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INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS WITH
APPLICATIONS II

JÓZSEF SÁNDOR

In the first part [23] of this series on Inequalities for Generalized Convexity

we have studied the most important results and ideas of the author (and coauthors)

related to the Jensen inequality. In this part we shall study Hadamard’s (or Jensen-

Hadamard’s, or Hermite-Hadamard’s) integral inequality for convex or generalized

convex functions. This inequality was applied for the first time by Hadamard in the

study of the Riemann zeta function [4]. Many new applications in geometry, special

functions, number theory, theory of means, etc. have been published by the author

(for References, see [9-25] and Part I). We plan to publish in Part IV of these series

some of these applications (Part III will be devoted to Jessen’s inequality). As we have

stated in the first part [23], in many cases only the new results will be presented with

a proof; the other results will be stated only, with connections and/or applications

to known theorems. In the course of this survey many new results, new connections,

hints, or applications will be pointed out.

2. Hadamard’s inequality

Let f : [a, b] → R be a convex function (in the classical sense). Then

Hadamard’s inequality (or ”inequalities”) states that

(b− a)f
(

a + b

2

)
≤
∫ b

a

f(x)dx ≤ (b− a)
[
f(a) + f(b)

2

]
. (1)

This is in fact Corollary 1.1 of Theorem 1.1 from [23]. In the literature

(which is quite extensive) there exist papers where the left-side of (1) is called as

”Jensen’s inequality”, while the right-side is due to Hadamard (or vice-versa). In the

last time many papers call (1) as the Hermite-Hadamard inequality, since it seems

that Hermite was the first discoverer of these relations ([6]). In that period, Jensen

79
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also has an important role in the theory of convexity and inequalities of type (1)

([16]).

A. The first extension of the left side of (1) for generalized convex functions

has been discovered in 1982 by the author.

Theorem 2.1. ([9]) Let f ∈ C2k[a, b] (k ≥ 1, integer) be a 2k-convex function

on (a, b). Then
k−1∑
j=0

(b− a)2j+1

22j(2j + 1)!
f (2j)

(
a + b

2

)
≤
∫ b

a

f(x)dx. (2)

This result became widely known after its publication in an international

journal [10].

For a particular case, namely k = 2 one gets:

Corollary 2.1. Let f : [a, b] → R, f ∈ C4[a, b] and f (4)(t) ≥
(>)

0 on (a, b).

Then ∫ b

a

f(x)dx ≥
(>)

(b− a)
[
f

(
a + b

2

)
+

(b− a)2

24
f ′′
(

a + b

2

)]
. (3)

Remark 2.1. To show the power of this inequality, let us consider, as an

immediate application, a > 0, b = a + 1 and let f1(x) =
1
x

, f2(x) = − lnx (x > 0)

which fulfill the above conditions. After certain elementary computations one can

deduce the double-inequality

2a + 2
2a + 1

e1/6(2a+1)2 <
e(

1 +
1
a

)a <

√
1 +

1
a
· e−1/3(2a+1)2 (4)

for all real numbers a > 0. Clearly, this implies the weaker relations

2a + 2
2a + 1

<
e(

1 +
1
a

)a <

√
1 +

1
a

(5)

which in turn are quite strong to imply, or improve certain known results. For exam-

ple, the much studied inequality by Pólya and Szegö [8], namely

e

2n + 2
< e−

(
1 +

1
n

)n

<
e

2n + 1
(n ≥ 1, integer) (6)

follows immediately, even in improved form from (5). All inequalities of [2] are par-

ticular cases, or implications of relations (5). For applications to Stirling’s theorem
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and other inequalities for the number e we quote the recent papers [21], [24], [25]. We

note that when f is strictly 2k-convex, we have strict inequality in (2) (the same in

the particular case (3)).

In 1989 H. Alzer [1] has extended the right side of (1):

Theorem 2.2. Let f be as in Theorem 2.1. Then∫ b

a

f(x)dx ≤ 1
2

2k−1∑
i=1

(b− a)i

i!
[f (i−1)(a) + (−1)i−1f (i−1)(b)] (7)

When f is strictly 2k-convex, then (7) holds true with strict inequality.

Remark 2.2. By using (7), the following rational approximation of the

exponential function can be deduced ([1]):

For all x > 0 and all integers n ≥ 0 we have

1 +
1
2

2n∑
i=0

(−x)i+1

(i + 1)!

1 +
1
2

2n∑
i=0

xi+1

(i + 1)!

< e−x <

1 +
1
2

2n+1∑
i=0

(−x)i+1

(i + 1)!

1 +
1
2

2n+1∑
i=0

xi+1

(i + 1)!

(8)

Inequalities of this type have applications in irrationality proofs (see [11]).

In 1991 the author obtained common generalizations of Theorem 2.1 and 2.2.

Theorem 2.3. ([17]) Let f be as in Theorem 2.1. Let t ∈ [a, b] arbitrary

chosen. Then∫ b

a

f(x)dx ≥
2k∑
i=1

[
(t− a)i − (t− b)i

i!

]
· (−1)i−1f (i−1)(t)+

+
1

(2k)!

{
(b− a)2k

22k−1
[f (2k−1)(t)− f (2k−1)(a)] + Sk,a,b(t)

}
, (9)

respectively ∫ b

a

f(x)dx ≤
2k∑
i=1

[
(t− a)i − (t− b)i

i!

]
· (−1)i−1f (i−1)(t)+

+
1

(2k)!
{(b− a)2k[f (2k−1)(t)− f (2k−1)(a)] + Sk,a,b(t)}, (10)

where

Sk,a,b(t) =
∫ b

a

(b− x)2kf (2k)(x)dx− 2
∫ b

a

(b− x)2kf (2k)(x)dx.

When f is strictly 2k-convex, then all inequalities in (9) and (10) are strict.
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Remark 2.3. Clearly, this result has a lot of particular cases. For example,

by putting t = a and t = b resp. in (10), after addition we get Alzer’s inequality (7).

By doing the same thing in (9), we get

Theorem 2.4. With the same conditions,

1
2

2k∑
i=1

(b− a)i

i!
[f (i−1)(a) + (−1)i−1f (i−1)(b)]+

+
(b− a)2k

22k−2(2k)!
[f (2k−1)(b)− f (2k−1)(a)] ≤

∫ b

a

f(x)dx. (11)

By applying (9) and (10) for t =
a + b

2
, and remarking that

(x− a)2k ≤
(

b− a

2

)2k

for x ∈
[
a,

a + b

2

]
,

while

(b− x)2k ≤
(

b− a

2

)2k

for x ∈
[
a + b

2
, b

]
,

we get firstly our result (2) as well as the following:

Theorem 2.5. With the same conditions,∫ b

a

f(x)dx ≤
k−1∑
j=0

(b− a)2j+1

22j(2j + 1)!
f (2j)

(
a + b

2

)
+

+
1

(2k)!22k
(b− a)2k[f (2k−1)(b)− f (2k−1)(a)]. (12)

In what follows, let us use the following notations:

Ak ≡ Ak(a, b, f) = f (2k−1)(b)− f (2k−1)(a);

Bk = Bk(a, b, f) = f (k−1)(a) + (−1)f (k−1)(b).

The following two auxiliary results will be necessary:

Lemma 2.1. (”Green-Lagrange identity”) For f, g ∈ Cn[a, b] one has the

identity∫ b

a

g(n)(x)f(x)dx = [g(n−1)(x)f(x)− · · ·+ (−1)n−1g(x)f (n−1)(x)]
∣∣∣b
a
+

+(−1)n

∫ b

a

g(x)f (n)(x)dx. (13)
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Lemma 2.2. (Chebisheff’s integral inequality) Let u, v : [a, b] → R be two

synchrone functions (i.e. functions having the same type of monotonicity). Then

1
b− a

∫ b

a

u(x)v(x)dx ≥ 1
b− a

∫ b

a

u(x)dx · 1
b− a

∫ b

a

v(x)dx (14)

When u and v are asynchrone functions (having different type of monotonic-

ity), then the inequality sign in (14) is reversed. It is known that equality holds in

(14) only when one of u and v is constant on [a, b], eventually excepting a numerable

subset of [a, b] (see [5]).

We now are able to state the following result:

Theorem 2.6. Let f (2k) (k ≥ 1, integer) be a continuous, decreasing function

on [a, b]. Then∫ b

a

f(x)dx ≤
2k∑

j=1

1
2j · j!

(b− a)jBj +
1

22k
· (b− a)2k

(2k + 1)!
Ak. (15)

If f (2k) is monotone increasing, then the sign of inequality in (15) reverses.

Proof. Let g(x) =
(

x− a + b

2

)n

in (13). By remarking that

g(k)(x) = n(n− 1) . . . (n− k + 1)
(

x− a + b

2

)n−k

,

after certain elementary computations one can deduce the following identity∫ b

a

f(x)dx =
n∑

j=1

1
2j · j!

Bj +
(−1)n

n!

∫ b

a

(
x− a + b

2

)n

f (n)(x)dx. (16)

Let now n := 2k in (16) and put u(x) := f (2k)(x), v(x) :=
(

x− a + b

2

)2k

in

(14). Since u and v are monotone increasing functions, we have∫ b

a

(
x− a + b

2

)2k

f (2k)(x)dx ≤ 1
22k(2k + 1)!

(b− a)2kAk,

and the result follows.

Theorem 2.7. Let f (2k−1) be increasing and continuous on [a, b]. Then∫ b

a

f(x)dx ≤
2k−1∑
j=1

1
2j · j!

(b− a)jBj (17)

When f (2k−1) is decreasing, (17) holds true with reversed inequality.
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JÓZSEF SÁNDOR

Proof. Apply (16) with n := 2k + 1 and put

u(x) := f (2k−1)(x), v(x) :=
(

x− a + b

2

)2k−1

.

Remarking that ∫ b

a

(
x− a + b

2

)2k−1

dx = 0

we obtain from Lemma 2.2 that∫ b

a

(
x− a + b

2

)2k−1

f (2k−1)(x)dx ≤ 0

and (17) follows.

B. Hadamard’s inequality has the following geometrical interpretation: the

area below the graph of f on [a, b] lies between the areas of two trapeziums, namely

the one formed by the points of coordinates (a, f(a)); (b, f(b)) with the Ox axis, the

second one formed by the tangent to the graph of f at the point
(

a + b

2
, f

(
a + b

2

))
with the Ox axis. By rotating these trapeziums round about the Ox axis, we get

three volumes,

V = π

∫ b

a

f2(x)dx,

V1 =
π(b− a)

3
[f2(a) + f(a)f(b) + f2(b)],

V2 =
π(b− a)

3

[
3f2

(
a + b

2

)
+

(b− a)2

4

(
f ′
(

a + b

2

))2
]

.

Since, when f is positive and convexe, we have V ≤ V1, and under certain

conditions V2 ≤ V , one can deduce the following result.

Theorem 2.8. Let f : [a, b] → R be nonnegative and convex. Then

1
b− a

∫ b

a

f2(x)dx ≤ 1
3
[f2(a) + f(a)f(b) + f2(b)]. (18)

If, in addition f is differentiable in x0 :=
a + b

2
, and the following condition

is satisfied:

(i) f

(
a + b

2

)
− b− a

2
f ′
(

a + b

2

)
> 0 and f ′

(
a + b

2

)
> 0, then

1
b− a

∫ b

a

f2(x)dx ≥ f2

(
a + b

2

)
+

(b− a)2

12

[
f ′
(

a + b

2

)]2
. (19)
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Proof. The above stated geometric arguments for the proof of (18) and (19)

can be made rigorous. Indeed, for (18), let K : [a, b] → R be a linear function having

the properties f(a) = K(a), f(b) = K(b). Therefore,

K(t) =
t− a

b− a
f(b) +

b− t

b− a
f(a), t ∈ [a, b].

Since f is convex and positive, f2(t) ≤ K2(t). Since it is immediate that∫ b

a

K2(t)dt =
b− a

3
[f2(a) + f(a)f(b) + f2(b)],

the result follows. For the proof of (19) let us remark that f(x) ≥ f(x0)+(x−x0)f ′(x0)

for all x ∈ [a, b], x0 ∈ (a, b). Put x0 :=
a + b

2
and write that

f2(x) ≥
[
f(x0) +

(
x− a + b

2

)
f ′(x0)

]2
,

where f ′(x0) > 0. An elementary computation shows that∫ b

a

[
f(x0) +

(
x− a + b

2

)
f ′(x0)

]2
dx = f2

(
a + b

2

)
+

(b− a)2

12

[
f ′
(

a + b

2

)]2
,

and this finishes the proof.

Remark 2.4. Without differentiability one can assume only that

f ′+

(
a + b

2

)
> 0 and f

(
a + b

2

)
− b− a

2
f ′+

(
a + b

2

)
> 0.

When f is nonnegative differentiable, and concave, without any condition one

has
1

b− a

∫ b

a

f2(x)dx ≤ f2

(
a + b

2

)
+

(b− a)2

12

[
f ′
(

a + b

2

)]2
(20)

Indeed, by 0 < f(x) ≤ f(x0) + f ′(x0)(x − x0), by taking squares and inte-

grating, we obtain (20). Without differentiablity (20) holds with f ′+

(
a + b

2

)
in place

of f ′
(

a + b

2

)
.

Since
x2 + xy + y2

3
≤ x2 + y2

2
, inequality (18) refines the right side of

Hadamard’s inequality applied to the convex function f2. Inequality (18) has been

applied in the Theory of means ([14]).

Let p : [a, b] → R be a strictly positive monotone function, and define

Ep,f (a, b) = Ep,f =
∫ b

a

p(x)f(x)dx
/∫ b

a

p(x)dx.

In paper [20] the following results have been proved:
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Theorem 2.9. Let f be a convex function. Then

Ep,f ≥ f(A) + f ′+(A)Cp, (21)

where A =
a + b

2
, and Cp = Cp(a, b). If p is increasing, the Cp ≥ 0; while for

decreasing p one has Cp ≤ 0.

Remark 2.5. Therefore, when f ′+(A) ≥ 0 one can deduce

Ep,f ≥ f(A) + f ′+(A)Cp ≥ f(A), for increasing p.

This generalizes and refines the left side of Hadamard’s inequality.

Theorem 2.10. Let f be convex, with f(b) ≥ f(a). If p is a decreasing

function, then

Ep,f ≤ f(a) +
f(b)− f(a)

b− a

∫ b

a

(x− a)p(x)dx ≤ f(a) + f(b)
2

(22)

The same is valid if f(b) ≤ f(a) and p increasing.

Finally, as a generalization of (18) we quote (see [20]):

Theorem 2.11. Let f be positive and convex, with f(b) ≥ f(a). Let p be a

decreasing function. Then

Ep,fn ≤
n∑

k=0

(
n

k

)
fk(a)

(
f(b)− f(a)

b− a

)n−k ∫ b

a

(x− a)n−kp(x)dx ≤

≤
n∑

k=0

(
n

k

)
fk(a)(f(b)− f(a))n−k

n− k + 1
(23)

(Here n ≥ 1 is a positive integer and
(

n

k

)
denotes a binomial coefficient.)

Theorem 2.12. Let f be positive and concave. Then

Ep,fn ≤
n∑

k=0

(
n

k

)
fn−k(A)(f ′+(A))k

∫ b

a

(x−A)kp(x)dx. (24)

If f ′+(A) ≥ 0 and p is decreasing, the right side of (24) can be majored by
n∑

k=0

(
n

k

)
fn−k(A)(f ′+(A))k(b− a)k 1 + (−1)k

(k + 1) · 2k+1
. (25)

Remark 2.6. For p ≡ 1, n = 2, f positive and concave one obtains the

inequality
1

b− a

∫ b

a

f2(x)dx ≤ f2(A) + (f ′+(A))2
(b− a)2

12
. (26)
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C. In the precedent paragraph in certain cases we have obtained refinements

of the Hadamard inequality (or for one part of it).

Let now suppose that the continuous function f : [a, b] → R has a strictly

increasing derivative on (a, b). By Lagrange’s mean-value theorem easily follows

f(x) − f(y) < f ′(x)(x − y) for all x, y ∈ (a, b). By integrating with respect to x

we get ∫ b

a

f(x)dx < (b− a)f(y)− y[f(b)− f(a)] + λ = g(y),

where

λ =
∫ b

a

xf ′(x)dx = bf(b)− af(a)−
∫ b

a

f(x)dx

and g : [a, b] → R is defined as above. Clearly, g′(y) = (b − a)f ′(y) − [f(b) − f(a)],

so by the Lagrange mean-value theorem, g′(y0) = 0 for some y0 ∈ (a, b). Since f ′ is

strictly increasing, obviously g′(y) > g′(y0) = 0 for y > y0 and g′(y) < g′(y0) = 0 for

y < y0. Therefore y0 is a minimum-point of the function g, that is g(y0) ≤ g(y) for

all y ∈ [a, b]. Thus we have obtained the following result, which in fact appeared in

[19]:

Theorem 2.13. If f satisfies the above conditions, then∫ b

a

f(x)dx <
b− a

2

{
f(y0)− y0

[
f(b)− f(a)

b− a

]
+

bf(b)− af(a)
b− a

}
(27)

where y0 is defined by the equality

f ′(y0) =
f(b)− f(a)

b− a
. (28)

For this choice of y = y0, inequality (27) is optimal.

Remark 2.7. Clearly, inequality (27) is valid for all y0 ∈ (a, b), but for y0

given by (28) we obtain the strongest result. By selecting y0 =
a + b

2
in (27) we get

the following refinement of the right side of Hadamard’s inequality:∫ b

a

f(x)dx <
b− a

2

[
f

(
a + b

2

)
+

f(a) + f(b)
2

]
<

b− a

2
[f(a) + f(b)]. (29)

This is due to P.S. Bullen [7].

Indeed, the first inequality is a consequence of (7), while the second one is

equivalent to f

(
a + b

2

)
<

f(a) + f(b)
2

.

Remark 2.8. Inequality (27) is valid also for a strictly convex function f ,

and has been rediscovered in [3]. For applications in the theory of means, see [19], [3].
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The following refinements of the Hadamard inequalities have been published

by the author in cooperation with J.E. Pečarić and S.S. Dragomir [15]:

Theorem 2.14. Let n ≥ 1 be a positive integer and let f : [a, b] → R be a

convex function. Then

f

(
a + b

2

)
≤

∫ b

a

. . .

∫ b

a

f

(
n+1∑
i=1

xi

n + 1

)
dx1 . . . dxn+1

(b− a)n+1
≤

≤

∫ b

a

. . .

∫ b

a

f

(
n∑

i=1

xi

n

)
dx1 . . . dxn

(b− a)n
≤ · · · ≤

∫ b

a

∫ b

a

f

(
x1 + x2

2

)
dx1dx2

(b− a)2
≤

≤

∫ b

a

f(x)dx

b− a
≤ f(a) + f(b)

2
. (30)

Remark 2.9. When n = 1 we have the following simple relations:

f

(
a + b

2

)
≤ 1

(b− a)2

∫ ∫
[a,b]2

f

(
x + y

2

)
dxdy ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

(31)

In applications (e.g. in the theory of Euler Gamma function), this inequality

has a special importance.

D. We will conclude our survey with the study of certain mappings associated

to the Hadamard inequalities.

Let f : [a, b] → R be a convex function, and define the following mappings:

H,G,L : [0, 1] → R, given by

H(t) =
1

b− a

∫ b

a

f

[
tx + (1− t)

a + b

2

]
dx, (32)

G(t) =
1
2

{
f

[
ta + (1− t)

a + b

2

]
+ f

[
(1− t)

a + b

2
+ tb

]}
, (33)

L(t) =
1

2(b− a)

∫ b

a

{f [ta + (1− t)x] + f [(1− t)x + tb]}dx. (34)

The following three theorems contain certain properties of these mappings

(see [18]).

Theorem 2.15. Let H be defined by (32). Then
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(i) f

(
a + b

2

)
≤ 2

b− a

∫ a+3b
4

3a+b
4

f(x)dx ≤
∫ 1

0

H(t)dt ≤

≤ 1
2

[
f

(
a + b

2

)
+

1
b− a

∫ b

a

f(x)dx

]
(35)

and H is a convex mapping.

(ii) If f is differentiable (and convex), then

0 ≤ 1
b− a

∫ b

a

f(t)dt−H(t) ≤ (1− t)

[
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

]
(36)

and

0 ≤ f(a) + f(b)
2

−H(t) ≤ [f ′(b)− f ′(a)](b− a)
4

, t ∈ [0, 1]. (37)

Remark 2.10. Relation (36) gives a new refinement of the right side of (1).

Theorem 2.16. Let G be defined by (33). Then

(i) G is convex and increasing on [0, 1];

(ii) inf
t∈[0,1]

G(t) = G(0) = f

(
a + b

2

)
; sup

t∈[0,1]

G(t) = G(1) =
f(a) + f(b)

2
;

(iii) H(t) ≤ G(t) for all t ∈ [0, 1];

(iv)
2

b− a

∫ a+3b
4

3a+b
4

f(x)dx ≤ 1
2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
≤
∫ 1

0

G(t)dt ≤

≤ 1
2

[
f

(
a + b

2

)
+

f(a) + f(b)
2

]
;

(v) If f is differentiable (and convex), then

0 ≤ H(t)− f

(
a + b

2

)
≤ G(t)−H(t) for all t ∈ [0, 1].

Remark 2.11. Since H(1) =
1

b− a

∫ b

a

f(x)dx, (iii) gives a generalization,

while (v) a refinement of Hadamard’s inequalities.

Theorem 2.17. Let L be defined by (34). Then

(i) L is a convex mapping on [0, 1];

(ii) G(t) ≤ L(t) ≤ 1− t

b− a

∫ b

a

f(x)dx + t
f(a) + f(b)

2
≤ f(a) + f(b)

2
for all

t ∈ [0, 1]; and sup
t∈[0,1]

L(t) =
f(a) + f(b)

2
;

(iii) H(1− t) ≤ L(t) and
H(t) + H(1− t)

2
≤ L(t) for all t ∈ [0, 1].

89
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Remark 2.12. Since L(0) =
1

b− a

∫ b

a

f(x)dx, relation (ii) offers a general-

ization and new refinement of Hadamard’s inequalities.
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Note added in proof. In the first part ([23]) for Theorem 1.3 the Reference

[29] is stated incorrectly. The paper in question is the following: J.E. Pec̆arić,

Remark on an inequality of S. Gabler, J. Math. Anal. Appl. 184(1994), 19-21.
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