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HYDRODYNAMICAL CONSIDERATIONS ON THE GAS STREAM
IN THE LAGRANGIAN POINT L1 OF A CLOSE BINARY SYSTEM

TITUS PETRILA AND RODICA ROMAN

Abstract. Taking into consideration Euler’s equation for an ideal fluid

and having in view some basic hypotheses specified for hydrodynamic ap-

proach, in the case when the potential of massic forces is of Roche type,

an integral of Bernoulli type is established. It is shown that it is impos-

sible for a fluid to surpass a certain maximum velocity vmax and that the

critical velocity of the sound in a fluid depends on the parameters of the

Roche model. The conditions in which the fluid motion is subsonic or su-

personic are analyzed. In addition the density, the pressure of the fluid

and the sound velocity are expressed as function of the fluid velocity and

the potential of the massic forces. Then, the Lagrangian point L1 is con-

sidered as a source with its output q and the fluid motion is analyzed in

the corresponding close vicinity. The obtained results could also be used

as initial conditions for the integration of the mass transfer equations.

1. Introduction

The problem of the mass transfer in stellar binary systems is relatively old.

It was approached by Kuiper (1941) in his pioneer work. Then, Kopal (1958),

Kruszewsky (1964), Plavec et al. (1964, 1965) and many other authors have re-

viewed this problem, especially with considerations on the orbital period changes.

In the above-mentioned papers, the problem of the mass transfer was approached

without any hydrodynamic considerations. With computed orbits of single particles,

some of the above mentioned authors have demonstrated, theoretically, the existence

of rings around the primary component, or some gas streams in the corresponding

systems. Other authors also tried to use hydrodynamical considerations: Prendergast

(1960), Biermann (1971), Prendergast and Taam (1974). Nevertheless, it was used an

arbitrary way to establish the initial conditions for the integration of the differential
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equations of the correspondent motion. That is why, by taking into consideration

some basic hypotheses we have studied the problem of the mass transfer in a close

vicinity of the inner Lagrangian point, L1 and the corresponding results could be used

for a better estimation of the initial conditions.

2. Basic hypotheses

For the study of the mass transfer in close binary systems, through the meth-

ods appropriate to the hydrodynamics, we are obliged to make some hypotheses in

order to draw the theoretical model very near to the physical reality. These basic

hypotheses will be reviewed in the present section:

a) The two component stars of a binary systems are revolving in circular

orbits, about their common mass center. Such an approximation is suited for a great

majority of the close binary systems.

b) The fluid flow is assumed as being stationary. This hypothesis is good

enough for the detached and semi-detached binary systems, whose light curves have

the same behaviour in each cycle, with some small irregularities. Such an assumption

is not suited for those binary systems whose stellar components are in contact and

the corresponding irregularities are very frequent and well marked.

c) The gas flow is considered only in the orbital plane and an approach of the

two dimensions problem may be accepted. This assumption is based on the fact that

the resultant force of the corresponding effective forces lies in the orbital plane and

it has an endeavour to press the gas stream towards this plane. Indeed, the effective

forces, which are operating on the gas stream, are: the forces of the gravitational

attraction , the centrifugal force and the Coriolis force . Here we have in view a

rotating barycentric coordinates system (M,x,y,z) where the origin M is situated in

the common mass-center and the two component stars S1 and S2 are always situated

on the x-axis, while (x,M,y) plane coincides with the orbital plane. In such conditions

the gravitational forces are given by:

−→
F atr1 = −G

m1m

r2
1

−→r 1

r1
,

−→
F atr2 = −G

m2m

r2
2

−→r 2

r2
, (1)
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with: −→r 1 = (x + R1)
−→
i +y

−→
j +z

−→
k , −→r 2 = (x−R2)

−→
i +y

−→
j +z

−→
k ,

where R1 and R2 are the distances of the two stellar components from the common

mass-center.

In addition we have:

−→
F centrif = −m−→ω × (−→ω ×−→r ) = mω2

(
x
−→
i + y

−→
j

)
(2)

−→
F Coriolis = −2m−→ω ×−→vr = 2mω

(
y
−→
i − x

−→
j

)
(3)

with: −→v r = x
−→
i + y

−→
j + z

−→
k .

In Eqs. (1) - (3) m1,2 are the masses of the two stellar components (S1

and S2), while m represents the mass of a gas particle. As it is shown by Biermann

(1971), the use of two dimensions only (in the orbital plane) is equivalent either

to a cylindrical model of the system or, to a gas flow of constant thickness. The

corresponding thickness may be considered as a function of temperature.

d) The gas flow is assumed as being adiabatic. Such an assumption is suited

if:

- the mean free path for photons is small compared to the characteristic

dimensions of the considered binary - system;

- the thermal time scale of the gas is long compared to the transfer time scale.

Now, from theoretical considerations on the mass transfer in close binary

- systems (eg. Kippenhahn et al., 1967) it follows the fact that the corresponding

problem has two phases: the first one is characterized by a fast flow of the gas, to the

thermal time scale of the star which is losing mass. The second phase is characterized

by a slow gas flow, to the nuclear time scale. In the slow phase of the mass transfer,

the corresponding gases may be considered as being transparent and their thermal

behaviour is determined by the radiation field of the two stellar components .

In the phase of fast mass transfer, the mean free path for photons is small

enough while the thermal time scale is long enough in order to surmise that adiabacy

is a good approximation.

e) We are considering a binary system as being semi-detached because the

assumptions b) and d) are not suited for contact systems.
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f) We are assuming that for pressure the law of perfect gas may be adopted:

P =
k%T

µma
(4)

where % is the fluid density, T is the temperature, k = 1, 38054 ∗ 10−23JK−1 is

Boltzmann‘s, constant, µ is the relative molecular mass (in units of atomic mass) and

ma is the proton mass (see Ureche, 1987).

g) The gas flow is assumed as being laminar throughout, without turbulence

and irrotational . As it is known, (Biermann, 1971), the Reynolds number can be

written as the product of the Mach number of the flow and ratio of a characteristic

length scale to the gas-dynamical mean free path. The Reynolds number for the gas

flow in binary systems is evaluated as being of the order of 108 (Kopal,1958). On the

other hand it is known from experiments (e.g. Biermann, 1971) that the supersonic

turbulence is strong connected with the properties of the boundary layers. Neverthe-

less, there are no fixed boundaries in a close binary system and, consequently, there

is no a simple theory to discuss the properties of possible boundary layers. In such

conditions it is very difficult to draw an important conclusion concerning the turbu-

lence. For simplicity the gas flow is assumed as being laminar throughout.(obvious

with the exception of the area situated behind the shock wave ) .

h) The magnetic fields are neglected, even if they could be important in some

binary systems. But, as it is shown (Biermann, 1971) in the phase of fast mass

transfer, the magnetic fields are important only if their strength is of the order of

103 Gauss or greater . In the phase of slow mass transfer 10 Gauss have already

appreciable effects. But for the phase of fast mass transfer no observed example is

known to have such a magnetic field. On the other hand, for the phase of slow mass

transfer which can be identified with many observed binary systems, the value of 10

Gauss is below observational limits. Anyhow, if we take them into consideration, the

problem becomes more complicated, because in the motion equations we have to add

a supplemental term of form
−→
j ×

−→
B , where

−→
j is the density of the stream while

−→
B

is the magnetic induction. In addition, in equation of the energy we should have a

supplemental term of the form
−→
j ·
−→
E , where

−→
E represents the strength of the electric

field (Ureche, 1987).
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i) For the gravitational field of each stellar component, the Roche potential is

assumed. Since the stars, which are losing mass, are evolving far from main sequence,

they have an increased concentration of density. Therefore, the tides do not change

very much the gravitational potential. Hence, the Roche potential may be considered

as a good approximation.

j) Finally, we are assuming that there is a synchronization between the axial

rotation of the two stellar components and the corresponding orbital motion, that is,

for the angular velocity, we can write: ω = 2π
P = const.

3. Subsonic, supersonic and hypersonic motions in the jet of stellar matter

From the Euler‘s equation, written for an ideal fluid, that is:

%

[
∂−→v
∂t

+
1
2
grad

(
v2

)
+ rot−→v ×−→v

]
= %

−→
f − grad P,

in the hypothesis of a steady state, we can write:

%

[
1
2
grad

(
v2

)
+ rot−→v ×−→v

]
= %

−→
f − grad P. (5)

If we are considering now that there is a scalar function U (potential) so that

−→
f = grad U,

then Eq.(5) can be written in the form:

%

[
1
2
grad

(
v2

)
+ rot−→v ×−→v

]
= % grad U − grad P. (6)

In addition, if we assume that the compressible fluid is a barotropic one, we

may consider that there is a scalar function h , so that grad h = grad P
% . Therefore,

from Eq. (6) it is evident that on any stream line we have:

v2

2
− U + h = C1 = const. (7)

which, in fact, is the Bernoulli‘s integral.

In the hypothesis of a perfect gas and in an izentropic evolution, we can write:

P = k %γ , where γ > 1 represents the adiabatic exponent.

Moreover, from the relationship: h =
∫

dh =
∫

dP
% we have at once:

h =
γ

γ − 1
P

%
, (8)
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and the Hugoniot formula leads to:

c2 =
dP

d%
= γ

P

%
. (9)

Therefore Eqs. (8) and (9) lead to:

h =
c2

γ − 1
(10)

In such conditions, Eq. (7) becomes:

v2

2
− U +

c2

γ − 1
= C1 . (11)

Here the constant C1 may be determined if we use Eq. (11) for an arbitrary

point situated somewhere on the Roche equipotential surface. On such a surface the

velocity is null and the corresponding potential is URoche = const. On the other hand,

it is known that on such equipotential surfaces, we also have a constant density, hence

%Roche = const.

Now, from relationship P = k %γ , written for an arbitrary point of the Roche

equipotential surface, we have:

PRoche = k %γ
Roche = constant

and Eq. (9) leads to:

c2
Roche = γ

PRoche

%Roche

= constant.

For an arbitrary point of the Roche equipotential surface we are able to

determine the value of the constant C1 , that is:

−URoche +
c2

γ − 1
= C1.

and Eq. (11) may be written in the form:

v2

2
− U +

c2

γ − 1
= −URoche +

c2
Roche

γ − 1
(12)

whence we have at once:

c2 = c2
Roche

[
1− (γ − 1)(v2 − 2U + 2URoche)

2c2
Roche

]
. (13)

The solution of Eq.(13) will be found in the range of real numbers only if it

is satisfied the condition:

1 ≥ (γ − 1)(v2 − 2U + 2URoche)
2c2

Roche

,
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or:

v2 ≤ 2c2
Roche

γ − 1
+ 2 (U − URoche) .

Therefore, in its motion, a fluid cannot surpass (exceed) a maximum velocity vmax ,

given by the relationship:

v2
max =

2c2
Roche

γ − 1
+ 2 (U − URoche) . (14)

If in a point situated somewhere on a stream line, the fluid velocity becomes

equal to the sound velocity in the same point, that is if we can write v = c = c∗ ,

then from Eq. (12) we have:

c2
∗ =

γ − 1
γ + 1

[
2
c2
Roche

γ − 1
+ 2 (U∗ − URoche)

]
.

where c∗ represents the critical sound velocity in fluid, while U∗ is the corresponding

potential.

If v > c∗ we have the case of the supersonic motion.

If v < c∗ we have the case of the subsonic motion. Furthermore, from Eq.(9)

we can write: c2 = kγ%γ−1 or c2
Roche = kγ%γ−1

Roche and Eq.(13) becomes:

% = %Roche

[
1− (γ − 1) (v2 − 2U + 2URoche)

2c2
Roche

] 1
γ−1

. (15)

Here we have in view the relationship: P = k%γ or: % =
(

P
k

) 1
γ and Eq. (8) leads to:

P = PRoche

[
1− (γ − 1)(v2 − 2U + 2URoche)

2c2
Roche

] γ
γ−1

. (16)

In conclusion, the relationships (13), (15) and (16) give us the explicit functions c(v),

%(v) and P(v). During the study of the mass transfer, it was put in evidence a very

luminous patch - a hot spot - in that place where the jet of matter hit the atmosphere

of the star which is receiving mass. The existence of such a patch was also detected

by observational methods. Consequently it was created a true theory of such named

”hot spot”, in order to explain some irregularities (fluctuations) observed in the light

curves of the eclipsing binary systems. Prendergast and Taam (1974) try to explain

such a hot spot as a consequence of the heating determined by the shock wave which

arise in that place and have estimated a temperature of the order of 35000 K. In

front of the shock wave the jet motion is hypersonic, that is the jet matter must

be accelerated by the gravitational attraction until to velocities characterized by the

73



TITUS PETRILA AND RODICA ROMAN

Mach number M ≥ 5. If we assume that the fluid motion is hypersonic, izentropic

and steady (the jet matter being assumed as a perfect gas), for each stream line we

have dS = 0. Further, from Eq. (7) we have at once:

v dv − dU + dh = 0

but dh = dP
% and consequently we can write:

dP

P
=

%

P
dU − %v

P
dv.

Here we can use the following relationship: %
P = γ

c2 and consequently we

have:
dP

P
=

γ

c2
dU − γv

c2
dv

Finally, if we have in view the Mach number M = v
c , we can write :

dP

P
=

γM2

v2
dU − γM2 dv

v
. (17)

As it was before mentioned, we can use the relationship: c2 = γP
% and, if we

accept Clapeyron law: P = %RT it follows that:

c2 = γRT (18)

or, by differentiation it follows that:

2c dc = γdTR (19)

Now, from Eqs. (18) and (19) we have at once:

dT

T
= 2

dc

c
, (20)

and from Eq.(11) on a stream line we can write:

v dv − dU +
2c dc

γ − 1
= 0. (21)

In such conditions, Eq. (20) becomes:

dT

T
= − (v dv − dU) (γ − 1)

c2

or, if we have in view the Mach number, M:

dT

T
= −(γ − 1) M2

(
dv

v
− dU

v2

)
. (22)

74



HYDRODYNAMICAL CONSIDERATIONS ON THE GAS STREAM IN THE LAGRANGIAN POINT L1

From Eqs. (17) and (22) it is evident that, since M2 is a great number (the fluid

motion being assumed as hypersonic one) , to a small change in the velocity on a

stream line could correspond a great change for the pressure and temperature. From

the relationship: M = v
c we can write:

dM

M
=

dv

v

(
1−M

dc

dv

)
(23)

By differentiation, from Eq. (11) it follows:

v − dU

dv
+

2c

γ − 1
dc

dv
= 0

and Eq.(23) can be written in the form:

dM

M
=

dv

v
[
1−M γ−1

2c

(
−v + dU

dv

)] ,

or
dM

M
=

(
1 +

γ − 1
2

M2 −M
γ − 1

2c

dU

dv

)
dv

v
. (24)

Moreover, from Eq.(21) we can obtain a relationship for dv , and Eq.(24) becomes:

dM

M
=

(
1 +

γ − 1
2

M2 −M
γ − 1

2c

dU

dv

) [
dU

v2
− 2

M2(γ − 1)
dc

c

]
. (25)

If we consider the fluid motion as being a hypersonic one, we can use the

following approximation:
dU

v2
≈ 0.

and Eqs. (17), (22) and (25) lead to:

dP

P
= −γM2 dv

v
(26)

dT

T
= −(γ − 1)M2 dv

v
(27)

dM

M
=

(
1 +

γ − 1
2

M2 −M
γ − 1

2c

dU

dv

) [
− 2

M2(γ − 1)
dc

c

]
. (28)

The shock wave, which arises in the close vicinity of the secondary component,

practically is stuck to this star. The very high temperatures from behind of the shock

determine ionization and dissociation of the particles and, consequently, the laminar

model of the fluid cannot be used. Behind of the shock wave arises a zone of turbulence

that, in fact, is a zone of the complementarity of the secondary star. Moreover, as a

strong increasing of the temperature, this zone can be put in evidence through the

direct astronomical observations.
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4. The study of the fluid motion in the close vicinity of the point L1

Further, in the present section we shall consider that in the Lagrangian point

L1 we have a mass source, with the corresponding output q . In such a condition, the

continuity equation (see L. Dragos, 1981) will be written in the form:

div (%−→v ) = q δ (−→x ) , (29)

where δ (−→x ) is Dirac‘s distribution. Let us consider that the fluid motion take place in

the orbital plane, where r = |−→x |. Thus, from the study of the Roche equipotentials it

is known that the tangents, in the orbital plane, drawn in L1, have the corresponding

slopes θ0 and −θ0, where:

tg2θ0 =
2x−3

L1
+ 2m2

m1
(1− xL1)

−3 +
(
1 + m2

m1

)
x−3

L1
+ m2

m1
(1− xL1)

−3 −
(
1 + m2

m1

) (30)

(The corresponding numerical values are listed by Plavec and Kratochvil (1964), for

the mass ratio m2
m1

).

In the hypothesis that in the range θ0 ∈ [−θ0, θ0] there are not preferential

directions, Eq. (29) becomes (see L. Dragos, 1981):

1
r

d

dr
(%rv) =

q

2πr
δ(r). (31)

The corresponding homogenous equation of Eq.(31) is:

1
r

d

dr
(%rv) = 0,

which have the solution:

%v =
C

r
. (32)

The value of the constant C will be determined in such a way that the equation of the

continuity to be total satisfied, and not only in a certain range which do not contain

the origin and is specified by the relationship: C = q
2π . In such a case, the solution

(32) becomes:

%v =
q

2πr
(33)
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with r2 = x2 + y2. From the relationships: c2 = dP
d% and P = k%γ we obtain

% =
(

c2

kγ

) 1
γ−1

and from Eq. (33) we have at once:

v =
q

2π(kγ)
1

1−γ

c
2

1−γ

r
. (34)

Now, from Eq. (12) we have:

c2 = (γ − 1)
(

U − URoche +
c2
Roche

γ − 1
− v2

2

)
,

and Eq.(34) can be written in the form:

v =
q

2π(kγ)
1

1−γ

(γ − 1)
1

1−γ

r

(
U − URoche +

c2
Roche

γ − 1
− v2

2

) 1
1−γ

. (35)

Therefore if we consider now a point A (xA, yA) on a stream line, we know the value

UA and r2
A = x2

A + y2
A, and from Eq.(35) we obtain the value of vA .

If vA > c∗, we have a supersonic motion.

If vA < c∗ the motion is subsonic.

Finally, Eq. (35) could also be used in order to obtain the initial value of

the velocity, which is useful in order to perform the integration of the equation of

fluid motion at a great distance from L1, but taking a suitable value for r . That is

why, the study of the fluid motion could be performed on a natural way, the initial

conditions being not imposed in an arbitrary way.
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[3] Dragoş, L., 1981, Principiile mecanicii mediilor continue, Ed. Tehnică.
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