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GENERALIZATION OF CERTAIN CLASSES OF UNIVALENT
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H. M. HOSSEN

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. The object of the present paper is to obtain coefficient esti-

mates, some properties, distortion theorem and closure theorems for the

classes R∗
n(α) of analytic and univalent functions with negative coefficients,

defined by using the n-th order Ruscheweyh derivative. We also obtain sev-

eral interesting results for the modified Hadamard product of functions be-

longing to the classes R∗
n(α). Further, we obtain radii of close-to-convexity,

starlikeness and convexity and integral operators for the classes R∗
n(α).

1. Introduction

Let A denote the class of functions f(z) of the form

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. We denote by S the subclass

of univalent functions f(z) in A. The Hadamard product of two functions f(z) ∈ A

and g(z) ∈ A will be denoted by f ∗ g(z), that is, if f(z) is given by (1.1) and g(z) is

given by

g(z) = z +
∞∑

k=2

bkzk, (1.2)

then

f ∗ g(z) = z +
∞∑

k=2

akbkzk. (1.3)

Let

Dnf(z) =
z(zn−1f(z))(n)

n!
(1.4)
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for n ∈ N0 = N ∪ {0} and z ∈ U , where N = {1, 2, 3, . . . }. This symbol Dnf(z) was

named the n-th order Ruscheweyh derivative of f(z) by Al-Amiri [3]. We note that

D0f(z) = f(z) and D1f(z) = zf ′(z). By using the Hadamard product, Ruscheweyh

[5] observed that if

Dβf(z) =
z

(1− z)β+1
∗ f(z) (β ≥ −1) (1.5)

then (1.4) is equivalent to (1.5) when β = n ∈ N0.

It is easy to see that

Dnf(z) = k +
∞∑

k=2

δ(n, k)akzk, (1.6)

where

δ(n, k) =
(

n + k − 1
n

)
. (1.7)

Note that

z(Dnf(z))′ = (n + 1)Dn+1f(z)− nDnf(z) (cf. [5]). (1.8)

Let Rn(α) denote the classes of functions f(z) ∈ A which satisfy the condition

Re
{

z(Dnf(z))′

Dnf(z)

}
> α, (z ∈ U) (1.9)

for some α (0 ≤ α < 1) and n ∈ N0. The class Rn(α) was studied by Ahuja [1,2].

From (1.8) and (1.9) it follows that a function f(z) in A belongs to Rn(α) is

and only if

Re
{

Dn+1f(z)
Dnf(z)

}
>

n + α

n + 1
(z ∈ U). (1.10)

Let T denote the subclass of S consisting of functions f(z) of the form

f(z) = z −
∞∑

k=2

akzk (ak ≥ 0). (1.11)

In the present paper we introduce the following classes R∗
n(α) by using the

n-th order Ruscheweyh derivative of f(z), defined as follows:

Definition. We say that f(z) is in the class R∗
n(α) (0 ≤ α < 1, n ∈ N0), if

f(z) defined by (1.11) satisfies the condition (1.10).

We note that R∗
n(0) = R∗

n was studied by Owa [4] and R∗
0(α) = T ∗(α) (the

class of starlike functions of order α) and R∗
1(α) = C(α) (the class of convex functions
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of order α), were studied by Silverman [7]. Hence R∗
n(α) is a subclass of T ∗(α) ⊂ S.

Further, we can show that R∗
n+1(α) ⊂ R∗

n(α) for every n ∈ N0.

2. Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.11). Then f(z) is in

the class R∗
n(α) if and only if

∞∑
k=2

(k − α)δ(n, k)ak ≤ 1− α. (2.1)

The result is sharp.

Proof. Assume that the inequality (2.1) holds and let |z| = 1. Then we get

∣∣∣∣Dn+1f(z)
Dnf(z)

− 1
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
−

∞∑
k=2

(δ(n + 1, k)− δ(n, k))akzk−1

1−
∞∑

k=2

δ(n, k)akzk−1

∣∣∣∣∣∣∣∣∣∣
≤

≤

∞∑
k=2

(
k − 1
n + 1

)
δ(n, k)ak|z|k−1

1−
∞∑

k=2

δ(n, k)ak|z|k−1

≤

∞∑
k=2

(
k − 1
n + 1

)
δ(n, k)ak

1−
∞∑

k=2

δ(n, k)ak

≤ 1− α

n + 1
.

This shows that the values of
Dn+1f(z)
Dnf(z)

lies in a circle centered at w = 1

whose radius is
1− α

n + 1
. Hence f(z) satisfies the condition (1.10) hence further, f(z) ∈

R∗
n(α).

For the converse, assume that the function f(z) defined by (1.11) belongs to

the class R∗
n(α). Then we have

Re
{

Dn+1f(z)
Dnf(z)

}
= Re


1−

∞∑
k=2

δ(n + 1, k)akzk−1

1−
∞∑

k=2

δ(n, k)akzk−1

 >
n + α

n + 1
(2.2)

for 0 ≤ α < 1 and z ∈ U . Choose values of z on the real axis so that
Dn+1f(z)
Dnf(z)

is

real. Upon clearing the denominator in (2.2) and letting z → 1− through real values,

we get

(n + 1)

(
1−

∞∑
k=2

δ(n + 1, k)ak

)
≥ (n + α)

(
1−

∞∑
k=2

δ(n, k)ak

)
(2.3)
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which gives (2.1). Finally the function f(z) given by

f(z) = z − 1− α

(k − α)δ(n, k)
zk (k ≥ 2) (2.4)

is an extremal function for the theorem.

Corollary 1. Let the function f(z) defined by (1.11) be in the class R∗
n(α).

Then

ak ≤
1− α

(k − α)δ(n, k)
(k ≥ 2). (2.5)

The equality in (2.5) is attained for the function f(z) given by (2.4).

3. Some properties of the class R∗
n(α)

Theorem 2. Let 0 ≤ α1 ≤ α2 < 1 and n ∈ N0. Then we have

R∗
n(α1) ⊇ R∗

n(α2). (3.1)

Proof. Let the function f(z) defined by (1.11) be in the class R∗
n(α2) and

α1 = α2 − ε. Then, by Theorem 1, we have

∞∑
k=2

(k − α2)δ(n, k)ak ≤ 1− α2

and
∞∑

k=2

δ(n, k)ak ≤
1− α2

2− α2
< 1. (3.2)

Consequently

∞∑
k=2

(k − α1)δ(n, k)ak =
∞∑

k=2

(k − α2)δ(n, k)ak + ε
∞∑

k=2

δ(n, k)ak ≤ 1− α1. (3.3)

This completes the proof of Theorem 2 with the aid of Theorem 1.

Theorem 3. R∗
n+1(α) ⊆ R∗

n(α) for 0 ≤ α < 1 and n ∈ N0.

Proof. Let the function f(z) defined by (1.11) be in the class R∗
n+1(α); then

∞∑
k=2

(k − α)δ(n + 1, k)ak ≤ 1− α (3.4)

and since

δ(n, k) ≤ δ(n + 1, k) for k ≥ 2, (3.5)
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we have
∞∑

k=2

(k − α)δ(n, k)ak ≤
∞∑

k=2

(k − α)δ(n + 1, k)ak ≤ 1− α. (3.6)

The result follows from Theorem 1.

4. Distortion theorem

Theorem 4. Let the function f(z) defined by (1.11) be in the class R∗
n(α).

Then we have for |z| = r < 1

r − 1− α

(2− α)(n + 1)
r2 ≤ |f(z)| ≤ r +

1− α

(2− α)(n + 1)
r2 (4.1)

and

1− 2(1− α)
(2− α)(n + 1)

r ≤ |f ′(z)| ≤ 1 +
2(1− α)

(2− α)(n + 1)
r. (4.2)

The result is sharp.

Proof. In view of Theorem 1, we have
∞∑

k=2

ak ≤
1− α

(2− α)(n + 1)
. (4.3)

Consequently, we have

|f(z)| ≥ r − r2
∞∑

k=2

ak ≥ r − 1− α

(2− α)(n + 1)
r2 (4.4)

and

|f(z)| ≤ r + r2
∞∑

k=2

ak ≤ r +
1− α

(2− α)(n + 1)
r2 (4.5)

which prove the assertion (4.1).

From (4.3) and Theorem 1, it follows also that
∞∑

k=2

kak ≤
1− α

n + 1
+ α

∞∑
k=2

ak ≤
2(1− α)

(2− α)(n + 1)
. (4.6)

Consequently, we have

|f ′(z)| ≥ 1− r
∞∑

k=2

kak ≥ 1− 2(1− α)
(2− α)(n + 1)

r (4.7)

and

|f ′(z)| ≤ 1 + r
∞∑

k=2

kak ≤ 1 +
2(1− α)

(2− α)(n + 1)
r, (4.8)

which prove the assertion (4.2). This completes the proof of Theorem 4.
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The bounds in (4.1) and (4.2) are attained for the function f(z) given by

f(z) = z − 1− α

(2− α)(n + 1)
z2 (z = ±r). (4.9)

Corollary 2. Let the function f(z) defined by (1.11) be in the class R∗
n(α).

Then the unit disc U is mapped onto a domain that contains the disc

|w| < (2− α)(n + 1)− (1− α)
(2− α)(n + 1)

(4.10)

The result is sharp with extremal function f(z) given by (4.9).

5. Closure theorems

Let the functions fi(z) be defined, for i = 1, 2, . . . ,m, by

fi(z) = z −
∞∑

k=2

ak,iz
k (ak,i ≥ 0, k ≥ 2) (5.1)

for z ∈ U .

We shall prove the following results for the closure of functions in the classes

R∗
n(α).

Theorem 5. Let the functions fi(z) defined by (5.1) be in the class R∗
n(α)

for every i = 1, 2, . . . ,m. Then the function h(z) defined by

h(z) =
m∑

i=1

cifi(z) (ci ≥ 0) (5.2)

is also in the class R∗
n(α), where

m∑
i=1

ci = 1. (5.3)

Proof. According to the definition of h(z), we can write

h(z) = z −
∞∑

k=2

(
m∑

i=1

ciak,i

)
zk. (5.4)

Further, since fi(z) are in R∗
n(α) for every i = 1, 2, . . . ,m, we get
∞∑

k=2

(k − α)δ(n, k)ak,i ≤ 1− α (5.5)

for every i = 1, 2, . . . ,m. Hence we can see that
∞∑

k=2

(k − α)δ(n, k)

(
m∑

i=1

ciak,i

)
=

m∑
i=1

ci

( ∞∑
k=2

(k − α)δ(n, k)ak,i

)
≤
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=

(
m∑

i=1

ci

)
(1− α) ≤ 1− α (5.6)

with the aid of (5.5). This proves that the function h(z) is in the class R∗
n(α) by

means of Theorem 1. Thus we have the theorem.

Theorem 6. The class R∗
n(α) is closed under convex linear combinations.

Proof. Let the functions fi(z) (i = 1, 2) defined by (5.1) be in the class

R∗
n(α). Then it is sufficient to prove that the function

h(z) = λf1(z) + (1− λ)f2(z) (0 ≤ λ ≤ 1) (5.7)

is in the class R∗
n(α). Since, for 0 ≤ λ ≤ 1,

h(z) = z −
∞∑

k=2

{λak,1 + (1− λ)ak,2}zk, (5.8)

we readily have

∞∑
k=2

(k − α)δ(n, k){λak,1 + (1− λ)ak,2} ≤ 1− α, (5.9)

by means of Theorem 1, which implies that h(z) ∈ R∗
n(α).

Theorem 7. Let

f1(z) = z (5.10)

and

fk(z) = z − 1− α

(k − α)δ(n, k)
zk (k ≥ 2) (5.11)

for 0 ≤ α < 1 and n ∈ N0. Then f(z) is in the class R∗
n(α) if and only if can be

expressed in the form

f(z) =
∞∑

k=1

λkfk(z) (5.12)

where λk ≥ 0 and
∞∑

k=1

λk = 1. (5.13)

Proof. Assume that

f(z) =
∞∑

k=1

λkfk(z) = z −
∞∑

k=2

1− α

(k − α)δ(n, k)
λkzk. (5.14)
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Then we have

∞∑
k=2

(k − α)δ(n, k)
1− α

· 1− α

(k − α)δ(n, k)
λk =

∞∑
k=2

λk = 1− λ1 ≤ 1. (5.15)

So by Theorem 1, f(z) ∈ R∗
n(α).

Conversely, assume that the function f(z) defined by (1.11) belongs to the

class R∗
n(α). Again, with the aid of Theorem 1, we get

ak ≤
1− α

(k − α)δ(n, k)
(k ≥ 2). (5.16)

Setting

λk =
(k − α)δ(n, k)

1− α
ak (k ≥ 2), (5.17)

and

λ1 = 1−
∞∑

k=2

λk. (5.18)

Hence, we can see that f(z) can be expressed in the form (5.12). This completes the

proof of Theorem 7.

Corollary 3. The extreme points of the class R∗
n(α) are the functions f1(z)

and fk(z) (k ≥ 2) given by Theorem 7.

6. Modified Hadamard product

Let the functions fi(z) (i = 1, 2) be defined (5.1). The modified Hadamard

product of f1(z) and f2(z) is defined by

f1 ∗ f2(z) = z −
∞∑

k=2

ak,1ak,2z
k. (6.1)

Theorem 8. Let the functions fi(z) (i = 1, 2) defined by (5.1) be in the class

R∗
n(α). Then f1 ∗ f2(z) ∈ R∗

n(β(n, α)), where

β(n, α) =
(n + 1)− 2

(
1− α

2− α

)2

(n + 1)−
(

1− α

2− α

)2 . (6.2)

The result is sharp.
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Proof. Employing the technique used earlier by Schild and Silverman [4],

we need to find the largest β = β(n, α) such that

∞∑
k=2

(k − β)δ(n, k)
1− β

ak,1ak,2 ≤ 1. (6.3)

Since
∞∑

k=2

(k − α)δ(n, k)
1− α

ak,1 ≤ 1 (6.4)

and
∞∑

k=2

(k − α)δ(n, k)
1− α

ak,2 ≤ 1, (6.5)

by the Cauchy-Schwarz inequality we have

∞∑
k=2

(k − α)δ(n, k)
1− α

√
ak,1ak,2 ≤ 1. (6.6)

Thus it is sufficient to show that

(k − β)δ(n, k)
1− β

ak,1ak,2 ≤
(k − α)δ(n, k)

1− α

√
ak,1ak,2 (k ≥ 2), (6.7)

that is, that
√

ak,1ak,2 ≤
(k − α)(1− β)
(k − β)(1− α)

(k ≥ 2). (6.8)

Note that
√

ak,1ak,2 ≤
1− α

(k − α)δ(n, k)
(k ≥ 2). (6.9)

Consequently, we need only to prove that

1− α

(k − α)δ(n, k)
≤ (k − α)(1− β)

(k − β)(1− α)
(k ≥ 2), (6.10)

or, equivalently, that

β ≤
δ(n, k)− k

(
1− α

k − α

)2

δ(n, k)−
(

1− α

k − α

)2 (k ≥ 2). (6.11)

Since

A(k) =
δ(n, k)− k

(
1− α

k − α

)2

δ(n, k)−
(

1− α

k − α

)2 (6.12)
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is an increasing function of k (k ≥ 2), letting k = 2 in (6.12), we obtain

β ≤ A(2) =
(n + 1)− 2

(
1− α

2− α

)2

(n + 1)−
(

1− α

2− α

)2 , (6.13)

which completes the proof of the theorem. Finally, by taking the functions fi(z) given

by

fi(z) = z − 1− α

(2− α)(n + 1)
z2 (i = 1, 2), (6.14)

we can see that the result is sharp.

Corollary 4. For f1(z) and f2(z) as in Theorem 8, we have

h(z) = z −
∞∑

k=2

√
ak,1ak,2z

k (6.15)

belongs to the class R∗
n(α).

The result follows from the inequality (6.6). It is sharp for the same functions

fi(z) (i = 1, 2) as in Theorem 8.

Theorem 9. Let f1(z) ∈ R∗
n(α) and f2(z) ∈ R∗

n(β), then f1 ∗ f2(z) ∈

R∗
n(γ(n, α, β)), where

γ(n, α, β) =
(n + 1)− 2

(
1− α

2− α

)(
1− β

2− β

)
(n + 1)−

(
1− α

2− α

)(
1− β

2− β

) . (6.16)

The result is sharp for the functions

f1(z) = z − 1− α

(2− α)(n + 1)
z2 (6.17)

and

f2(z) = z − 1− β

(2− β)(n + 1)
z2. (6.18)

Proof. Proceeding as in the proof of Theorem 8, we get

γ ≤ B(k) =
δ(n, k)− k

(
1− α

k − α

)(
1− β

k − β

)
δ(n, k)−

(
1− α

k − α

)(
1− β

k − β

) . (6.19)
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Since the function B(k) is an increasing function of k (k ≥ 2), setting k = 2 in (6.19),

we obtain

γ ≤ B(2) =
(n + 1)− 2

(
1− α

2− α

)(
1− β

2− β

)
(n + 1)−

(
1− α

2− α

)(
1− β

2− β

) . (6.20)

This completes the proof of Theorem 9.

Corollary 5. Let the functions fi(z) (i = 1, 2, 3) defined by (5.1) be in the

class R∗
n(α), then f1 ∗ f2 ∗ f3(z) ∈ R∗

n(ζ(n, α)), where

ζ(n, α) =
(n + 1)2 − 2

(
1− α

2− α

)3

(n + 1)2 −
(

1− α

2− α

)3 . (6.21)

The result is best possible for the functions

fi(z) = z − 1− α

(2− α)(n + 1)
z2 (i = 1, 2, 3). (6.22)

Proof. From Theorem 8, we have f1 ∗ f2(z) ∈ R∗
n(β), where β is given by

(6.2). We use now Theorem 9, we get f1 ∗ f2 ∗ f3(z) ∈ R∗
n(ζ(n, α)), where

ζ(n, α) =
(n + 1)− 2

(
1− α

2− α

)(
1− β

2− β

)
(n + 1)−

(
1− α

2− α

)(
1− β

2− β

) =
(n + 1)2 − 2

(
1− α

2− α

)3

(n + 1)2 −
(

1− α

2− α

)3 .

This completes the proof of Corollary 5.

Theorem 10. Let the functions fi(z) (i = 1, 2) defined by (5.1) be in the

class R∗
n(α). Then the function

h(z) = z −
∞∑

k=2

(a2
k,1 + a2

k,2)z
k (6.23)

belongs to the class R∗
n(ϕ(n, α)), where

ϕ(n, α) =
(n + 1)−

(
2(1− α)
2− α

)2

(n + 1)− 2
(

1− α

2− α

)2 . (6.24)

The result is sharp for the functions fi(z) (i = 1, 2) defined by (6.14).
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Proof. By virtue of Theorem 1, we obtain

∞∑
k=2

[
(k − α)δ(n, k)

1− α

]2
a2

k,1 ≤

[ ∞∑
k=2

(k − α)δ(n, k)
1− α

ak,1

]2

≤ 1 (6.25)

and
∞∑

k=2

[
(k − α)δ(n, k)

1− α

]2
a2

k,2 ≤

[ ∞∑
k=2

(k − α)δ(n, k)
1− α

ak,2

]2

≤ 1. (6.26)

It follows from (6.25) and (6.26) that
∞∑

k=2

1
2

[
(k − α)δ(n, k)

1− α

]2
(a2

k,1 + a2
k,2) ≤ 1. (6.27)

Therefore, we need to find the largest ϕ = ϕ(n, α) such that

(k − ϕ)δ(n, k)
1− ϕ

≤ 1
2

[
(k − α)δ(n, k)

1− α

]2
(k ≥ 2), (6.28)

that is

ϕ ≤
δ(n, k)− 2k

(
1− α

k − α

)2

δ(n, k)− 2
(

1− α

k − α

)2 (k ≥ 2). (6.29)

Since

D(k) =
δ(n, k)− 2k

(
1− α

k − α

)2

δ(n, k)− 2
(

1− α

k − α

)2 (6.30)

is an increasing function of k (k ≥ 2), we readily have

ϕ ≤ D(2) =
(n + 1)−

(
2(1− α)
2− α

)2

(n + 1)− 2
(

1− α

2− α

)2 , (6.31)

and Theorem 10 follows at once.

Theorem 11. Let f1(z) ∈ R∗
n1

(α), and f2(z) ∈ R∗
n2

(α). Then the modified

Hadamard product f1 ∗ f2(z) ∈ R∗
n1

(α) ∩R∗
n2

(α).

Proof. Since f2(z) ∈ R∗
n2

(α), we have from (4.3) that

ak,2 ≤
1− α

(2− α)(n2 + 1)
. (6.32)

From Theorem 1, since f1(z) ∈ R∗
n1

(α), we have
∞∑

k=2

(k − α)δ(n1, k)
1− α

ak,1 ≤ 1. (6.33)
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Now, from (6.32) and (6.33), we have

∞∑
k=2

(k − α)δ(n1, k)
1− α

ak,1ak,2 ≤
1− α

(2− α)(n2 + 1)

∞∑
k=2

(k − α)δ(n1, k)
1− α

ak,1 ≤

≤ 1− α

(2− α)(n2 + 1)
≤ 1.

Hence f1 ∗ f2(z) ∈ R∗
n1

(α). Interchanging n1 and n2 by each other in the above, we

get f1 ∗ f2(z) ∈ R∗
n2

(α). Hence the theorem.

7. Radii of close-to-convexity, starlikeness and convexity

Theorem 12. Let the function f(z) defined by (1.11) be in the class R∗
n(α),

then f(z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r1(n, α, ρ), where

r1(n, α, ρ) = inf
k

[
(1− ρ)(k − α)δ(n, k)

k(1− α)

] 1
k−1

(k ≥ 2). (7.1)

The result is sharp, with the extremal function f(z) given by (2.4).

Proof. We must show that |f ′(z)− 1| ≤ 1− ρ for |z| < r1(n, α, ρ). We have

|f ′(z)− 1| ≤
∞∑

k=2

kak|z|k−1.

Thus |f ′(z)− 1| ≤ 1− ρ if

∞∑
k=2

(
k

1− ρ

)
ak|z|k−1 ≤ 1. (7.2)

Hence, by Theorem 1, (7.2) will be true if

k|z|k−1

1− ρ
≤ (k − α)δ(n, k)

1− α

or if

|z| ≤
[
(1− ρ)(k − α)δ(n, k)

k(1− α)

] 1
k−1

(k ≥ 2). (7.3)

The theorem follows easily from (7.3).

Theorem 13. Let the function f(z) defined by (1.11) be in the class R∗
n(α),

then f(z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r2(n, α, ρ), where

r2(n, α, ρ) = inf
k

[
(1− ρ)(k − α)δ(n, k)

(k − ρ)(1− α)

] 1
k−1

(k ≥ 2). (7.4)

The result is sharp, with the extremal function f(z) given by (2.4).
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Proof. It is sufficient to show that
∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣ ≤ 1− ρ for |z| < r2(n, α, ρ).

We have

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∞∑
k=2

(k − 1)ak|z|k−1

1−
∞∑

k=2

ak|z|k−1

.

Thus
∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣ ≤ 1− ρ if

∞∑
k=2

(k − ρ)ak|z|k−1

1− ρ
≤ 1. (7.5)

Hence, by Theorem 1, (7.5) will be true if

(k − ρ)|z|k−1

1− ρ
≤ (k − α)δ(n, k)

1− α

or if

|z| ≤
[
(1− ρ)(k − α)δ(n, k)

(k − ρ)(1− α)

] 1
k−1

(k ≥ 2). (7.6)

The theorem follows easily from (7.6).

Corollary 6. Let the function f(z) defined by (1.11) be in the class R∗
n(α),

then f(z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3(n, α, ρ), where

r3(n, α, ρ) = inf
k

[
(1− ρ)(k − α)δ(n, k)

k(k − ρ)(1− α)

] 1
k−1

(k ≥ 2). (7.7)

The result is sharp, with the extremal function f(z) given by (2.4).

8. Integral operators

Theorem 14. Let the function f(z) defined by (1.11) be in the class R∗
n(α)

and let the function F (z) be defined by

F (z) =
c + 1
zc

∫ z

0

tc−1f(t)dt. (8.1)

Then

(i) for every c, c > −1, F (z) ∈ R∗
n(α)

and

(ii) for every c, −1 < c ≤ n, F (z) ∈ R∗
n+1(α).
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Proof. (i) From the representation of F (z), it follows that

F (z) = z −
∞∑

k=2

bkzk, (8.2)

where

bk =
(

c + 1
c + k

)
ak. (8.3)

Therefore,
∞∑

k=2

(k − α)δ(n, k)bk =
∞∑

k=2

(k − α)δ(n, k)
(

c + 1
c + k

)
ak ≤

≤
∞∑

k=2

(k − α)δ(n, k)ak ≤ 1− α,

since f(z) ∈ R∗
n(α). Hence, by Theorem 1, F (z) ∈ R∗

n(α).

(ii) In view of Theorem 1 it is sufficient to show that
∞∑

k=2

(k − α)δ(n + 1, k)
(

c + 1
c + k

)
ak ≤ 1− α. (8.4)

Since

δ(n, k)− δ(n + 1, k)
(

c + 1
c + k

)
≥ 0 if − 1 < c ≤ n (k = 2, 3, . . . )

the result follows from Theorem 1.

Putting c = 0 in Theorem 14, we get

Corollary 7. Let the function f(z) defined by (1.6) be in the class R∗
n(α)

and let the function F (z) be defined by

F (z) =
∫ z

0

f(t)
t

dt. (8.5)

Then F (z) ∈ R∗
n+1(α).

Theorem 15. Let the function F (z) = z −
∞∑

k=2

akzk (ak ≥ 0) be in the class

R∗
n(α), and let c be a real number such that c > −1. Then the function f(z) defined

by (8.1) is univalent in |z| < r∗, where

r∗ = inf
k

[
(c + 1)(k − α)δ(n, k)

k(c + k)(1− α)

] 1
k−1

, (k ≥ 2). (8.6)

The result is sharp.

Proof. From (8.1), we have

f(z) =
z1−c(zcF (z))′

c + 1
(c > −1) = z −

∞∑
k=2

(
c + k

c + 1

)
akzk. (8.7)
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In order to obtain the required result it suffices to show that

|f ′(z)− 1| < 1 in |z| < r∗.

Now

|f ′(z)− 1| ≤
∞∑

k=2

k(c + k)
c + 1

ak|z|k−1.

Thus |f ′(z)− 1| < 1, if
∞∑

k=2

k(c + k)
c + 1

ak|z|k−1 < 1. (8.8)

But Theorem 1 confirms that
∞∑

k=2

(k − α)δ(n, k)
1− α

ak ≤ 1. (8.9)

Hence (8.8) will be satisfied if

k(c + k)|z|k−1

c + 1
<

(k − α)δ(n, k)
1− α

(k ≥ 2)

or if

|z| <
[
(c + 1)(k − α)δ(n, k)

k(c + k)(1− α)

] 1
k−1

(k ≥ 2). (8.10)

Therefore f(z) is univalent in |z| < r∗. Sharpness follows if we take

f(z) = z − (1− α)(c + k)
(k − α)δ(n, k)(c + 1)

zk (k ≥ 2). (8.11)

Acknowledgements. The author wishes to thank Prof. Dr. M.K. Aouf for

his kind encouragement and help in the preparation of this paper.

References

[1] O.P. Ahuja, On the radius problems of certain analytic functions, Bull. Korean Math.
Soc. 22(1985), no.1, 31-36.

[2] O.P. Ahuja, Integral operator of certain univalent functions, Internat. J. Math. Sci.
8(1985), no.4, 653-662.

[3] H.S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 38(1980), 87-94.
[4] S. Owa, On new classes of univalent functions with negative coefficients, Bull. Korean

Math. Soc. 22(1985), no.1, 43-52.
[5] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975),

109-115.
[6] A. Schild and H. Silverman, Convolution of univalent functions with negative coeffi-

cients, Ann. Univ. Mariae Curie-Sklodowska, Sect.A, 29(1975), 99-107.
[7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc.

51(1975), 109-116.

Department of Mathematics, Faculty of Science, University of
Mansoura, Mansoura, Egypt

E-mail address: sinfac@mum.mans.eun.eg

56


