beta<1$. Then the function $h(z)$ defined by

$$
h(z)=z-\sum_{n=2}^{\infty}\left[a_{n, 1}^{2}+a_{n, 2}^{2}\right] z^{n}
$$

belongs to the class $R[\alpha, \gamma]$, where

$$
\gamma=1-\frac{(1-\beta)^{2}}{4(1-\alpha)(2-\beta)^{2}-(1-\beta)^{2}}
$$

The result is sharp.
Using Theorem 9 (or Theorem 10) from [1] and Lemma 3 we obtain immediately the result.

References

[1] M. K. Aouf and G. S. Sălăgean, Certain subclasses of prestarlike functions with negative coefficients, Studia Univ. Babeş-Bolyai, Math., 39 (1994), no. 1, 19-30.
[2] T. Jakab, Subclasses of prestarlike functions with negative coefficients (to appear).
[3] S. Owa and B. A. Uralegaddi, A class of functions α-prestarlike of order β, Bull. Korean Math. Soc. 21 (1984), No.2, 77-85.
[4] S. M. Sarangi and B. A. Uralegaddi, Certain generalization of prestarlike functions with negative coefficients, Ganita, 34 (1983), 99-105.
[5] T. Sheil-Small, H. Silverman and E. Silvia, Convolution multipliers and starlike functions, J. Analyse Math. 41 (1982), 181-192.
[6] H. Silverman and E. Silvia, Prestarlike functions with negative coefficients, Internat. J. Math. \& Math. Sci. (3) 2 (1979), 427-439.
[7] H. Silverman and E. Silvia, Subclasses of prestarlike functions, Math. Japon. 29 (1984), No.6, 929-935.

CONVOLUTIONS OF PRESTARLIKE FUNCTIONS

Babeş-Bolyai University, 3400 Cluj-Napoca, Kogălniceanu Nr.1, Romania

