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Abstract. The object of the present paper is to obtain several interest-

ing results involving coefficient estimates for analytic normalized functions

belonging to certain classes defined in terms of the convolution with the

extremal function for the class of starlike functions of order α, 0 ≤ α < 1.

1. Introduction

Let A1 denote the class of functions of the form

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. And let S denote the subclass of

A1 consisting of analytic and univalent functions f(z) in the unit disc U . A function

f(z) of S is said to be starlike of order α if and only if

Re
{

zf ′(z)
f(z)

}
> α (z ∈ U) (1.2)

for some α (0 ≤ α < 1). We denote the class of all starlike functions of order α by

S∗(α).

Now, the function

Sα(z) =
z

(1− z)2(1−α)
(1.3)

is the well-known extremal function for S∗(α). Setting

C(α, n) =

n∏
k=2

(k − 2α)

(n− 1)!
(n = 2, 3, . . . ), (1.4)
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Sα(z) can be written in the form

Sα(z) = z +
∞∑

n=2

C(α, n)zn. (1.5)

Note that C(α, n) is a decreasing function of α, 0 ≤ α < 1, and satisfies

lim
n→∞

C(α, n) =


∞, α < 1/2

1, α = 1/2

0, α > 1/2.

(1.6)

Let (f ∗ g)(z) denote the convolution or Hadamard product of two functions

f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by

g(z) = z +
∞∑

n=2

bnzn, (1.7)

then

(f ∗ g)(z) = z +
∞∑

n=2

anbnzn. (1.8)

Recently, many classes defined by convolution of f(z) and Sα(z) have been studied by

Ahuja and Silverman [1], Owa and Ahuja [11, 12], Sheil-Small, Silverman, and Silvia

[15], Silverman and Silvia [16], and Ruscheweyh and Singh [14].

We denote by Pα(β, γ,A, B) the class of functions f(z) in A1 that satisfy the

condition

(f ∗ Sα)′(z) ≺ 1 + [B + (A−B)(1− β)]γz

1 + Bγz
(z ∈ U) (1.9)

for some α (0 ≤ α < 1), β (0 ≤ β < 1, γ (0 < γ ≤ 1), and −1 ≤ A < B ≤ 1,

0 < B ≤ 1, where ≺ means subordination. For f ∈ Pα(β, γ,A, B), the values of

(f ∗ Sα)′(z) lie in a disc centered at
1− [B + (A−B)(1− β)]Bγ2

1−B2γ2
whose radius is

(B −A)γ(1− β)
1−B2γ2

.

We observe that, by specializing the parameters α, β, γ,A and B, we obtain

the following subclasses studied by various authors:

(1) P1/2(0, 1,−1, 1) = {f ∈ A1 : Re f ′(z) > 0, z ∈ U} (Mac-Gregor [8]).

(2) P1/2(0, γ,−1, 1) =
{

f ∈ A1 : f ′(z) ≺ 1− γz

1 + γz
, z ∈ U

}
(Padmanabhan

[13] and Caplinger and Causey [4]).

(3) P1/2(β, γ,−1, 1) =
{

f ∈ A1 : f ′(z) ≺ 1 + (2β − 1)γz

1 + γz
, z ∈ U

}
(Juneja

and Mogra [7]).
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(4) P1/2(0, 1, A, B) =
{

f ∈ A1 : f ′(z) ≺ 1 + Az

1 + Bz
, z ∈ U

}
(Mehrok [9]).

(5) P1/2(β, γ,A, B) =
{

f ∈ A1 : f ′(z) ≺ 1+[B+(A−B)(1−β)]γz
1+Bγz , z ∈ U

}
(Aouf

and Owa [3]).

(6) Pα(β, γ,−1, 1) =
{

f ∈ A1 : (f ∗ Sα)′(z) ≺ 1 + (2β − 1)γz

1 + γz
, z ∈ U

}
(Owa and Ahuja [12]).

(7) Pα(0, 1,−1, 1) = {f ∈ A1 : Re (f ∗ Sα)′(z) > 0, z ∈ U} (Ahuja and Owa

[2]).

It is well-known that the functions in P1/2(0, 1,−1, 0) and P1/2(0, 1, A, B) are

univalent in U .

Further, we say that a function f(z) in A1 belongs to the class Qα(β, γ,A, B)

if and only if zf ′(z) ∈ Pα(β, γ, A,B) for all z ∈ U . Finally, denote by Rα(β, γ,A, B)

the class of functions f(z) in A1 that satisfy the condition

1
z
(f ∗ Sα)(z) ≺ 1 + [B + (A−B)(1− β)]γz

1 + Bγz
(1.10)

for some α, β, γ,A, and B as defined above. Note that

R1/2(0, 1, A, B) =
{

f ∈ A1 :
f(z)

z
≺ 1 + Az

1 + Bz
, z ∈ U

}
.

In Section 2, we first prove that

Qα(β, γ, A, B) ⊂ Pα(β, γ, A, B) ⊂ Rα(β, γ,A, B),

and we then determine coefficient inequalities for the functions belonging to these

classes. Finally, the coefficient inequalities for some subclasses of Pα(β, γ, A, B) and

Qα(β, γ, A,B) are obtained.

2. Coefficient Inequalities

First we examine the relationship between Pα(β, γ,A, B) and

Qα(β, γ, A,B). We need the following very useful result due to Jack [6], and Suf-

fridge [17].

Lemma 1. Let w(z) be analytic in U with w(0) = 0. If |w(z0)| = max
|z|=r

|w(z)|,

then we have

z0w
′(z0) = kw(z0),

where k is a real number and k ≥ 1.
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Theorem 1. Qα(β, γ, A, B) ⊂ Pα(β, γ, A, B).

Proof. Let f ∈ Qα(β, γ, A, B). Then zf ′(z) ∈ Pα(β, γ, A,B) and therefore

(zf ′ ∗ Sα)′(z) ≺ g(z), (2.1)

where g(z) =
1 + [B + (A−B)(1− β)]γz

1 + Bγz
is convex univalent in U . In view of the

principle of subordination and the Schwarz’s Lemma [10], it follows that (2.1) is

equivalent to ∣∣∣∣ (zf ′ ∗ Sα)′(z)− 1
Bγ(zf ′ ∗ Sα)′(z)− [B + (A−B)(1− β)]γ

∣∣∣∣ < 1. (2.2)

Define w(z) by

(zf ′ ∗ Sα)(z)
z

=
1 + [B + (A−B)(1− β)]γw(z)

1 + Bγw(z)
. (2.3)

We observe that
(zf ′ ∗ Sα)(z)

z
= (f ∗ Sα)′(z).

Thus (2.3) can be written as

w(z) =
(f ∗ Sα)′(z)− 1

[B + (A−B)(1− β)]γ −Bγ(f ∗ Sα)′(z)
. (2.4)

Note that w(z) is analytic in U and w(0) = 0. We need to show that |w(z)| < 1 for

all z ∈ U . On the contrary, suppose |w(z)| 6< 1. Then by Lemma 1, there exists a

point z0 ∈ U such that |w(z0)| = 1, z0w
′(z0) = kw(z0) for some k ≥ 1. Therefore,

(2.3) yields

(z0f
′ ∗ Sα)′(z0)− 1 =

(A−B)(1− β)γw(z0)(1 + T (z0))
1 + Bγw(z0)

,

and

Bγ(z0f
′ ∗ Sα)′(z0)− [B + (A−B)(1− β)]γ =

=
(B −A)(1− β)γ[1−Bγw(z0)T (z0)]

1 + Bγw(z0)

where T (z0) =
k

1 + Bγw(z0)
, and hence (2.2) implies that∣∣∣∣ 1 + T (z0)

1−Bγw(z0)T (z0)

∣∣∣∣ < 1.

This last inequality gives

(1−B2γ2)|T (z0)|2 < −2Re [(1 + Bγw(z0))T (z0)]. (2.5)
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Since the right side of (2.5) is equal to −2k and k ≥ 1, we conclude that (2.5) is

not possible. This contradiction thereby shows that |w(z)| < 1 for all z ∈ U , and

hence (2.4) immediately proves that f ∈ Pα(β, γ,A, B). The proof of the theorem is

completed.

Theorem 2. Pα(β, γ, A,B) ⊂ Rα(β, γ,A, B).

Proof. Let f ∈ Pα(β, γ, A,B). Then it follows that

1
z
(zf ′ ∗ Sα)(z) ≺ g(z),

where g(z) =
1 + [B + (A−B)(1− β)]γz

1 + Bγz
is convex univalent in U and hence h(z) =

zf ′(z) ∈ Rα(β, γ,A, B). Therefore, in view of (1.10), we have

1
z

(∫ z

0

h(t)
t

dt ∗ Sα

)
(z) =

∫ 1

0

(h ∗ Sα)(tz)
tz

dt ≺ g(z).

This implies that

f(z) =
∫ z

0

h(t)
t

dt ∈ Rα(β, γ,A, B),

which completes the proof of the theorem.

Corollary 1. If f(z) ∈ Pα(β, γ, A, B), then we have∣∣∣∣arg
1
z
(f ∗ Sα)(z)

∣∣∣∣ ≤ sin−1

(
(B −A)γ(1− β)|z|

1−Bγ2[B + (A−B)(1− β)]|z|2

)
.

The bound is sharp.

We next obtain a sufficient condition in terms of the modulus of the coeffi-

cients for a function to be in Pα(β, γ,A, B).

Theorem 3. Let the function f(z) defined by (1.1) satisfies the condition

∞∑
n=2

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (2.6)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Pα(β, γ,A, B).

Proof. We use a method of Clunie and Keogh [5]. Assuming the inequality

(2.6), we have

|(f ∗ Sα)′(z)− 1| − γ|B(f ∗ Sα)′(z)− [B + (A−B)(1− β)]| =

=

∣∣∣∣∣
∞∑

n=2

nC(α, n)anzn−1

∣∣∣∣∣− γ

∣∣∣∣∣(B −A)(1− β) +
∞∑

n=2

BnC(α, n)anzn−1

∣∣∣∣∣ ≤
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≤
∞∑

n=2

nC(α, n)|an||z|n−1 − γ

{
(B −A)(1− β)−

∞∑
n=2

BnC(α, n)|an||z|n−1

}
≤

≤
∞∑

n=2

n(1 + Bγ)C(α, n)|an| − (B −A)γ(1− β) ≤ 0

for all z ∈ U . Consequently, by the maximum modulus theorem, it follows that

f(z) ∈ Pα(β, γ, A, B). The equality in (2.6) is attained for the functions of the form

fn(z) = z +
(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn (n ≥ 2).

Example. The function f(z) = z +
∞∑

n=2

anzn given by

(f ∗ Sα)(z) = z +
∞∑

n=2

C(α, n)anzn =

= − [B + (A−B)(1− β)]
B

z +
(B −A)(1− β)

B2γ
ln(1−Bγz) (2.7)

belongs to Pα(β, γ, A, B) but
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

|an| =
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

(B −A)(1− β)
nC(α, n)

Bn−2γn−1 =

=
∞∑

n=2

(1 + Bγ)(Bγ)n−2 > 1

for each α, β, γ,A, B (0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, −1 ≤ A < B ≤ 1, 0 < B ≤

1). This example shows that the converse of Theorem 3 may not be true.

Motivated by Theorem 3 and the above Example, we now consider a class

Hα(β, γ, A, B) of precisely those functions in A1 which are characterized by the con-

dition (2.6): that is, f(z) ∈ Hα(β, γ, A, B) if and only if f(z) satisfies (2.6) for some

α, β, γ,A, B (0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, −1 ≤ A < B ≤ 1, 0 < B ≤ 1).

Clearly, Hα(β, γ, A,B) ⊂ Pα(β, γ, A, B). This containment is proper because f(z)

given by (2.7) belongs to Pα(β, γ,A, B) −Hα(β, γ,A, B). We next prove a theorem

about convolutions of functions in Hα(β, γ,A, B). But first we need the following

Lemma 2. If f(z) = z+
∞∑

n=2

anzn ∈ Hα(β, γ,A, B) and g(z) = z+
∞∑

n=2

bnzn ∈

A1 with |bn| ≤ 1 for every n, then (f ∗ g)(z) ∈ Hα(β, γ,A, B).

Proof. The result follows from (2.6) upon noting that
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

|an||bn| ≤
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

|an| ≤ 1.
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Remark. The condition |bn| ≤ 1 is best possible because if |bn| > 1 for some

n, then (
z +

(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn

)
∗ g(z) 6∈ Hα(β, γ,A, B).

Theorem 4. If f, g ∈ Hα(β, γ, A,B) with

α ≤ 1 + Bγβ

1 + Bγ
(2.8)

then f ∗ g(z) ∈ Hα(β, γ,A, B).

Proof. According to Lemma 2, it suffices to show that the modulus of the

n-th coefficient, |bn|, is bounded above by 1. Note that

C(α, n) =

∞∏
k=2

(k − 2α)

(n− 1)!
≥ 2(1− α)

(n− 1)!

n∏
k=3

(k − 2) >
(B −A)(1− α)

Bn
.

Thus from (2.6) we have

|bn| ≤
(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

<

<
(B −A)γ(1− β)

n(1 + Bγ)
Bn

(B −A)(1− α)
=

Bγ(1− β)
(1− α)(1 + Bγ)

. (2.9)

This last expression is bounded above by 1 if (2.8) holds and the proof is completed.

Remark. The condition (2.8) cannot be eliminated. The function

fn(z) = z +
(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn = z + anzn (n ≥ 2)

is in Hα(β, γ,A, B) but fn ∗ fn(z) 6∈ Hα(β, γ,A, B) for α close enough to 1 to assure

that an > 1.

With the aid of Theorem 3, we have

Theorem 5. Let the function f(z) defined by (1.1) satisfies the condition

∞∑
n=2

n2(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (2.10)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1 and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Qα(β, γ,A, B).

65



H. M. HOSSEN AND M. K. AOUF

Proof. We note that f(z) ∈ Qα(β, γ, A, B) if and only if zf ′(z) ∈

Pα(β, γ,A, B). Since zf ′(z) = z +
∞∑

n=2

nanzn, we may replace an by nan in The-

orem 3. Further, the equality in (2.10) holds for the functions of the form

fn(z) = z +
(B −A)γ(1− β)

n2(1 + Bγ)C(α, n)
zn (n ≥ 2). (2.11)

Following the method of Theorem 3, we obtain a sufficient condition in terms

of the modulus of the coefficients for a function to be in Rα(β, γ, A,B).

Theorem 6. Let the function f(z) defined by (1.1) satisfies the condition

∞∑
n=2

(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (2.12)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1 and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Rα(β, γ,A, B). The equality in (2.12) is attained for the functions of

the form

fn(z) = z +
(B −A)γ(1− β)
(1 + Bγ)C(α, n)

zn (n ≥ 2). (2.13)

Remark. The proof of Theorem 6 is omitted. Furthermore, analogous to

subclass Hα(β, γ, A,B) of Pα(β, γ,A, B) and Theorem 4, it is a simple exercise to

introduce and study corresponding subclasses of Qα(β, γ,A, B) and Rα(β, γ,A, B).

The next theorem gives the coefficient bounds for the functions in the class

Pα(β, γ,A, B).

Theorem 7. Let the function f(z) defined by (1.1) be in the class

Pα(β, γ,A, B). Then we have

|an| ≤
(B −A)γ(1− β)

nC(α, n)
(n ≥ 2). (2.14)

These bounds are sharp.

Proof. Let f(z) ∈ Pα(β, γ, A,B). Then it follows from the definition of

subordination

(f ∗ Sα)′(z) =
1 + [B + (A−B)(1− β)]γw(z)

1 + Bγw(z)
, (2.15)
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where w(z) =
∞∑

k=1

tkzk is analytic and satisfies the condition |w(z)| < 1 for all z in U .

On simplification, (2.15) gives

γ

[
(B −A)(1− β) +

∞∑
n=2

BnC(α, n)anzn−1

][ ∞∑
n=1

tnzn

]
=

= −
∞∑

n=2

nC(α, n)anzn−1. (2.16)

Equating corresponding coefficients on both sides of (2.16) we find that the coefficient

an on the right side depends only on the coefficients a2, a3, . . . , an−1 on the left side.

Therefore, since |w(z)| < 1, (2.16) gives

γ

∣∣∣∣∣(B −A)(1− β) +
n−1∑
k=2

BkC(α, k)akzk−1

∣∣∣∣∣ ≥
∣∣∣∣∣

n∑
k=2

kC(α, k)akzk−1 −
∞∑

k=n+1

bkzk−1

∣∣∣∣∣
for all n ≥ 2. Writting z = reiθ, r < 1, squaring both sides of the preceeding

inequality and then integrating, we obtain

γ2

[
(B −A)2(1− β)2 +

n−1∑
k=2

B2k2(C(α, k))2|ak|2r2(k−1)

]
≥

≥
n∑

k=2

k2(C(α, k))2|ak|2r2(k−1) +
∞∑

k=n+1

|bk|2r2(k−1).

Taking the limit as r → 1−, we have

γ2

[
(B −A)2(1− β)2 +

n−1∑
k=2

B2k2(C(α, k))2|ak|2
]
≥

≥ n2(C(α, n))2|an|2 +
n−1∑
k=2

k2(C(α, k))2|ak|2. (2.17)

Since 0 < γ ≤ 1 and 0 < B ≤ 1, (2.17) immediately yields

(B −A)2γ2(1− β)2 ≥ n2(C(α, n))2|an|2

which proves (2.14). The bounds in (2.14) are sharp for the functions f(z) defined by

(f ∗ Sα)(z) =
∫ z

0

1− [B + (A−B)(1− β)]γtn−1

1−Bγtn−1
dt (2.18)

for n ≥ 2 and for all z ∈ U .
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Corollary 2. Let the function f(z) defined by (1.1) be in the class

Qα(β, γ,A, B). Then we have

|an| ≤
(B −A)γ(1− β)

n2C(α, n)
(n ≥ 2). (2.19)

These bounds are sharp.

Proof. We need only replace an by nan in Theorem 7.

Remark. We can show that the inclusion Qα(β, γ,A, B) ⊂ Pα(β, γ,A, B)

and Hα(β, γ, A,B) ⊂ Pα(β, γ,A, B) are both proper. In particular, for f(z) given by

(2.18) it follows that

f(z) = z +
(B −A)γ(1− β)

nC(α, n)
zn + · · · = z + anzn + . . .

is in Pα(β, γ,A, B) but f 6∈ Qα(β, γ, A, B) and f 6∈ Hα(β, γ,A, B) because an exceeds

the coefficients bounds of the above Corollary 2 and (2.6).

By using the arguments similar to Theorem 7, we obtain the following

Theorem 8. Let the function f(z) defined by (1.1) be in the class

Rα(β, γ, A, B). Then we have

|an| ≤
(B −A)γ(1− β)

C(α, n)
(n ≥ 2). (2.20)

These bounds are sharp for the function f(z) given by

(f ∗ Sα)(z) =
(

1− [B + (A−B)(1− β)]γzn−1

1−Bγzn−1

)
z. (2.21)

3. Subclasses of Pα(β, γ,A, B) and Qα(β, γ,A, B)

In view of Theorem 3, we introduce the following classes. Let

Pα(β, γ,A, B; k) be the subclasses of Pα(β, γ,A, B) consisting of functions of the form

f(z) = z +
k∑

i=1

Bipiz
i +

∞∑
n=k+1

anzn, (3.1)

where 0 ≤ pi < 1, 0 ≤
k∑

i=2

pi < 1, and

Bi =
(B −A)γ(1− β)
i(1 + Bγ)C(α, i)

(i = 2, 3, . . . , k). (3.2)
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Further, let Qα(β, γ,A, B; k) be the subclass of Qα(β, γ,A, B) consisting of functions

of the form

f(z) = z +
k∑

i=2

Eipiz
i +

∞∑
n=k+1

anzn, (3.3)

where 0 ≤ pi < 1; 0 ≤
k∑

i=2

pi < 1, and

Ei =
(B −A)γ(1− β)
i2(1 + Bγ)C(α, i)

(i = 2, 3, . . . , k). (3.4)

Theorem 9. Let the function f(z) defined by (3.1) satisfies the condition

∞∑
n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β)

(
1−

k∑
i=2

pi

)
(3.5)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Pα(β, γ,A, B; k).

Proof. By virtue of Theorem 3, we note that

f(z) = z +
k∑

i=2

Bipiz
i +

∞∑
n=k+1

anzn

belongs to the class Pα(β, γ,A, B; k) if

k∑
i=2

i(1 + Bγ)C(α, i)Bipi +
∞∑

n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β), (3.6)

or if
k∑

i=2

(B −A)γ(1− β)pi +
∞∑

n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β). (3.7)

This is equivalent to the condition (3.5). Further, by taking the function given by

f(z) = z +
k∑

i=2

Bipiz
i +

(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn (n ≥ k + 1), (3.8)

we can show that the result (3.5) is sharp.

Putting pi = 0 (i = 2, 3, . . . , k) in Theorem 9, we have

Corollary 3. Let the function f(z) defined by (3.1) with pi = 0 (i =

2, 3, . . . , k). If f satisfies
∞∑

n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (3.9)
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for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1, then

f(z) ∈ Pα(β, γ, A, B; k).

Similarly, we obtain

Theorem 10. Let the function f(z) defined by (3.2) satisfies the condition

∞∑
n=k+1

n2(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β)

(
1−

k∑
i=2

pi

)
(3.10)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Qα(β, γ,A, B; k).

Corollary 4. Let the function f(z) be defined by (3.2) with pi = 0 (i =

2, 3, . . . , k). If f(z) satisfies

∞∑
n=k+1

n2(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (3.11)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1, then

f(z) ∈ Qα(β, γ, A, B; k).

Remark. Putting A = −1 and B = 1 in the above theorems we get the

results obtained by Ahuja and Owa [2].
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