GENERALIZATION OF CERTAIN CLASSES OF UNIVALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

H. M. HOSSEN

Dedicated to Professor Petru T. Mocanu on his $70^{\text {th }}$ birthday

Abstract

The object of the present paper is to obtain coefficient estimates, some properties, distortion theorem and closure theorems for the classes $R_{n}^{*}(\alpha)$ of analytic and univalent functions with negative coefficients, defined by using the n-th order Ruscheweyh derivative. We also obtain several interesting results for the modified Hadamard product of functions belonging to the classes $R_{n}^{*}(\alpha)$. Further, we obtain radii of close-to-convexity starlikeness and convexity and integral operators for the classes $R_{n}^{*}(\alpha)$.

1. Introduction

Let A denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. We denote by S the subclass of univalent functions $f(z)$ in A. The Hadamard product of two functions $f(z) \in A$ and $g(z) \in A$ will be denoted by $f * g(z)$, that is, if $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
f * g(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} . \tag{1.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!} \tag{1.4}
\end{equation*}
$$

1991 Mathematics Subject Classification. 30C45
Key words and phrases. analytic, univalent, Ruscheweyh derivative, modified Hadamard product.
for $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$ and $z \in U$, where $\mathbb{N}=\{1,2,3, \ldots\}$. This symbol $D^{n} f(z)$ was named the n-th order Ruscheweyh derivative of $f(z)$ by Al-Amiri [3]. We note that $D^{0} f(z)=f(z)$ and $D^{1} f(z)=z f^{\prime}(z)$. By using the Hadamard product, Ruscheweyh [5] observed that if

$$
\begin{equation*}
D^{\beta} f(z)=\frac{z}{(1-z)^{\beta+1}} * f(z) \quad(\beta \geq-1) \tag{1.5}
\end{equation*}
$$

then (1.4) is equivalent to (1.5) when $\beta=n \in \mathbb{N}_{0}$.
It is easy to see that

$$
\begin{equation*}
D^{n} f(z)=k+\sum_{k=2}^{\infty} \delta(n, k) a_{k} z^{k} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta(n, k)=\binom{n+k-1}{n} \tag{1.7}
\end{equation*}
$$

Note that

$$
\begin{equation*}
z\left(D^{n} f(z)\right)^{\prime}=(n+1) D^{n+1} f(z)-n D^{n} f(z) \quad(c f .[5]) \tag{1.8}
\end{equation*}
$$

Let $R_{n}(\alpha)$ denote the classes of functions $f(z) \in A$ which satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right\}>\alpha, \quad(z \in U) \tag{1.9}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$ and $n \in \mathbb{N}_{0}$. The class $R_{n}(\alpha)$ was studied by Ahuja $[1,2]$.
From (1.8) and (1.9) it follows that a function $f(z)$ in A belongs to $R_{n}(\alpha)$ is and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}>\frac{n+\alpha}{n+1} \quad(z \in U) \tag{1.10}
\end{equation*}
$$

Let T denote the subclass of S consisting of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{k} \geq 0\right) \tag{1.11}
\end{equation*}
$$

In the present paper we introduce the following classes $R_{n}^{*}(\alpha)$ by using the n-th order Ruscheweyh derivative of $f(z)$, defined as follows:

Definition. We say that $f(z)$ is in the class $R_{n}^{*}(\alpha)\left(0 \leq \alpha<1, n \in \mathbb{N}_{0}\right)$, if $f(z)$ defined by (1.11) satisfies the condition (1.10).

We note that $R_{n}^{*}(0)=R_{n}^{*}$ was studied by Owa [4] and $R_{0}^{*}(\alpha)=T^{*}(\alpha)$ (the class of starlike functions of order α) and $R_{1}^{*}(\alpha)=C(\alpha)$ (the class of convex functions
of order α), were studied by Silverman [7]. Hence $R_{n}^{*}(\alpha)$ is a subclass of $T^{*}(\alpha) \subset S$. Further, we can show that $R_{n+1}^{*}(\alpha) \subset R_{n}^{*}(\alpha)$ for every $n \in \mathbb{N}_{0}$.

2. Coefficient Estimates

Theorem 1. Let the function $f(z)$ be defined by (1.11). Then $f(z)$ is in the class $R_{n}^{*}(\alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k) a_{k} \leq 1-\alpha \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Assume that the inequality (2.1) holds and let $|z|=1$. Then we get

$$
\begin{aligned}
& \left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-1\right|=\left|\frac{-\sum_{k=2}^{\infty}(\delta(n+1, k)-\delta(n, k)) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} \delta(n, k) a_{k} z^{k-1}}\right| \leq \\
\leq & \frac{\sum_{k=2}^{\infty}\left(\frac{k-1}{n+1}\right) \delta(n, k) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty} \delta(n, k) a_{k}|z|^{k-1}} \leq \frac{\sum_{k=2}^{\infty}\left(\frac{k-1}{n+1}\right) \delta(n, k) a_{k}}{1-\sum_{k=2}^{\infty} \delta(n, k) a_{k}} \leq \frac{1-\alpha}{n+1}
\end{aligned}
$$

This shows that the values of $\frac{D^{n+1} f(z)}{D^{n} f(z)}$ lies in a circle centered at $w=1$ whose radius is $\frac{1-\alpha}{n+1}$. Hence $f(z)$ satisfies the condition (1.10) hence further, $f(z) \in$ $R_{n}^{*}(\alpha)$.

For the converse, assume that the function $f(z)$ defined by (1.11) belongs to the class $R_{n}^{*}(\alpha)$. Then we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}=\operatorname{Re}\left\{\frac{1-\sum_{k=2}^{\infty} \delta(n+1, k) a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty} \delta(n, k) a_{k} z^{k-1}}\right\}>\frac{n+\alpha}{n+1} \tag{2.2}
\end{equation*}
$$

for $0 \leq \alpha<1$ and $z \in U$. Choose values of z on the real axis so that $\frac{D^{n+1} f(z)}{D^{n} f(z)}$ is real. Upon clearing the denominator in (2.2) and letting $z \rightarrow 1^{-}$through real values, we get

$$
\begin{equation*}
(n+1)\left(1-\sum_{k=2}^{\infty} \delta(n+1, k) a_{k}\right) \geq(n+\alpha)\left(1-\sum_{k=2}^{\infty} \delta(n, k) a_{k}\right) \tag{2.3}
\end{equation*}
$$

which gives (2.1). Finally the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{(k-\alpha) \delta(n, k)} z^{k} \quad(k \geq 2) \tag{2.4}
\end{equation*}
$$

is an extremal function for the theorem.
Corollary 1. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}(\alpha)$. Then

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{(k-\alpha) \delta(n, k)} \quad(k \geq 2) \tag{2.5}
\end{equation*}
$$

The equality in (2.5) is attained for the function $f(z)$ given by (2.4).
3. Some properties of the class $R_{n}^{*}(\alpha)$

Theorem 2. Let $0 \leq \alpha_{1} \leq \alpha_{2}<1$ and $n \in \mathbb{N}_{0}$. Then we have

$$
\begin{equation*}
R_{n}^{*}\left(\alpha_{1}\right) \supseteq R_{n}^{*}\left(\alpha_{2}\right) \tag{3.1}
\end{equation*}
$$

Proof. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}\left(\alpha_{2}\right)$ and $\alpha_{1}=\alpha_{2}-\varepsilon$. Then, by Theorem 1, we have

$$
\sum_{k=2}^{\infty}\left(k-\alpha_{2}\right) \delta(n, k) a_{k} \leq 1-\alpha_{2}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty} \delta(n, k) a_{k} \leq \frac{1-\alpha_{2}}{2-\alpha_{2}}<1 \tag{3.2}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(k-\alpha_{1}\right) \delta(n, k) a_{k}=\sum_{k=2}^{\infty}\left(k-\alpha_{2}\right) \delta(n, k) a_{k}+\varepsilon \sum_{k=2}^{\infty} \delta(n, k) a_{k} \leq 1-\alpha_{1} \tag{3.3}
\end{equation*}
$$

This completes the proof of Theorem 2 with the aid of Theorem 1.
Theorem 3. $R_{n+1}^{*}(\alpha) \subseteq R_{n}^{*}(\alpha)$ for $0 \leq \alpha<1$ and $n \in \mathbb{N}_{0}$.
Proof. Let the function $f(z)$ defined by (1.11) be in the class $R_{n+1}^{*}(\alpha)$; then

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha) \delta(n+1, k) a_{k} \leq 1-\alpha \tag{3.4}
\end{equation*}
$$

and since

$$
\begin{equation*}
\delta(n, k) \leq \delta(n+1, k) \text { for } k \geq 2 \tag{3.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k) a_{k} \leq \sum_{k=2}^{\infty}(k-\alpha) \delta(n+1, k) a_{k} \leq 1-\alpha \tag{3.6}
\end{equation*}
$$

The result follows from Theorem 1.

4. Distortion theorem

Theorem 4. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}(\alpha)$. Then we have for $|z|=r<1$

$$
\begin{equation*}
r-\frac{1-\alpha}{(2-\alpha)(n+1)} r^{2} \leq|f(z)| \leq r+\frac{1-\alpha}{(2-\alpha)(n+1)} r^{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\frac{2(1-\alpha)}{(2-\alpha)(n+1)} r \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\alpha)}{(2-\alpha)(n+1)} r . \tag{4.2}
\end{equation*}
$$

The result is sharp.
Proof. In view of Theorem 1, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \leq \frac{1-\alpha}{(2-\alpha)(n+1)} \tag{4.3}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
|f(z)| \geq r-r^{2} \sum_{k=2}^{\infty} a_{k} \geq r-\frac{1-\alpha}{(2-\alpha)(n+1)} r^{2} \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq r+r^{2} \sum_{k=2}^{\infty} a_{k} \leq r+\frac{1-\alpha}{(2-\alpha)(n+1)} r^{2} \tag{4.5}
\end{equation*}
$$

which prove the assertion (4.1).
From (4.3) and Theorem 1, it follows also that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k a_{k} \leq \frac{1-\alpha}{n+1}+\alpha \sum_{k=2}^{\infty} a_{k} \leq \frac{2(1-\alpha)}{(2-\alpha)(n+1)} \tag{4.6}
\end{equation*}
$$

Consequently, we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq 1-r \sum_{k=2}^{\infty} k a_{k} \geq 1-\frac{2(1-\alpha)}{(2-\alpha)(n+1)} r \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq 1+r \sum_{k=2}^{\infty} k a_{k} \leq 1+\frac{2(1-\alpha)}{(2-\alpha)(n+1)} r \tag{4.8}
\end{equation*}
$$

which prove the assertion (4.2). This completes the proof of Theorem 4.

The bounds in (4.1) and (4.2) are attained for the function $f(z)$ given by

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{(2-\alpha)(n+1)} z^{2} \quad(z= \pm r) \tag{4.9}
\end{equation*}
$$

Corollary 2. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}(\alpha)$. Then the unit disc U is mapped onto a domain that contains the disc

$$
\begin{equation*}
|w|<\frac{(2-\alpha)(n+1)-(1-\alpha)}{(2-\alpha)(n+1)} \tag{4.10}
\end{equation*}
$$

The result is sharp with extremal function $f(z)$ given by (4.9).

5. Closure theorems

Let the functions $f_{i}(z)$ be defined, for $i=1,2, \ldots, m$, by

$$
\begin{equation*}
f_{i}(z)=z-\sum_{k=2}^{\infty} a_{k, i} z^{k} \quad\left(a_{k, i} \geq 0, k \geq 2\right) \tag{5.1}
\end{equation*}
$$

for $z \in U$.
We shall prove the following results for the closure of functions in the classes $R_{n}^{*}(\alpha)$.

Theorem 5. Let the functions $f_{i}(z)$ defined by (5.1) be in the class $R_{n}^{*}(\alpha)$ for every $i=1,2, \ldots, m$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\sum_{i=1}^{m} c_{i} f_{i}(z) \quad\left(c_{i} \geq 0\right) \tag{5.2}
\end{equation*}
$$

is also in the class $R_{n}^{*}(\alpha)$, where

$$
\begin{equation*}
\sum_{i=1}^{m} c_{i}=1 \tag{5.3}
\end{equation*}
$$

Proof. According to the definition of $h(z)$, we can write

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left(\sum_{i=1}^{m} c_{i} a_{k, i}\right) z^{k} . \tag{5.4}
\end{equation*}
$$

Further, since $f_{i}(z)$ are in $R_{n}^{*}(\alpha)$ for every $i=1,2, \ldots, m$, we get

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k) a_{k, i} \leq 1-\alpha \tag{5.5}
\end{equation*}
$$

for every $i=1,2, \ldots, m$. Hence we can see that

$$
\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k)\left(\sum_{i=1}^{m} c_{i} a_{k, i}\right)=\sum_{i=1}^{m} c_{i}\left(\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k) a_{k, i}\right) \leq
$$

$$
\begin{equation*}
=\left(\sum_{i=1}^{m} c_{i}\right)(1-\alpha) \leq 1-\alpha \tag{5.6}
\end{equation*}
$$

with the aid of (5.5). This proves that the function $h(z)$ is in the class $R_{n}^{*}(\alpha)$ by means of Theorem 1. Thus we have the theorem.

Theorem 6. The class $R_{n}^{*}(\alpha)$ is closed under convex linear combinations.
Proof. Let the functions $f_{i}(z)(i=1,2)$ defined by (5.1) be in the class $R_{n}^{*}(\alpha)$. Then it is sufficient to prove that the function

$$
\begin{equation*}
h(z)=\lambda f_{1}(z)+(1-\lambda) f_{2}(z) \quad(0 \leq \lambda \leq 1) \tag{5.7}
\end{equation*}
$$

is in the class $R_{n}^{*}(\alpha)$. Since, for $0 \leq \lambda \leq 1$,

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left\{\lambda a_{k, 1}+(1-\lambda) a_{k, 2}\right\} z^{k} \tag{5.8}
\end{equation*}
$$

we readily have

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k)\left\{\lambda a_{k, 1}+(1-\lambda) a_{k, 2}\right\} \leq 1-\alpha \tag{5.9}
\end{equation*}
$$

by means of Theorem 1, which implies that $h(z) \in R_{n}^{*}(\alpha)$.
Theorem 7. Let

$$
\begin{equation*}
f_{1}(z)=z \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}(z)=z-\frac{1-\alpha}{(k-\alpha) \delta(n, k)} z^{k} \quad(k \geq 2) \tag{5.11}
\end{equation*}
$$

for $0 \leq \alpha<1$ and $n \in \mathbb{N}_{0}$. Then $f(z)$ is in the class $R_{n}^{*}(\alpha)$ if and only if can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z) \tag{5.12}
\end{equation*}
$$

where $\lambda_{k} \geq 0$ and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \lambda_{k}=1 \tag{5.13}
\end{equation*}
$$

Proof. Assume that

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)=z-\sum_{k=2}^{\infty} \frac{1-\alpha}{(k-\alpha) \delta(n, k)} \lambda_{k} z^{k} . \tag{5.14}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta(n, k)}{1-\alpha} \cdot \frac{1-\alpha}{(k-\alpha) \delta(n, k)} \lambda_{k}=\sum_{k=2}^{\infty} \lambda_{k}=1-\lambda_{1} \leq 1 \tag{5.15}
\end{equation*}
$$

So by Theorem $1, f(z) \in R_{n}^{*}(\alpha)$.
Conversely, assume that the function $f(z)$ defined by (1.11) belongs to the class $R_{n}^{*}(\alpha)$. Again, with the aid of Theorem 1, we get

$$
\begin{equation*}
a_{k} \leq \frac{1-\alpha}{(k-\alpha) \delta(n, k)} \quad(k \geq 2) \tag{5.16}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\lambda_{k}=\frac{(k-\alpha) \delta(n, k)}{1-\alpha} a_{k} \quad(k \geq 2) \tag{5.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}=1-\sum_{k=2}^{\infty} \lambda_{k} \tag{5.18}
\end{equation*}
$$

Hence, we can see that $f(z)$ can be expressed in the form (5.12). This completes the proof of Theorem 7.

Corollary 3. The extreme points of the class $R_{n}^{*}(\alpha)$ are the functions $f_{1}(z)$ and $f_{k}(z)(k \geq 2)$ given by Theorem 7.

6. Modified Hadamard product

Let the functions $f_{i}(z)(i=1,2)$ be defined (5.1). The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
f_{1} * f_{2}(z)=z-\sum_{k=2}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{6.1}
\end{equation*}
$$

Theorem 8. Let the functions $f_{i}(z)(i=1,2)$ defined by (5.1) be in the class $R_{n}^{*}(\alpha)$. Then $f_{1} * f_{2}(z) \in R_{n}^{*}(\beta(n, \alpha))$, where

$$
\begin{equation*}
\beta(n, \alpha)=\frac{(n+1)-2\left(\frac{1-\alpha}{2-\alpha}\right)^{2}}{(n+1)-\left(\frac{1-\alpha}{2-\alpha}\right)^{2}} \tag{6.2}
\end{equation*}
$$

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [4], we need to find the largest $\beta=\beta(n, \alpha)$ such that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\beta) \delta(n, k)}{1-\beta} a_{k, 1} a_{k, 2} \leq 1 \tag{6.3}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta(n, k)}{1-\alpha} a_{k, 1} \leq 1 \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta(n, k)}{1-\alpha} a_{k, 2} \leq 1 \tag{6.5}
\end{equation*}
$$

by the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta(n, k)}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 \tag{6.6}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{(k-\beta) \delta(n, k)}{1-\beta} a_{k, 1} a_{k, 2} \leq \frac{(k-\alpha) \delta(n, k)}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}} \quad(k \geq 2), \tag{6.7}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{(k-\alpha)(1-\beta)}{(k-\beta)(1-\alpha)} \quad(k \geq 2) . \tag{6.8}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{1-\alpha}{(k-\alpha) \delta(n, k)} \quad(k \geq 2) . \tag{6.9}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{1-\alpha}{(k-\alpha) \delta(n, k)} \leq \frac{(k-\alpha)(1-\beta)}{(k-\beta)(1-\alpha)} \quad(k \geq 2) \tag{6.10}
\end{equation*}
$$

or, equivalently, that

$$
\begin{equation*}
\beta \leq \frac{\delta(n, k)-k\left(\frac{1-\alpha}{k-\alpha}\right)^{2}}{\delta(n, k)-\left(\frac{1-\alpha}{k-\alpha}\right)^{2}} \quad(k \geq 2) \tag{6.11}
\end{equation*}
$$

Since

$$
\begin{equation*}
A(k)=\frac{\delta(n, k)-k\left(\frac{1-\alpha}{k-\alpha}\right)^{2}}{\delta(n, k)-\left(\frac{1-\alpha}{k-\alpha}\right)^{2}} \tag{6.12}
\end{equation*}
$$

is an increasing function of $k(k \geq 2)$, letting $k=2$ in (6.12), we obtain

$$
\begin{equation*}
\beta \leq A(2)=\frac{(n+1)-2\left(\frac{1-\alpha}{2-\alpha}\right)^{2}}{(n+1)-\left(\frac{1-\alpha}{2-\alpha}\right)^{2}} \tag{6.13}
\end{equation*}
$$

which completes the proof of the theorem. Finally, by taking the functions $f_{i}(z)$ given by

$$
\begin{equation*}
f_{i}(z)=z-\frac{1-\alpha}{(2-\alpha)(n+1)} z^{2} \quad(i=1,2) \tag{6.14}
\end{equation*}
$$

we can see that the result is sharp.
Corollary 4. For $f_{1}(z)$ and $f_{2}(z)$ as in Theorem 8, we have

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty} \sqrt{a_{k, 1} a_{k, 2}} z^{k} \tag{6.15}
\end{equation*}
$$

belongs to the class $R_{n}^{*}(\alpha)$.
The result follows from the inequality (6.6). It is sharp for the same functions $f_{i}(z)(i=1,2)$ as in Theorem 8.

Theorem 9. Let $f_{1}(z) \in R_{n}^{*}(\alpha)$ and $f_{2}(z) \in R_{n}^{*}(\beta)$, then $f_{1} * f_{2}(z) \in$ $R_{n}^{*}(\gamma(n, \alpha, \beta))$, where

$$
\begin{equation*}
\gamma(n, \alpha, \beta)=\frac{(n+1)-2\left(\frac{1-\alpha}{2-\alpha}\right)\left(\frac{1-\beta}{2-\beta}\right)}{(n+1)-\left(\frac{1-\alpha}{2-\alpha}\right)\left(\frac{1-\beta}{2-\beta}\right)} \tag{6.16}
\end{equation*}
$$

The result is sharp for the functions

$$
\begin{equation*}
f_{1}(z)=z-\frac{1-\alpha}{(2-\alpha)(n+1)} z^{2} \tag{6.17}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{2}(z)=z-\frac{1-\beta}{(2-\beta)(n+1)} z^{2} \tag{6.18}
\end{equation*}
$$

Proof. Proceeding as in the proof of Theorem 8, we get

$$
\begin{equation*}
\gamma \leq B(k)=\frac{\delta(n, k)-k\left(\frac{1-\alpha}{k-\alpha}\right)\left(\frac{1-\beta}{k-\beta}\right)}{\delta(n, k)-\left(\frac{1-\alpha}{k-\alpha}\right)\left(\frac{1-\beta}{k-\beta}\right)} \tag{6.19}
\end{equation*}
$$

Since the function $B(k)$ is an increasing function of $k(k \geq 2)$, setting $k=2$ in (6.19), we obtain

$$
\begin{equation*}
\gamma \leq B(2)=\frac{(n+1)-2\left(\frac{1-\alpha}{2-\alpha}\right)\left(\frac{1-\beta}{2-\beta}\right)}{(n+1)-\left(\frac{1-\alpha}{2-\alpha}\right)\left(\frac{1-\beta}{2-\beta}\right)} \tag{6.20}
\end{equation*}
$$

This completes the proof of Theorem 9.
Corollary 5. Let the functions $f_{i}(z)(i=1,2,3)$ defined by (5.1) be in the class $R_{n}^{*}(\alpha)$, then $f_{1} * f_{2} * f_{3}(z) \in R_{n}^{*}(\zeta(n, \alpha))$, where

$$
\begin{equation*}
\zeta(n, \alpha)=\frac{(n+1)^{2}-2\left(\frac{1-\alpha}{2-\alpha}\right)^{3}}{(n+1)^{2}-\left(\frac{1-\alpha}{2-\alpha}\right)^{3}} . \tag{6.21}
\end{equation*}
$$

The result is best possible for the functions

$$
\begin{equation*}
f_{i}(z)=z-\frac{1-\alpha}{(2-\alpha)(n+1)} z^{2} \quad(i=1,2,3) \tag{6.22}
\end{equation*}
$$

Proof. From Theorem 8, we have $f_{1} * f_{2}(z) \in R_{n}^{*}(\beta)$, where β is given by (6.2). We use now Theorem 9 , we get $f_{1} * f_{2} * f_{3}(z) \in R_{n}^{*}(\zeta(n, \alpha))$, where

$$
\zeta(n, \alpha)=\frac{(n+1)-2\left(\frac{1-\alpha}{2-\alpha}\right)\left(\frac{1-\beta}{2-\beta}\right)}{(n+1)-\left(\frac{1-\alpha}{2-\alpha}\right)\left(\frac{1-\beta}{2-\beta}\right)}=\frac{(n+1)^{2}-2\left(\frac{1-\alpha}{2-\alpha}\right)^{3}}{(n+1)^{2}-\left(\frac{1-\alpha}{2-\alpha}\right)^{3}} .
$$

This completes the proof of Corollary 5.
Theorem 10. Let the functions $f_{i}(z)(i=1,2)$ defined by (5.1) be in the class $R_{n}^{*}(\alpha)$. Then the function

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{6.23}
\end{equation*}
$$

belongs to the class $R_{n}^{*}(\varphi(n, \alpha))$, where

$$
\begin{equation*}
\varphi(n, \alpha)=\frac{(n+1)-\left(\frac{2(1-\alpha)}{2-\alpha}\right)^{2}}{(n+1)-2\left(\frac{1-\alpha}{2-\alpha}\right)^{2}} . \tag{6.24}
\end{equation*}
$$

The result is sharp for the functions $f_{i}(z)(i=1,2)$ defined by (6.14).

Proof. By virtue of Theorem 1, we obtain

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\frac{(k-\alpha) \delta(n, k)}{1-\alpha}\right]^{2} a_{k, 1}^{2} \leq\left[\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta(n, k)}{1-\alpha} a_{k, 1}\right]^{2} \leq 1 \tag{6.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left[\frac{(k-\alpha) \delta(n, k)}{1-\alpha}\right]^{2} a_{k, 2}^{2} \leq\left[\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta(n, k)}{1-\alpha} a_{k, 2}\right]^{2} \leq 1 \tag{6.26}
\end{equation*}
$$

It follows from (6.25) and (6.26) that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{1}{2}\left[\frac{(k-\alpha) \delta(n, k)}{1-\alpha}\right]^{2}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1 \tag{6.27}
\end{equation*}
$$

Therefore, we need to find the largest $\varphi=\varphi(n, \alpha)$ such that

$$
\begin{equation*}
\frac{(k-\varphi) \delta(n, k)}{1-\varphi} \leq \frac{1}{2}\left[\frac{(k-\alpha) \delta(n, k)}{1-\alpha}\right]^{2} \quad(k \geq 2) \tag{6.28}
\end{equation*}
$$

that is

$$
\begin{equation*}
\varphi \leq \frac{\delta(n, k)-2 k\left(\frac{1-\alpha}{k-\alpha}\right)^{2}}{\delta(n, k)-2\left(\frac{1-\alpha}{k-\alpha}\right)^{2}} \quad(k \geq 2) \tag{6.29}
\end{equation*}
$$

Since

$$
\begin{equation*}
D(k)=\frac{\delta(n, k)-2 k\left(\frac{1-\alpha}{k-\alpha}\right)^{2}}{\delta(n, k)-2\left(\frac{1-\alpha}{k-\alpha}\right)^{2}} \tag{6.30}
\end{equation*}
$$

is an increasing function of $k(k \geq 2)$, we readily have

$$
\begin{equation*}
\varphi \leq D(2)=\frac{(n+1)-\left(\frac{2(1-\alpha)}{2-\alpha}\right)^{2}}{(n+1)-2\left(\frac{1-\alpha}{2-\alpha}\right)^{2}} \tag{6.31}
\end{equation*}
$$

and Theorem 10 follows at once.
Theorem 11. Let $f_{1}(z) \in R_{n_{1}}^{*}(\alpha)$, and $f_{2}(z) \in R_{n_{2}}^{*}(\alpha)$. Then the modified Hadamard product $f_{1} * f_{2}(z) \in R_{n_{1}}^{*}(\alpha) \cap R_{n_{2}}^{*}(\alpha)$.

Proof. Since $f_{2}(z) \in R_{n_{2}}^{*}(\alpha)$, we have from (4.3) that

$$
\begin{equation*}
a_{k, 2} \leq \frac{1-\alpha}{(2-\alpha)\left(n_{2}+1\right)} \tag{6.32}
\end{equation*}
$$

From Theorem 1 , since $f_{1}(z) \in R_{n_{1}}^{*}(\alpha)$, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta\left(n_{1}, k\right)}{1-\alpha} a_{k, 1} \leq 1 \tag{6.33}
\end{equation*}
$$

Now, from (6.32) and (6.33), we have

$$
\begin{gathered}
\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta\left(n_{1}, k\right)}{1-\alpha} a_{k, 1} a_{k, 2} \leq \frac{1-\alpha}{(2-\alpha)\left(n_{2}+1\right)} \sum_{k=2}^{\infty} \frac{(k-\alpha) \delta\left(n_{1}, k\right)}{1-\alpha} a_{k, 1} \leq \\
\leq \frac{1-\alpha}{(2-\alpha)\left(n_{2}+1\right)} \leq 1
\end{gathered}
$$

Hence $f_{1} * f_{2}(z) \in R_{n_{1}}^{*}(\alpha)$. Interchanging n_{1} and n_{2} by each other in the above, we get $f_{1} * f_{2}(z) \in R_{n_{2}}^{*}(\alpha)$. Hence the theorem.

7. Radii of close-to-convexity, starlikeness and convexity

Theorem 12. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}(\alpha)$, then $f(z)$ is close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}(n, \alpha, \rho)$, where

$$
\begin{equation*}
r_{1}(n, \alpha, \rho)=\inf _{k}\left[\frac{(1-\rho)(k-\alpha) \delta(n, k)}{k(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.1}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.4).
Proof. We must show that $\left|f^{\prime}(z)-1\right| \leq 1-\rho$ for $|z|<r_{1}(n, \alpha, \rho)$. We have

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right| \leq 1-\rho$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 \tag{7.2}
\end{equation*}
$$

Hence, by Theorem 1, (7.2) will be true if

$$
\frac{k|z|^{k-1}}{1-\rho} \leq \frac{(k-\alpha) \delta(n, k)}{1-\alpha}
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho)(k-\alpha) \delta(n, k)}{k(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{7.3}
\end{equation*}
$$

The theorem follows easily from (7.3).
Theorem 13. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}(\alpha)$, then $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}(n, \alpha, \rho)$, where

$$
\begin{equation*}
r_{2}(n, \alpha, \rho)=\inf _{k}\left[\frac{(1-\rho)(k-\alpha) \delta(n, k)}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.4}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.4).

Proof. It is sufficient to show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho$ for $|z|<r_{2}(n, \alpha, \rho)$. We have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=2}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty} a_{k}|z|^{k-1}}
$$

Thus $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\rho) a_{k}|z|^{k-1}}{1-\rho} \leq 1 \tag{7.5}
\end{equation*}
$$

Hence, by Theorem 1, (7.5) will be true if

$$
\frac{(k-\rho)|z|^{k-1}}{1-\rho} \leq \frac{(k-\alpha) \delta(n, k)}{1-\alpha}
$$

or if

$$
\begin{equation*}
|z| \leq\left[\frac{(1-\rho)(k-\alpha) \delta(n, k)}{(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.6}
\end{equation*}
$$

The theorem follows easily from (7.6).
Corollary 6. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}(\alpha)$, then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}(n, \alpha, \rho)$, where

$$
\begin{equation*}
r_{3}(n, \alpha, \rho)=\inf _{k}\left[\frac{(1-\rho)(k-\alpha) \delta(n, k)}{k(k-\rho)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.7}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (2.4).

8. Integral operators

Theorem 14. Let the function $f(z)$ defined by (1.11) be in the class $R_{n}^{*}(\alpha)$ and let the function $F(z)$ be defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{8.1}
\end{equation*}
$$

Then
(i) for every $c, c>-1, F(z) \in R_{n}^{*}(\alpha)$
and
(ii) for every $c,-1<c \leq n, F(z) \in R_{n+1}^{*}(\alpha)$.

Proof. (i) From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k} \tag{8.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=\left(\frac{c+1}{c+k}\right) a_{k} . \tag{8.3}
\end{equation*}
$$

Therefore,

$$
\begin{gathered}
\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k) b_{k}=\sum_{k=2}^{\infty}(k-\alpha) \delta(n, k)\left(\frac{c+1}{c+k}\right) a_{k} \leq \\
\leq \sum_{k=2}^{\infty}(k-\alpha) \delta(n, k) a_{k} \leq 1-\alpha
\end{gathered}
$$

since $f(z) \in R_{n}^{*}(\alpha)$. Hence, by Theorem $1, F(z) \in R_{n}^{*}(\alpha)$.
(ii) In view of Theorem 1 it is sufficient to show that

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha) \delta(n+1, k)\left(\frac{c+1}{c+k}\right) a_{k} \leq 1-\alpha . \tag{8.4}
\end{equation*}
$$

Since

$$
\delta(n, k)-\delta(n+1, k)\left(\frac{c+1}{c+k}\right) \geq 0 \text { if }-1<c \leq n(k=2,3, \ldots)
$$

the result follows from Theorem 1.
Putting $c=0$ in Theorem 14, we get
Corollary 7. Let the function $f(z)$ defined by (1.6) be in the class $R_{n}^{*}(\alpha)$ and let the function $F(z)$ be defined by

$$
\begin{equation*}
F(z)=\int_{0}^{z} \frac{f(t)}{t} d t \tag{8.5}
\end{equation*}
$$

Then $F(z) \in R_{n+1}^{*}(\alpha)$.
Theorem 15. Let the function $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$ be in the class $R_{n}^{*}(\alpha)$, and let c be a real number such that $c>-1$. Then the function $f(z)$ defined by (8.1) is univalent in $|z|<r^{*}$, where

$$
\begin{equation*}
r^{*}=\inf _{k}\left[\frac{(c+1)(k-\alpha) \delta(n, k)}{k(c+k)(1-\alpha)}\right]^{\frac{1}{k-1}}, \quad(k \geq 2) \tag{8.6}
\end{equation*}
$$

The result is sharp.
Proof. From (8.1), we have

$$
\begin{equation*}
f(z)=\frac{z^{1-c}\left(z^{c} F(z)\right)^{\prime}}{c+1} \quad(c>-1)=z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} . \tag{8.7}
\end{equation*}
$$

In order to obtain the required result it suffices to show that

$$
\left|f^{\prime}(z)-1\right|<1 \text { in }|z|<r^{*}
$$

Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$, if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}<1 \tag{8.8}
\end{equation*}
$$

But Theorem 1 confirms that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\alpha) \delta(n, k)}{1-\alpha} a_{k} \leq 1 \tag{8.9}
\end{equation*}
$$

Hence (8.8) will be satisfied if

$$
\frac{k(c+k)|z|^{k-1}}{c+1}<\frac{(k-\alpha) \delta(n, k)}{1-\alpha} \quad(k \geq 2)
$$

or if

$$
\begin{equation*}
|z|<\left[\frac{(c+1)(k-\alpha) \delta(n, k)}{k(c+k)(1-\alpha)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{8.10}
\end{equation*}
$$

Therefore $f(z)$ is univalent in $|z|<r^{*}$. Sharpness follows if we take

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)(c+k)}{(k-\alpha) \delta(n, k)(c+1)} z^{k} \quad(k \geq 2) \tag{8.11}
\end{equation*}
$$

Acknowledgements. The author wishes to thank Prof. Dr. M.K. Aouf for his kind encouragement and help in the preparation of this paper.

References

[1] O.P. Ahuja, On the radius problems of certain analytic functions, Bull. Korean Math. Soc. 22(1985), no.1, 31-36.
[2] O.P. Ahuja, Integral operator of certain univalent functions, Internat. J. Math. Sci. 8(1985), no.4, 653-662.
[3] H.S. Al-Amiri, On Ruscheweyh derivatives, Ann. Polon. Math. 38(1980), 87-94.
[4] S. Owa, On new classes of univalent functions with negative coefficients, Bull. Korean Math. Soc. 22(1985), no.1, 43-52.
[5] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49(1975), 109-115.
[6] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska, Sect.A, 29(1975), 99-107.
[7] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51(1975), 109-116.

Department of Mathematics, Faculty of Science, University of
Mansoura, Mansoura, Egypt
E-mail address: sinfac@mum.mans.eun.eg

