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1. Introduction

The study of functions of hyperbolic complex and of dual complex va-

riable was done in [11-12] and continued in the very recent papers [1-6].

In this paper we begin the study of a geometric theory for such of functions,

in the general setting of nonanalytic functions.

It is known that for the functions of usual complex variable, the geometric

theory is based on the identification of the field of usual complex numbers with the

two-dimensional Euclidean plane. But according to the Cayley-Klein scheme, there

are nine plane geometries, corresponding to all possible combinations which can be

formed for the three kinds of measures of angles and the three kinds of measure of

distances (see [13, p. 195-219], [14, p. 214-288]):

1) Elliptic geometry, Euclidean geometry, Hyperbolic geometry, based on the

same elliptic (usual) measure of angles but having three different kinds of measures

for distances, i.e. elliptic measure, parabolic measures and hyperbolic measure, re-

spectively.

The analytic model for these geometries are the usual complex numbers.

2) Co-Euclidean geometry, Galilean geometry, Co-Minkowskian geometry,

based on the same parabolic measure of angles but having the three different kinds

of measures for distances as in the case 1, respectively.

The analytic model for these geometries are the dual complex numbers.

3) Cohyperbolic geometry, Minkowskian geometry, doubly hyperbolic geom-

etry, based on the same hyperbolic measure of angles but again having the three

different kinds of measures of distances, as above, respectively.
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The analytic model for these last three geometries are the hyperbolic complex

numbers.

A geometric theory for (analytic) functions of usual complex variable, based

on the hyperbolic geometry was done in [7].

In the next sections we will consider a few geometrical aspects for (nonan-

alytic) functions of hyperbolic complex and of dual complex variables, based on the

Minkowskian geometry and on the Galilean geometry, respectively.

Besides the fact that in this way we introduce several plane transformations

with new geometrical properties, our method permits an unitary treatment for the

geometric theories of functions of usual complex, of hyperbolic complex and of dual

complex variables.

Section 2 contains some preliminaries facts.

In the Sections 3 and 4 we introduce and study the classes of starlike, con-

vex and alpha-convex functions of hyperbolic complex and of dual complex variable,

respectively.

The methods were suggested by the classical ones in [8-10].

2. Preliminaries

First let us recall some known facts about the complex-type numbers (see

e.g. [6], [13-14]). It is known that excepting an isomorphism, three kinds of complex

numbers are important:

(i) Cq, q 6∈ R, q2 = −1, called the system of usual complex numbers,

(ii) Cq, q 6∈ R, q2 = 0, called the system of complex numbers,

(iii) Cq, q 6∈ R, q2 = +1, called the system of hyperbolic complex numbers,

where Cq = {z = x + qy; x, y ∈ R}.

For simplicity, let us denote q = i if q2 = −1, q = d if q2 = 0 and q = h is

q2 = +1.

If q = i, then Cq is a field, if q = d then Cq is a ring with the set of

divisors of zero given by Zq = {z = x + qy; x = 0, y ∈ R} and if q = h then Cq

is a ring with the zero divisors Zq = {z = x + qy;x, y ∈ R, |x| = |y|}. Obviously

Zq = {z ∈ Cq; ρq(z) = 0}, where ρq(z) is defined below, for all q ∈ {i, d, h}.
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For z = x + qy ∈ Cq, let us denote z = x − qy, (so zz = x2 − q2y2 ∈ R),

ρq(z) =
√
|zz|, for r > 0 let us denote U

(q)
r = {z ∈ Cq; ρq(z) < r}, C

(q)
r = {z ∈

Cq; ρq(z) = r}, for all q ∈ {i, d, h}.

In the Euclidean geometry, C
(i)
r is a circle of radius r and of center (0, 0), C

(d)
r

represents the straigth lines x = −r and x = +r, and C
(h)
r represents the hyperbolas

x2 − y2 = −r2, x2 − y2 = r2.

The polar coordinates and the exponentials are defined as follows. Let z =

x + qy ∈ Cq. For q = i they are well-known.

For q = d we have |z|d = x, ϕ = argd z =
y

x
, z 6∈ Zd, and z = |z|d(1 + dϕ) =

|z|dedϕ
d , where ez

d = exedy
d = ex(1 + dy).

For q = h we have ehy
h = cosh(y) + h sinh(y), ez

h = exehy
h = ex cosh y +

hex sinh y, |z|h = (sgnx)
√

x2 − y2, ϕ = argh z = arcth
y

x
, z = |z|hehϕ

h , for x2−y2 > 0,

and |z|h = (sgny)
√

y2 − x2, ϕ = arcth
x

y
, z = q|z|hehϕ

h , for y2 − x2 > 0. In the first

case z is called of first kind (1-kind) and in the other case it is called of second kind

(2-kind).

Note that Zq = {z ∈ Cq; |z|q = 0}, for all q ∈ {i, d, h}.

Let q ∈ {i, d, h} and γ : I → Cq, γ(t) = x(t) + qy(t), t ∈ I (bounded or

unbounded interval) be a differentiable path in Cq, such that γ′(t) 6∈ Zq, t ∈ I.

Then argq[γ′(t)] represents the ”Q”-angle with the positive sense of Ox-axis, of the

”Q”-tangent at the path γ in the point γ(t), where by convention, everywhere in the

paper ”Q” means the words Euclidean, Galilean and Minkowskian, for q = i, d and

h, respectively.

Let us denote Dh(f)(z) = z
∂f

∂z
− z

∂f

∂z
, Dh(f)(z) = z

∂f

∂z
+ z

∂f

∂z
, f = U +hV ,

z = x + hy, where (see [7])

∂f

∂z
=

1
2

[
∂U

∂x
+

∂V

∂y

]
+

h

2

[
∂V

∂x
+

∂U

∂y

]
,

∂f

∂z
=

1
2

[
∂U

∂x
− ∂V

∂y

]
+

h

2

[
∂V

∂x
− ∂U

∂y

]
,

i.e.

Dh(f)(z) = x
∂V

∂y
+ y

∂V

∂x
+ h

[
x

∂U

∂y
+ y

∂U

∂x

]
,

Dh(f)(z) = x
∂U

∂x
+ y

∂U

∂y
+ h

[
x

∂V

∂x
+ y

∂V

∂y

]
.
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It is easy to verify the following formulas

Dh(f) = −Dh(f), Dh(f) = Dh(f), Dh(Re f) = hIm [Dh(f)],

Dh[Re f ] = Re Dh(f), Dh(Im h) = hRe Dh(f), Dh[Im f ] = Im Dh(f),

∂f

∂ϕ
= hDh(f),

∂f

∂|z|h
=

1
|z|h

Dh(f), Dh(|f |h) = h|f |hIm
Dh(f)

f
,

Dh(|f |h) = |f |hRe
Dh(f)

f
, Dh(argh f) = hRe

Dh(f)
f

, Dh(argh f) = Im
Dh(f)

f
,

which immediately imply

∂|f |h
∂ϕ

= |f |hIm
Dh(f)

f
,

∂|f |h
∂|z|h

=
|f |h
|z|h

Re
Dh(f)

f
, (1)

∂ argh f

∂ϕ
= Re

Dh(f)
f

,
∂ argh f

∂|z|h
=

1
|z|h

Im
Dh(f)

f
, (2)

where in all the above formulas ϕ = argh z, |z|h 6= 0, |f(z)|h 6= 0.

Also, if h ∈ C1(R), then Dh(h(zz)) = 0 and Dh[h(argh z)] = 0.

Note that these formulas are valid for all the cases when z and f(z) are of

first or of second kind. On the other hand, in comparison with the case q = i in [8],

among the above formulas only three differ (by sign) from those in [8], namely those

which give formulas for Dh(Im f), Dh(argh f) and
∂|f |h
∂ϕ

.

3. Starlike functions

Let f : U
(q)
1 → Cq be of C1-class on U

(q)
1 , f = U +qV , where q is any between

i, d and h.

Definition 3.1. We say that f is Symmetrically Uniformly (shortly (SU)) -

”Q” starlike function on U
(q)
1 , if f is univalent on U

(q)
1 \ Zq, f(z) ∈ Zq iff z ∈ Zq and

moreover, for any fixed ρ ∈ (−1, 1) \ {0}, we have

∂

∂ argq z
(argq f(z)) > 0, for all |z|q = ρ. (3)

The univalency of f is required only on U
(q)
1 \Zq (and not on the whole U

(q)
1 ),

because the geometric condition in (3) holds only on U
(q)
1 \ Zq.
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Remarks. 1) If q = i, then we obtain the classical conditions in [8]: f is

(SU)-Euclidean starlike, if f is univalent on the whole U
(i)
1 , f(0) = 0 and

Re
Dif

f
> 0, for all z ∈ U

(i)
1 \ {0}, (4)

where Dif = z
∂f

∂z
− z

∂f

∂z
and

∂f

∂z
,

∂f

∂z
, z = x + iy, are given in [8].

¿From [8] it follows that (4) implies the starlikeness of all the sets f(U (i)
r ),

0 < r < 1, which suggested us the denomination of ”Symmetrically Uniformly” for f .

In fact it is well-known that (see e.g. [10, Theorem 3.1]) if f is analytic and

f ′(0) = 0, then f is (SU)-starlike if and only if f is starlike (in the classical sense).

Since simple calculations show that Di(f) = x
∂V

∂y
−y

∂V

∂x
+ i

(
y
∂U

∂x
− x

∂U

∂y

)
and

Re
Di(f)

f
=

1
U2 + V 2

{
x

(
U

∂V

∂y
− V

∂U

∂y

)
+ y

(
V

∂U

∂x
− U

∂V

∂x

)}
,

it follows that f generates the injective vectorial transform defined on U
(i)
1 (in fact on

the Euclidean image of U1(i)), F (x, y) = (U(x, y), V (x, y)), with U(0, 0) = V (0, 0) = 0

and satisfying

x

[
U

∂V

∂y
− V

∂U

∂y

]
+ y

[
V

∂U

∂x
− U

∂V

∂x

]
> 0, ∀ x2 + y2 ≤ 1, x 6= 0, y 6= 0 (5)

(since obviously (4) is equivalent with (5)).

2) Let q = d. First, in this case the condition ”f(z) ∈ Zd iff z ∈ Zd”,

means that ”U(x, y) = 0 iff x = 0”. For z ∈ U
(d)
1 \ Zd we have z = |z|d(1 + dϕ),

ϕ = argd z ∈ R, x = |z|d = r 6= 0, y = rϕ (r fixed in (−1, 1) \ {0}), and (3) becomes

∂

∂ϕ
(argd f) =

∂

∂ϕ

(
V

U

)
=

UV ′
ϕ − V U ′

ϕ

U2
> 0,

where V ′
ϕ =

∂V

∂x
· ∂x

∂ϕ
+

∂V

∂y
· ∂y

∂ϕ
= x

∂V

∂y
, U ′

ϕ = x
∂U

∂y
.

As an immediate conclusion it follows that a (SU)-Galilean starlike function

f generates the injective vectorial transform on U
(d)
1 \Zd, F (x, y) = (U(x, y), V (x, y)),

with U(x, y) = 0 iff x = 0 and satisfying

x

(
U

∂V

∂y
− V

∂U

∂y

)
> 0, ∀ x ∈ (−1, 1) \ {0}, y ∈ R. (6)

Note that (6) is equivalent with the inequality

x
∂

∂y

(
V

U

)
> 0, ∀ x ∈ (−1, 1) \ {0}, y ∈ R.
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3) Let q = h. The condition ”f(z) ∈ Zh iff z ∈ Zh” is equivalent with

”|U(x, y)| = |V (x, y)| iff |x| = |y|”. Let z 6∈ Zh, then argh f(z) = arcth
V

U
, for

U2 − V 2 > 0 and argh f(z) =
U

V
, for V 2 − U2 > 0. Denoting argh z = ϕ ∈ R,

|z|h = r ∈ (−1, 1) \ {0} and (3) becomes

[
arcth

(
V

U

)]′
ϕ

=

(
V

U

)′
ϕ

1−
(

V

U

)2 =
UV ′

ϕ − V U ′
ϕ

U2 − V 2
> 0, if U2 − V 2 > 0

and

[
arcth

(
U

V

)]′
ϕ

=

(
U

V

)′
ϕ

1−
(

U

V

)2 =
UV ′

ϕ − V U ′
ϕ

U2 − V 2
> 0, if V 2 − U2 > 0.

Now, taking into account that for fixed r and independent of the fact that z

is of the first or second kind, we have
∂x

∂ϕ
= y and

∂y

∂ϕ
= x, by simple calculations it

follows that a (SU)-Minkowskian starlike function f , generates the injective vectorial

transform on U
(h)
1 \ Zh, F (x, y) = (U(x, y), V (x, y)) with |U(x, y)| = |V (x, y)| iff

|x| = |y|, satisfying the differential inequality

1
U2 − V 2

{
x

[
U

∂V

∂y
− V

∂U

∂y

]
− y

[
V

∂U

∂x
− U

∂V

∂x

]}
> 0, ∀ |x2 − y2| < 1, |x| 6= |y|.

(7)

On the other hand, taking into account the relations satisfied by Dh(f)(z) in

Section 2, we easily obtain that (7) (and therefore (3)) is equivalent with

Re
Dh(f)(z)

f(z)
> 0, for all z ∈ U

(h)
1 \ Zh. (8)

4) It is immediate that by the conditions in Definition 3.1, f has in addition

the following property of univalency: if z1 6= z2, z1 ∈ Zq, z2 ∈ U
(q)
1 \ Zq, then

f(z1) 6= f(z2).

5) The differential inequalities (5), (6), (7), suggest us that each kind of

starlikeness in Definition 3.1 is completely independent in respect with the other two,

as can be seen in the following simple examples.

Note that in all these examples, U and V are of C1-class on the whole R2.

Example 1. Let U(x, y) = x, V (x, y) = x100ey. The function f(z) =

U(x, y) + dV (x, y), z = x + dy, is (SU)-Galilean starlike in U
(d)
1 , since it is univalent
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on U
(d)
1 \ Zd, U(x, y) = 0 iff x = 0, and (6) is satisfied. But even if f(z) = U(x, y) +

iV (x, y), z = x + iy, satisfies f(0) = 0, however f cannot be (SU)-Euclidean starlike,

because (5) is not satisfied in any U
(i)
r , r ∈ (0, 1], and f is not univalent on the whole

U
(i)
1 .

Also, f(z) = U(x, y) + hV (x, y), z = x + hy, cannot be (SU)-Minkowskian

starlike in U
(h)
1 , firstly because it is not satisfied the condition |U(x, y)| = |V (x, y)| iff

|x| = |y|, secondly (7) is not satisfied, and thirdly f is not univalent on U
(h)
1 \ Zh.

Example 2. Let U(x, y) = x +
1
2
(x2 − y2), V (x, y) = y − xy. By [8],

f(z) = U(x, y) + iV (x, y) = z +
1
2
z2, z = x + iy, is (SU)-Euclidean starlike in U

(i)
1 .

But f(z) = U(x, y) + dV (x, y), z = x + dy, cannot be (SU)-Galilean starlike in U
(d)
1

(for example, (6) does not hold) and f(z) = U(x, y) + hV (x, y), z = x + hy, cannot

be (SU)-Minkowskian starlike in U
(d)
1 (for example, (7) does not hold).

Example 3. Let U(x, y) = xex2
, V (x, y) = yey2

. The vectorial function

F (x, y) = (U(x, y), V (x, y)) is injective on the whole R2. Let f(z) = U(x, y) +

dV (x, y), z = x + dy. Then f is (SU)-Galilean starlike on U
(d)
1 , because U(x, y) = 0

iff x = 0, and (6) becomes

x2ex2
(1 + 2y2)ey2

> 0, for all x 6= 0, y ∈ R.

Let us denote g(t) = tet2 . Since g′(t) = et2(1+2t2) > 0, g is strictly increasing

on R, and as consequence we obtain |U(x, y)| = |V (x, y)| iff |x|e|x|2 = |y|e|y|2 iff

g(|x|) = g(|y|) iff |x| = |y|.

The function f(z) = U(x, y)+hV (x, y), z = x+hy, also is (SU)-Minkowskian

starlike on U
(h)
1 , because (7) becomes

ex2
ey2

(x2 − y2)
H(x2)−H(y2)

> 0, for all x2 − y2 6= 0,

taking into account that H(t) = te2t is strictly increasing on R+.

Now, let us denote f(z) = U(x, y) + iV (x, y), z = x + iy. We have f(0) = 0

and (5) becomes

ex2
ey2

[x2 + y2 + 4x2y2] > 0, for all x 6= 0, y 6= 0,

which means that f is (SU)-Euclidean starlike too (on U
(i)
1 ).
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Remark. Let q = d or h. We will say that a region G ⊂ Cq is (SU)-

”Q” starlike if there exists f : U
(q)
1 → Cq as in Definition 3.1, such that G = f [U (q)

1 ].

Then it would be of interest to give internal geometric characterizations (in Euclidean

language) of the (SU)-”Q” starlike regions.

In the following we will obtain some sufficient conditions for (SU)-”Q” star-

likeness. Thus, because U
(d)
1 is an usual convex domain, combining [6, Corollary 3.2]

with Definition 3.1 and relation (6), we obtain
Theorem 3.1. Let f : U

(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy, be

of C1-class. If f satisfies the conditions
(i) U(x, y) = 0 iff x = 0,

(ii) xU
∂V

∂y
> 0 on U

(d)
1 \ Zd,

(iii)
∂V

∂y
6= 0,

∂U

∂x
> 0,

∂U

∂y
= 0 on U

(d)
1 (conditions of univalency),

then f is (SU)-Galilean starlike on U
(d)
1 .

An example of f satisfying Theorem 3.1 is for U(x, y) = x, V (x, y) = (x + 1)100ey.

Note that this f is univalent on the whole U
(d)
1 .

Another example is f(z) =
z

(1 + z)2
, z = x+ dy, which can be written in the

form f = U + dV , with U(x, y) =
x

(1 + x)2
, V (x, y) =

y(1− x)
(1 + x)3

.

Now, as in the case q = i in [8], it is of interest to see how the geometric

conditions together with the local univalency (imposed by using the Jacobian) could

imply the (global) univalency, in the cases q = d and q = h too.

The ideas of proof of Theorem 1 in [8] can be summarized by two properties

which must to be checked:

f is univalent on C(q)
r , for any fixed r ∈ (0, 1), (9)

f(C(q)
r1

) ∩ f(C(q)
r2

) = ∅, for any r1, r2 ∈ (0, 1), r1 6= r2. (10)

But the case q = i is essentially different from the cases q = d and q = h,

because while for q = i, f(C(i)
r ), r ∈ (0, 1), are Jordan curves, in the cases q = d

and q = h (because of the zero divisors) they are not anymore, which will require

additional conditions on f , as can be seen in the following results.
Theorem 3.2. Let f : U

(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy, be

of C1-class. If f satisfies the conditions:
(i) |f(x)|d = 0 iff |z|d = 0,
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(ii) J(f)(z) > 0, for all z ∈ U
(d)
1 \ Zd, (here J(f)(z) denotes the Jacobian of

f),

(iii) x
∂

∂y

(
V

U

)
> 0, for all x ∈ (−1, 1) \ {0}, y ∈ R,

(iv) Denoting L−(x) = lim
y→−∞

argd f(z), L+(x) = lim
y→+∞

argd f(z),

argd f(z) =
V (x, y)
U(x, y)

, z = x + dy ∈ U
(d)
1 \ Zd (by (iii), L−(x), L+(x) exist finite or

infinite),

I(x) = (L−(x), L+(x)) if x > 0, I(x) = (L+(x), L−(x)) if x < 0,

and supposing

I(α) ∩ I(β) = ∅, for all α ∈ (0, 1), β ∈ (−1, 0),
⋂

x∈(0,1)

I(x) 6= ∅,
⋂

x∈(−1,0)

I(x) 6= ∅,

(11)

then f is (SU)-Galilean starlike on U
(d)
1 .

Proof. We have to prove that f is univalent on U
(d)
1 \ Zd. In this sense we

will show that for q = d, (9) and (10) hold.

For any r ∈ (0, 1) we have C
(d)
r = C

(d+)
r ∪ C

(d−)
r , C

(d+)
r ∩ C

(d−)
r = ∅, where

C(d+)
r = {z = x + dy; x = r}, C(d−)

r = {z = x + dy; x = −r}.

Note that C
(d+)
r ∩ Zd = ∅, C

(d−)
r ∩ Zd = ∅ and that by (i) it follows that

f(C(d+)
r ) ∩ Zd = ∅, f(C(d−)

r ) ∩ Zd = ∅.

In order to prove (9), let z1, z2 ∈ C
(d)
r , z1 6= z2. r ∈ (0, 1) be fixed. If

|z1|d = −|z2|d, then by (11) it follows argd f(z1) 6= argd f(z2), i.e. f(z1) 6= f(z2). So

let |z1|d = |z2|d. We have two possibilities:

a) |z1|d = |z2|d = r;

b) |z1|d = |z2|d = −r.

In both cases ϕ1 = argd z1 6= argd z2 = ϕ2 and by (iii) we get

∂

∂ϕ
[argd f(z)] > 0, ϕ = argd z, i.e. argd f(z1) 6= argd f(z2),

which proves (9).

Now, let r1, r2 ∈ (0, 1), r1 6= r2. We will prove that

f(C(d−)
r1

) ∩ f(C(d+)
r2

) = ∅, f(C(d+)
r1

) ∩ f(C(d−)
r2

) = ∅ (12)

and

f(C(d+)
r1

) ∩ f(C(d+)
r2

) = ∅, f(C(d−)
r1

) ∩ f(C(d−)
r2

) = ∅, (13)
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which obviously will imply (10).

Indeed, (12) is immediate by (11). Let θ ∈
⋂

x∈(0,1)

I(x) be fixed.

For any ρ ∈ (0, 1), by (9) it follows that the system

argd f(z) = θ, |z|d = ρ (14)

yields a unique point z = ρedϕ
d , ϕ = ϕ(ρ). Differentiating in respect with ρ, we obtain[

∂

∂x

(
V

U

)]
(ρ, ρϕ(ρ)) + [ρϕ(ρ)]′

[
∂

∂y

(
V

U

)]
(ρ, ρϕ(ρ)) = 0. (15)

On the other hand, for the values of z in (14), denoting R(ρ) = |f(z)|d =

U(ρ, ρϕ(ρ)), we obtain

R′(ρ) =
∂U

∂x
(ρ, ρϕ(ρ)) + (ρϕ(ρ))′

∂U

∂y
(ρ, ρϕ(ρ)). (16)

Eliminating (ρϕ(ρ))′ between (15) and (16) and taking into account (i), (ii)

and (iii), we get

R′(ρ) =
J(f)(ρ, ρϕ(ρ))[

U
∂

∂y

(
V

U

)]
(ρ, ρϕ(ρ))

6= 0, for all ρ ∈ (0, 1),

i.e. R′(ρ) keeps the same sign on (0,1), which immediately implies that f(C(d+)
r1 ) ∩

f(C(d+)
r2 ) = ∅.

Now, let θ ∈
⋂

x∈(−1,0)

I(x). For any ρ ∈ (−1, 0), reasoning as above, we obtain

that f(C(d−)
r1 ) ∩ f(C(d−)

r2 ) = ∅, which proves (13) and therefore the theorem.

Remarks. 1) From the proof we can see how the geometric condition (iii),

together with the condition of local univalency in (ii) imply the global univalency on

U
(d)
1 \ Zd. In comparison with Theorem 1 in [8], because of the zero divisors Zd in

this case appears the additional condition (11).

2) The function in the previous Example 1 satisfies Theorem 3.2. Another

example is f = U + dV , with U(x, y) = x2 and V (x, y) = xey.

Analysing the proof of Theorem 3.2, we see that the condition (11) can be

replaced by others. Thus we easily obtain
Corollary 3.1. Let f : U

(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy,

be of C1-class. If f satisfies the conditions (i), (ii), (iii) in the statement of Theorem
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3.2 and ⋂
x∈(0,1)

I(x) 6= ∅,
⋂

x∈(−1,0)

I(x) 6= ∅, |f(z1)|d 6= |f(z2)|d,

for all z1 = x1+dy1, z2 = x2+dy2 ∈ U
(d)
1 \Zd, with x1x2 < 0, then f is (SU)-Galilean

starlike on U
(d)
1 \ Zd.

Remark. The function f in Example 3 and f(z) =
z

(1 + z)2
satisfy Corollary

3.1.

For functions of hyperbolic complex variable we can prove
Theorem 3.3. Let f : U

(h)
1 → Ch, f(z) = U(x, y) + hV (x, y), z = x + hy,

be of C1-class. If f satisfies the conditions:
(i) |f(z)|h = 0 iff |z|h = 0,
(ii) J(f)(z) > 0, for all z ∈ U

(h)
1 \ Zh,

(iii) Re
Dhf(z)

f(z)
> 0, for all z ∈ U

(h)
1 \ Zh,

(iv) (x2 − y2)[U2(x, y)− V 2(x, y)] > 0, on U
(h)
1 \ Zh,

(v) if x1x2 < 0 then U(x1, y1)U(x2, y2) < 0 and if y1y2 < 0 then

V (x1, y1)V (x2, y2) < 0, on U
(h)
1 \ Zh,

(vi) Denoting

As
1(r) = arcth

[
lim

ϕ→−∞

V (sr coshϕ, sr sinhϕ)
U(sr coshϕ, sr sinhϕ)

]
,

Bs
1(r) = arcth

[
lim

ϕ→+∞

V (sr coshϕ, sr sinhϕ)
U(sr coshϕ, sr sinhϕ)

]
,

As
2(r) = arcth

[
lim

ϕ→−∞

U(sr sinhϕ, sr coshϕ)
V (sr sinhϕ, sr coshϕ)

]
,

Bs
2(r) = arcth

[
lim

ϕ→+∞

U(sr sinhϕ, sr coshϕ)
V (sr sinhϕ, sr coshϕ)

]
,

s ∈ {−1,+1}, r ∈ (0, 1), (by (iii), (iv) these numbers exist, finite or infinite and
As

p(r) < Bs
p(r), p ∈ {1, 2}, s ∈ {−1,+1}, r ∈ (0, 1)) and supposing that⋂

r∈(0,1)

(As
p(r), B

s
p(r)) 6= ∅, p ∈ {1, 2}, s ∈ {−1,+1},

then f is (SU)-Minkowskian starlike on U
(h)
1 .

Proof. We have to prove that f is univalent on U
(h)
1 \ Zh, in this sense

showing that (9) and (10) hold for q = h.

First, it is obvious that for any r ∈ (0, 1) we have

C(h)
r = C

(h+
1 )

r ∪ C
(h−1 )
r ∪ C

(h+
2 )

r ∪ C
(h−2 )
r , where for p = 1, 2
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C
(h+

p )
r = {z ∈ Ch; z if of p-kind and |z|h = r},

C
(h−p )
r = {z ∈ Ch; z if of p-kind and |z|h = −r},

the four sets being disjoint two by twos.

The univalency of f on each between the above four sets, easily follows from

(iii) (since it is equivalent with (3)).

On the other hand, by (iv) we get

f(C(h+
1 )

r ) ∩ f(C(h+
2 )

r ) = ∅, f(C(h−1 )
r ) ∩ f(C(h−2 )

r ) = ∅,

f(C(h−1 )
r ) ∩ f(C(h+

2 )
r ) = ∅, f(C(h+

1 )
r ) ∩ f(C(h−2 )

r ) = ∅,

and by (v) we get

f(C(h+
1 )

r ) ∩ f(C(h−1 )
r ) = ∅, f(C(h+

2 )
r ) ∩ f(C(h−2 )

r ) = ∅,

which immediately proves (9).

Now, let r1, r2 ∈ (0, 1), r1 6= r2. In order to prove (10), we have to check

sixteen relations of the form

f(C
(ds

p)
r1 ) ∩ f(C(dt

l)
r2 ) = ∅, (17)

with p, l ∈ {1, 2}, s, t ∈ {+,−}.

For p 6= l, (17) follows by (iv). For s 6= t, (17) follows by (v). Therefore it

remains to prove the following four relations

f(C(h+
1 )

r1 ) ∩ f(C(h+
1 )

r2 ) = ∅, f(C(h−1 )
r1 ) ∩ f(C(h−1 )

r2 ) = ∅,

f(C(h+
2 )

r1 ) ∩ f(C(h+
2 )

r2 ) = ∅, f(C(h−2 )
r1 ) ∩ f(C(h−2 )

r2 ) = ∅.
(18)

In order to obtain the first relation, let θ ∈ (A+1
1 , B+1

1 ) be fixed.

For any ρ ∈ (0, 1), by (7) we get that the system

argh f(z) = θ, z = x + hy, |z|h = ρ, (19)

yields a unique point z = ρehϕ
h , ϕ = ϕ(ρ). For this value of z let us denote R(ρ) =

|f(z)|h. We will show that R(ρ), ρ ∈ (0, 1), is strictly monotonous on (0,1), i.e.

d|f |h
d|z|h

=
dR

dρ
keeps the same sign on (0, 1), (20)

which will imply the desired conclusion.

In this sense we follow the ideas of proof in [8, Theorem 1].
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Differentiating (19) in respect with ρ and using (2), we obtain

1
ρ
Im

Dh(f)
f

+ ϕ′(ρ)Re
Dh(f)

f
= 0. (21)

Then by (1) we get

dR

dρ
= R

(
1
ρ
Re

Dh(f)
f

+ ϕ′(ρ)Im
Dh(f)

f

)
. (22)

Eliminating ϕ′(ρ) between (21) and (22) (since Re Dh(f)
f 6= 0), we obtain

dR

dρ
Re

Dh(f)
f

=
R

ρ

[
Re

Dh(f)
f

Re
Dh(f)

f
− Im

Dh(f)
f

Im
Dh(f)

f

]
=

=
R

ρ
Re

[
Dh(f)

f

(
Dh(f)

f

)]
=

R

ρ
· 1
U2 − V 2

Re [Dh(f) · Dh(f)].

Since by direct calculation Re [Dh(f) · Dh(f)] = (x2 − y2)J(f), we get the

formula

dR

dρ
Re

Dh(f)
f

=
R

ρ
· x2 − y2

U2 − V 2
J(f),

which can be written in the form

d|f(z)|h
d|z|h

Re
Dh(f)

f
=
|f(z)|h
|z|h

· x2 − y2

U2 − V 2
J(f). (23)

As conclusion, the sign of
d|f(x)|h

d|z|h
is the same with the sign of

|f(z)|h
|z|h

. But

because U
(h+

1 )
1 = {z = x + hy ∈ U

(h)
1 ; x2 − y2 > 0, x > 0} is obviously a connected

set (in R2), by the hypothesis it follows that the continuous function F : U
(h+

1 )
1 → R,

F (z) =
|f(z)|h

ρ
=
|f(z)|h
|z|h

keeps the same sign on U
(h+

1 )
1 , which proves the first relation

in (18).

Taking now θ ∈ (A−1
1 , B−1

1 ) and again considering (18) but for ρ ∈ (−1, 0),

by similar reasonings we obtain (23), which will imply that f(C(h−1 )
r1 )∩ f(C(h−1 )

r2 ) = ∅,

r1 6= r2.

Analogously we can prove the last two relations in (18), which completes the

proof.

Remarks. 1) The previous Example 3 satisfies Theorem 3.3, while f(z) =

z2z do not satisfies it, but still is starlike.
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2) By the relations coshϕ =
√

1 + sinh2 ϕ and denoting sinhϕ = t, it is easy

to see that the conditions in Theorem 3.3,(vi), can be written as

As
1(r) = arcth

[
lim

t→−∞

V (sr
√

1 + t2, srt)
U(sr

√
1 + t2, srt)

]
,

Bs
1(r) = arcth

[
lim

t→+∞

V (sr
√

1 + t2, srt)
U(sr

√
1 + t2, srt)

]
,

and similarly for As
2(r), Bs

2(r), s ∈ {−1,+1}, r ∈ (0, 1).

3) Condition (iv) in Theorem 3.3 assures that the kind of z ∈ U
(h)
1 is not

changed by f . On the other hand, it is obvious that (iv), (v), (vi) can be replaced by

other conditions.

4. Convex and alpha-convex functions

Let q be any between i, d, h, f : U
(q)
1 → Cq, f(z) = U(x, y) + qV (x, y),

z = x + qy, f of C2-class on U
(q)
1 . For any fixed r ∈ (0, 1), let us consider the

differentiable path in Cq, γq(ϕ) = f(C(q)
r ), where ϕ = argq z is variable and |z|q is

constant (|z|q = r if q = i, |z|q = ±r if q = d, h).

Then

γ′q(ϕ) =
∂U

∂x
· ∂x

∂ϕ
+

∂U

∂y
· ∂y

∂ϕ
+ q

[
∂V

∂x
· ∂x

∂ϕ
+

∂V

∂y
· ∂y

∂ϕ

]
, (24)

and argq[γ′q(ϕ)] represents the ”Q”-angle (with the positive sense of Ox-axis) of the

”Q”-tangent at the path f(C(q)
r ) in γq(ϕ).

Definition 4.1. We say that f is (SU)-”Q” convex on U
(q)
q if f is univalent

on U
(q)
1 \ Zq, γ′q(ϕ) ∈ Zq iff z ∈ Zq and moreover, for any fixed r with Ar = {z ∈

Cq; |z|q = r} ∩ (U (q)
1 \ Zq) 6= ∅, we have

∂

∂ϕ
(argq γ′q(ϕ)) > 0, for all z ∈ Ar. (25)

Remarks. 1) Let q = i. Then by (24) and by x = r cos ϕ, y = r sinϕ,

ϕ ∈ (0, 2π], we get that (25) is equivalent with the inequality
∂

∂ϕ
[argi Di(f)] > 0, and

we obtain the equivalent inequality in [8]

Re
D2

i (f)(z)
Di(f)(z)

> 0, z ∈ U
(i)
1 \ {0}.
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2) Let q = d. In this case z = x(1 + dϕ), where x = ±r, y = xϕ, ϕ ∈ R,

γ′d(ϕ) = x
∂U

∂y
+ q

[
x

∂V

∂y

]
, argd(γ

′
d(ϕ)) =

∂V

∂y
/
∂U

∂y
,

for x 6= 0, and simple calculations show that a (SU)-Galilean convex function f ,

generates the injective vectorial transform on U
(d)
1 \ Zd, F (x, y) = (U(x, y), V (x, y)),

with
∂U

∂y
(x, y) = 0 iff x = 0 and satisfying

x

(
∂U

∂y
· ∂2V

∂y2
− ∂V

∂y
· ∂2U

∂y2

)
> 0, ∀ x ∈ (−1, 1) \ {0}, y ∈ R. (26)

Obviously that (26) is equivalent with

x
∂

∂y
[(∂V/∂y)/(∂U/∂y)] > 0, x ∈ (−1, 1) \ {0}, y ∈ R.

A simple example of (SU)-Galilean convex function is f = U + dV , with

U(x, y) = xey, V (x, y) = −y. Note that f is univalent on the whole U
(d)
1 .

3) Let q = h. In this case, we obtain: z = |z|h(coshϕ+h sinhϕ) if z is of first

kind, z = |z|h(sinhϕ + h coshϕ) if z is of second kind, ϕ ∈ R, |z|h = ±r (constant),

and in both cases
∂x

∂ϕ
= y,

∂y

∂ϕ
= x.

Then by (24) we obtain

γ′h(ϕ) = x
∂U

∂y
+ y

∂U

x
+ h

(
x

∂V

∂y
+ y

∂V

∂x

)
= qDh(f)(z),

which immediately implies argh[γ′h(ϕ)] = argh[Dh(f)(z)].

Reasoning exactly as in the case of starlikeness, we can say that f is (SU)-

Minkowskian convex on U
(h)
1 , if f is univalent on U

(h)
1 \Zh, Dh(f)(z) ∈ Zh iff z ∈ Zh

and

Re
D2

h(f)(z)
Dh(f)(z)

> 0, for all z ∈ U
(h)
1 \ Zh. (27)

A simple example of (SU)-Minkowskian convex function is f(z) = z2z, z =

x + hy.

4) Let q = d or h. We will say that a region G ⊂ Cq is (SU)-”Q” convex,

if there exists f : U
(q)
1 → Cq, (SU)-”Q” convex function on U

(q)
1 such that G =

f(U (q)
1 ). An interesting question would be to find internal geometric characterization

(in Euclidean language) of the (SU)-”Q” convex regions.

By using the ideas in [9], at end we can introduce the concept of alpha-convex

functions.
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The Remarks 2 after the Definitions 3.1 and 4.1, suggest

Definition 4.2. Let f : U
(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy,

be of C2-class on U
(d)
1 and α a real number. The function f is called (SU)-Galilean

α-convex if f is univalent on U
(d)
1 \ Zd, U(x, y) = 0 iff x = 0,

∂U

∂y
(x, y) = 0 iff x = 0,

and for all x ∈ (−1, 1) \ {0}, y ∈ R, we have

(1− α)
∂[D(U, V )]

∂y
+ α

∂

[
D

(
∂U

∂y
,
∂V

∂y

)]
∂y

> 0,

where D(U, V ) = x

(
V

U

)
.

Note that f(z) = U(x, y)+dV (x, y), z = x+dy, with U(x, y) = xey, V (x, y) =

e2y is (SU)-Galilean α-convex, for any α > −1.

By the relations (8) and (27) we can introduce

Definition 4.3. Let f : U
(h)
1 → Ch, f(z) = U(x, y) + hV (x, y), z = x +

hy, be of C2-class on U
(h)
1 and α a real number. The function f is called (SU)-

Minkowskian α-convex if f is univalent on U
(h)
1 \Zh, |U(x, y)| = |V (x, y)| iff |x| = |y|,∣∣∣∣x∂V

∂y
+ y

∂V

∂x

∣∣∣∣ = ∣∣∣∣x∂U

∂y
+ y

∂U

∂x

∣∣∣∣ iff |x| = |y| and on U
(h)
1 \ Zh we have

Re
[
(1− α)

Dh(f)(z)
f(z)

+ α
D2

h(f)(z)
Dh(f)(z)

]
> 0.

Note that f(z) = z2z, z = x + hy, is (SU)-Minkowskian α-convex, for any

α ∈ R.

Remark. A deeper study of the function classes introduced in this paper

together with a corresponding theory for spirallike functions will be done in another

paper.

Also, the method in this paper can be extended to functions of hypercomplex

variables, as for example of quaternionic variable, or even in abstract Clifford algebras,

and will be done elsewhere.
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[12] J.C. Vignaux and A. Durañona Vedia, On the theory of functions of a hyperbolic com-
plex variable (in Spanish), Univ. Nac. La Plata, Publ. Fac. Ci. Fisicomat. Contrib.,
104(1935), 139-183.

[13] I.M. Yaglom, Complex Numbers in Geometry, Academic Press, New York, 1968.
[14] I.M. Yaglom, A Simple non-Euclidean Geometry and its Physical Basis, Springer-Verlag,

New York, 1979.

Department of Mathematics, University of Oradea, Str. Armatei
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