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PERTURBATIONS OF CERTAIN NONLINEAR PARTIAL FINITE
DIFFERENCE EQUATIONS

B.G. PACHPATTE

Abstract. In the present paper we establish some new variation of con-

stants formulae for nonlinear perturbed partial finite difference equations

in two independent variables. We also present some applications to convey

the importance of our results in the qualitative theory of certain partial

finite difference equations.

1. Introduction

During the past few years the abundance of applications is stimulating a rapid

development of the theory of finite difference equations. A variety of new methods

and tools are developed by different investigators to study the various types of finite

difference equations. In the theory of ordinary finite difference equations the method

of variation of parameters is a very useful tool in studying the properties of solutions

of perturbed finite difference equations. Motivated and inspired by the results given in

[5], see also [1-4, 6-10], in the present paper we establish some representation formulae

related to the solutions of a certain nonlinear partial finite difference equation and

its perturbed partial finite difference equation in two independent variables. We also

use these formulae to study certain properties of the solutions of the corresponding

perturbed partial finite difference equation.

2. Statement of results

In what follows, we let N0 = {0, 1, 2, . . . }, and

N(x0) = {x0, x0 + 1, x0 + 2, . . . }, N(y0) = {y0, y0 + 1, y0 + 2, . . . },
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for x0, y0 in N0. The empty sums and products are taken to be 0 and 1 respectively.

For any functions z(x, y), w(m,n), z(x, y, w(m,n)), x, y,m, n in N0, we define

∆1z(x, y) = z(x + 1, y)− z(x, y), ∆2z(x, y) = z(x, y + 1)− z(x, y),

∆2∆1z(x, y) = ∆1z(x, y + 1)−∆1z(x, y)),

∆mz(x, y, w(m,n)) = z(x, y, w(m + 1, n))− z(x, y, w(m,n)),

∆nz(x, y, w(m,n)) = z(x, y, w(m,n + 1))− z(x, y, w(m,n)).

We denote the product N(x0)×N(y0) by N(x0, y0). For (x0, y0), (x, y) in N(x0, y0)

we define

φ(x, y, x0, y0, w(x, y)) = ∆wz(x, y, x0, y0, w(x, y)),

where

∆wz(x, y, x0, y0, w(x, y))(w(x + 1, y)− w(x, y))) =

= z(x, y, x), y0, w(x + 1, y))− z(x, y, x0, y0, w(x, y)).

We consider the nonlinear partial finite difference equation

∆1∆1u(x, y) = f(x, y, u(x, y)), u(x, y0) = u(x0, y) = u0, (E)

and its perturbed nonlinear finite difference equation

∆2∆1v(x, y) = f(x, y, v(x, y)) + g(x, y, v(x, y)), v(x, y0) = v(x0, y) = u0, (P )

for (x, y) in N(x0, y0), where u, v are real-valued functions defined on N(x0, y0), f, g

are real-valued functions defined on N(x0, y0)×R, R denotes the set of real numbers,

and u0 is a constant. We use u(x, y, x0, y0, u0) and v(x, y, x0, y0, u0) to denote the

solutions of (E) and (P ) respectively passing through the point x(x0, y0) ∈ N(x0, y0).

A useful nonlinear variation of constants formula is established in the follow-

ing theorem.

Theorem 1. Suppose that u(x, y, x0, y0, u0) is the unique solution of (E) and

φ(x + 1, y, x0, y0, w(x, y)), φ−1(x + 1, y, x0, y0, w(x, y)) exist for (x, y) in N(x0, y0).

Then any solution v(x, y, x0, y0, u0) of (P ) satisfies the relation

v(x, y, x0, y0, u0) = u(x, y, x0, y0, u0 +
x−1∑
s=x0

y−1∑
t=y0

φ−1(s + 1, t, x0, y0, w(s, t))×

×[A(s, t, x0, y0, w(s, t)) + g(s, t, v(s, t, x0, y0, u0))]) (2.1)
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where w(x, y) is a solution of the equation

∆2∆1w(x, y) = φ−1(x + 1, y, x0, y0, w(x, y))[A(x, y, x0, y0, w(x, y))+

+g(x, y, v(x, y, x0, y0, u0))], w(x, y0) = w(x0, y) = u0, (2.2)

for (x, y) in N(x0, y0) and

A(x, y, x0, y0, w(x, y)) = −{[∆1u(x, y + 1, x0, y0, w(x, y + 1))−

−∆1u(x, y + 1, x0, y0, w(x, y))] + [∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))−

−∆wu(x + 1, y, x0, y0, w(x, y))]∆1w(x, y + 1)}, (2.3)

for (x, y) ∈ N(x0, y0).

Another interesting and useful representation formula is given in the following

theorem.

Theorem 2. Suppose that u(x, y, x0, y0, u0) is the unique solution of (E) and

φ(x + 1, y, x0, y0, w(x, y)), φ−1(x + 1, y, x0, y0, w(x, y)) exist for (x, y) ∈ N(x0, y0).

Then any solution v(x, y, x0, y0, u0) of (P ) satisfies the relation

v(x, y, x0, y0, u0) = u(x, y, x0, y0, u0) +
x−1∑
s=x0

y−1∑
t=y0

B(x, y, x0, y0, w(s, t))+

+
x−1∑
s=x0

y−1∑
t=y0

φ(x, y, x0, y0, w(x, y))×

×φ−1(s + 1, t, x0, y0, w(s, t))[A(s, t, x0, y0, w(s, t))+

+g(s, t, v(s, t, x0, y0, u0))], (2.4)

where A(x, y, x0, y0, w(x, y)) is given by (2.3) and

B(x, y, x0, y0, w(s, t)) = [∆wu(x, y, x0, y0, w(s, t + 1))−

−∆wu(x, y, x0, y0, w(s, t))]∆1w(s, t + 1), (2.5)

where w(x, y) is a solution of (2.2).
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3. Proof of Theorem 1

Since u(x, y, x0, y0, u0) is the solution of (E), by the method of variation of

parameters we can find the solution of (P ) by the relation

v(x, y, x0, y0, u0) = u(x, y, x0, y0, w(x, y)), w(x0, y) = w(x, y0) = u0, (3.1)

where the function w(x, y) is yet to be determined. For this it is necessary that

∆1v(x, y, x0, y0, u0) = u(x + 1, y, x0, y0, w(x + 1, y))− u(x, y, x0, y0, w(x, y)) =

= ∆1u(x, y, x0, y0, w(x, y))+

+∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y). (3.2)

From (3.2) we have

∆2∆1v(x, y, x0, y0, u0) = ∆1u(x, y + 1, x0, y0, w(x, y + 1))−

−∆1u(x, y, x0, y0, w(x, y)) + ∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))∆1w(x, y + 1)−

−∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y) =

= ∆1u(x, y + 1, x0, y0, w(x, y))−∆1u(x, y, x0, y0, w(x, y))+

+∆1u(x, y + 1, x0, y0, w(x, y + 1))−∆1u(x, y + 1, x0, y0, w(x, y))+

+∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))∆1w(x, y + 1)−

−∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y + 1)+

+∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y + 1)−

−∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y) =

= ∆2∆1u(x, y, x0, y0, w(x, y)) + {[∆1u(x, y + 1, x0, y0, w(x, y + 1))−

−∆1u(x, y + 1, x0, y0, w(x, y))] + [∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))−

−∆wu(x + 1, y, x0, y0, w(x, y))]∆1w(x, y + 1)}+

+∆wu(x + 1, y, x0, y0, w(x, y))∆2∆1w(x, y) =

= ∆2∆1u(x, y, x0, y0, w(x, y))−A(x, y, x0, y0, w(x, y))+

+∆wu(x + 1, y, x0, y0, w(x, y))∆2∆1w(x, y). (3.3)

Now from (E), (P ) and (3.3) we have

f(x, y, v(x, y, x0, y0, u0)) + g(x, y, v(x, y, x0, y0, u0)) =

60



PERTURBATIONS OF CERTAIN NONLINEAR PARTIAL FINITE DIFFERENCE EQUATIONS

= f(x, y, u(x, y, x0, y0, w(x, y))−A(x, y, x0, y0, w(x, y))+

+φ(x + 1, x0, y0, w(x, y))∆2∆1w(x, y),

which because of (3.1) and the fact that φ−1(x + 1, y, x0, y0, w(x, y)) exists, reduces

to

∆2∆1w(x, y) = φ−1(x + 1, y, x0, y0, w(x, y))[A(x, y, x0, y0, w(x, y))+

+g(x, y, v(x, y, x0, y0, u0))], w(x0, y) = w(x, y0) = u0, (3.4)

which determined the required function w(x, y). The solutions of (3.4) then determine

w(x, y). Further from (3.4) we have

w(x, y) = u0 +
x−1∑
s=x0

y−1∑
t=y0

φ−1(s + 1, t, x0, y0, w(s, t))[A(s, t, x0, y0, w(s, t))+

+g(s, t, v(s, t, x0, y0, w(s, t))]. (3.5)

From (3.5) and (3.1), (2.1) is immediate. The proof is complete.

4. Proof of Theorem 2

For x0 ≤ m ≤ x, y0 ≤ n ≤ y, x0,m, x ∈ N(x0), y0, n, y ∈ N(y0), we have

∆mu(x, y, x0, y0, w(m,n)) = u(x, y, x0, y0, w(m + 1, n))− u(x, y, x0, y0, w(m,n)) =

= ∆wu(x, y, x0, y0, w(m,n))∆1w(m,n). (4.1)

From (4.1) we have

∆n∆mu(x, y, x0, y0, w(m,n)) = ∆wu(x, y, x0, y0, w(m,n + 1))∆1w(m,n + 1)−

−∆wu(x, y, x0, y0, w(m,n))∆1w(m,n) =

= ∆wu(x, y, x0, y0, w(m,n + 1))∆1w(m,n + 1)−

−∆wu(x, y, x0, y0, w(m,n))∆1w(m,n + 1)+

+∆wu(x, y, x0, y0, w(m,n))∆1w(m,n + 1)−

−∆wu(x, y, x0, y0, w(m,n))∆1w(m,n) =

= [∆wu(x, y, x0, y0, w(m,n + 1))−

−∆wu(x, y, x0, y0, w(m,n))]∆1w(m,n + 1)+

+∆wu(x, y, x0, y0, w(m,n))∆2∆1w(m,n) =

= B(x, y, x0, y0, w(m,n))∆1w(m,n + 1)+
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+φ(x, y, x0, y0, w(m,n))∆2∆1w(m,n). (4.2)

Now keeping x, y,m fixed in (4.2), set n = t and sum over t from y0 to y− 1,

and then keeping x, y, t fixed in the resulting inequality, set m = s and sum over s

from x0 to x− 1, to obtain

u(x, y, x0, y0, w(x, y)) = u(x, y, x0, y0, u0) +
x−1∑
s=x0

y−1∑
t=y0

B(x, y, x0, y0, w(s, t))+

+
x−1∑
s=x0

y−1∑
t=y0

φ(x, y, x0, y0, w(s, t))∆2∆1w(s, t). (4.3)

If w(x, y) is any solution of (2.2), then the result (2.4) follows from (4.3),

(3.1) and (2.2). The proof is complete.

5. Some applications

In this section we use the formulae given in Theorems 1 and 2 to study

the boundedness of the solutions of perturbed finite difference equation (P ) under

some suitable conditions on the functions involved in (P ). We say that the solution

u(x, y, x0, y0, u0) of (E) is globally uniformly stable if there exists a constant M > 0

such that |u(x, y, x0, y0, u0)| ≤ M |u0|, for f(x, y) ∈ N(x0, y0) and |u0| < ∞.

We shall need the following special version of the inequality established be

Pachpatte in [8,Theorem 1].

Lemma. Let u(x, y) and h(x, y) be real-valued nonnegative functions defined

on N2
0 and c ≥ 0 be a constant. If

u(x, y) ≤ c +
x−k∑
s=0

y−1∑
t=0

h(s, t)u(s, t),

for x, y ∈ N0, then

u(x, y) ≤ c
x−1∏
s=0

[
1 +

y−1∑
t=0

h(s, t)

]
,

for x, y ∈ N0.

We first give the following application of the variation of constants formula

established in Theorem 1.
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Theorem 3. Let the solution u(x, y, x0, y0, u0) of (E) be globally uniformly

stable and the hypothesis of Theorem 1 hold. Further, suppose that

|φ−1(x + 1, y, x0, y0, w(x, y))[A(x, y, x0, y0, w(x, y))+

+g(x, y, v(x, y, x0, y0, u0))| ≤ p(x, y)|w(x, y)|], (5.1)

for (x, y) ∈ N(x0, y0) where p(x, y) is a real-valued nonnegative function defined on

N(x0, y0) and
x−1∏
s=x0

[
1 +

y−1∑
t=y0

p(s, t)

]
< ∞, (5.2)

for (x, y) ∈ N(x0, y0). Then any solution v(x, y, x0, y0, u0) to (P ) is bounded for

(x, y) ∈ N(x0, y0).

Proof. By Theorem 1, any solution v(x, y, x0, y0, u0) of (P ) satisfies

v(x, y, x0, y0, u0) = u(x, y, x0, y0, w(x, y)), w(x, y0) = w(x0, y) = u0, (5.3)

where w(x, y) is given by (3.5) is a solution of (2.2). Using (3.5) and (5.1) we have

|w(x, y)| ≤ |u0|+
x−1∑
s=x0

y−1∑
t=y0

|φ−1(s + 1, t, x0, y0, w(x, t))×

×[A(s, t, x0, y0, w(s, t)) + g(s, t, v(s, t, x0, y0, y0))]| ≤

≤ |u0|+
x−1∑
s=x0

y−1∑
t=y0

p(s, t)|w(s, t)|. (5.4)

Now a suitable application of Lemma to (5.4) yields

|w(x, y)| ≤ |u0|
x−1∏
s=x0

[
1 +

y−1∑
t=y0

p(s, t)

]
. (5.5)

The right hand side of (5.5) can be made sufficiently small by using (5.2) and

assuming that |u0| is sufficiently small, i.e.

|w(x, y)| ≤ ε, (5.6)

where ε > 0 is arbitrary, constant. From (5.3) we have

|v(x, y, x0, y0, u0)| = |u(x, y, x0, y0, w(x, y)| (5.7)

From the global uniform stability of the solution u(x, y, x0, y0, u0) of (E) and

(5.6) and (5.7) we have

|v(x, y, x0, y0, u0)| ≤ Mε,
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which implies the boundedness of the solution of (P ). The proof is complete.

We next give the following application of the variation of constants formula

established in Theorem 2.

Theorem 4. Assume that the hypotheses of Theorem 2 hold and the functions

involved in (2.4) satisfy

x−1∑
s=x0

y−1∑
t=y0

|B(x, y, x0, y0, w(x, y))| ≤ M1, (5.8)

|φ(x, y, x0, y0, w(x, y))φ−1(s + 1, t, x0, y0, w(s, t))| ≤ M2, (5.9)

|A(x, y, x0, y0, w(x, y)) + g(x, y, v(x, y, x0, y0, u0))| ≤

≤ p(x, y)|v(x, y, x0, y0, u0)|, (5.10)

where M1 and M2 are nonnegative constants and p(x, y) is a real-valued nonnegative

function defined on N(x0, y0) and

x−1∏
s=x0

[
1 +

y−1∑
t=y0

p(s, t)

]
< ∞, (5.11)

for (x, y) ∈ N(x0, y0). Then for every bounded solution u(x, y, x0, y0, u0) of (E) for

(x, y) ∈ N(x0, y0), the corresponding solution v(x, y, x0, y0, u0) of (P ) is bounded for

(x, y) ∈ N .

The proof of this theorem follows by using (5.8)-(5.10) in (2.4) and applying

Lemma and condition (5.11). Here we omit the details.

We note that the results given in Theorem 1-4 can very easily be extended

when the perturbation term g involved in (P ) is of the more general type i.e. when

the equation (P ) is of the form

∆2∆1v(x, y) = f(x, y, v(x, y)) + g(x, y, v(x, y), T v(x, y)),

v(x, y0) = v(x0, y) = u0, (P ′)

where

Tv(x, y) =
x−1∑
s=x0

y−1∑
t=y0

h(x, y, s, t, v(s, t)).

The formulations of such results corresponding to the equations (E) and

(P ′) are very close to that of the results given in the above theorems with suitable

modifications and hence we do not discuss the details.
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