STUDIA UNIV. "BABEŞ-BOLYAI", MATHEMATICA, Volume XLVI, Number 1, March 2001

EXPONENTIAL STABILITY OF EVOLUTION OPERATORS

DAN RADU LAŢCU AND PETRE PREDA

Abstract. The aim of this paper is to give some sufficient, respectively necessary and sufficient conditions, for the exponential stability of evolution operators in infinite-dimensional spaces. The obtained results are like those, of Datko-type, for evolutionary processes which are linear operators-valued.

1. Introduction

Let X be a Banach space and let $(X_t)_{t\geq 0}$ be a family of parts of X.

Definition 1. The family of applications $\Phi(t, t_0) : X_{t_0} \to X_t, t \ge t_0 \ge 0$, will be called an evolution operator in X, if the following conditions are satisfied:

i) $\Phi(t,t)x = x$, for all $t \ge 0$ and $x \in X_t$.

ii) $\Phi(t, s)\Phi(s, t_0) = \Phi(t, t_0)$, for all $t \ge s \ge t_0 \ge 0$.

iii) $\Phi(\cdot, s)x : [s, \infty) \to X$ is continuous, for all $s \ge 0$ and $x \in X_s$.

iv) There is a nondecreasing function $p(\cdot) : \mathbb{R}_+ \to (0, \infty)$, such that

 $\|\Phi(t,s)x\| \le p(t-s)\|x\|$, for all $t \ge s \ge 0$ and $x \in X_s$.

Remark 1. Condition iv) can be replaced by

v) There are $M, \omega > 0$ such that

$$\|\Phi(t,s)x\| \le M e^{\omega(t-s)} \|x\|,$$

for all $t \geq s \geq 0$ and $x \in X_s$.

Proof. Let iv) be satisfied and let $t \ge s \ge 0$ and $x \in X_s$. Then there are $n \in \mathbb{N}$ and $r \in [0, 1)$ such that t - s = n + r. We have

 $\|\Phi(t,s)x\| \le p(t-s-n)\|\Phi(s+n,s)x\| \le p(1)^{n+1}\|x\|.$

¹⁹⁹¹ Mathematics Subject Classification. 34D05, 93D20.

Let $\omega > \max\{0, \ln p(1)\}$. Then

 $\|\Phi(t,s)x\| \le p(1)e^{\omega n} \|x\| \le p(1)e^{\omega(t-s)} \|x\|.$

The converse is obviously. \Box

In the sequel we will denote by M and ω those constants which satisfy condition v).

Definition 2. The evolution operator $\Phi(\cdot, \cdot)$ will be called exponentially stable, if there are $\nu > 0$ and a function $N(\cdot) : \mathbb{R}_+ \to (0, \infty)$ such that

$$\|\Phi(t,t_0)x\| \le N(t_0)e^{-\nu(t-t_0)}\|x\|,$$

for all $t \ge t_0 \ge 0$ and $x \in X_{t_0}$.

Remark 2. Let $\Phi(\cdot, \cdot)$ be an evolution operator. The following assertions are equivalent:

- (1) $\Phi(\cdot, \cdot)$ is exponentially stable.
- (2) There are $\nu > 0$ and $N(\cdot) : \mathbb{R}_+ \to (0, \infty)$ such that

$$\|\Phi(t,t_0)x\| \le N(s)e^{-\nu(t-s)}\|\Phi(s,t_0)x\|,$$

for all $t \ge s \ge t_0 \ge 0$ and $x \in X_{t_0}$.

Definition 3. The evolution operator $\Phi(\cdot, \cdot)$ will be called uniformly exponentially stable, if there are $N, \nu > 0$ such that

$$\|\Phi(t,t_0)x\| \le Ne^{-\nu(t-t_0)} \|x\|,$$

for all $t \ge t_0 \ge 0$ and $x \in X_{t_0}$.

Remark 3. The evolution operator $\Phi(\cdot, \cdot)$ is uniformly exponentially stable if and only if there are $N, \nu > 0$ such that

$$\|\Phi(t,t_0)x\| \le Ne^{-\nu(t-s)} \|\Phi(s,t_0)x\|,$$

for all $t \ge s \ge t_0 \ge 0$ and $x \in X_{t_0}$.

Lemma. Let $\Phi(\cdot, \cdot)$ be an evolution operator. If there are r > 0 and a continuous function $g: [r, \infty) \to (0, \infty)$ such that

$$\begin{cases} \inf_{t>r} g(t) < 1, \\ \|\Phi(t,t_0)x\| \le g(t-t_0)\|x\|, \text{ for all } t_0 \ge 0, \ t \ge t_0 + r \text{ and } x \in X_{t_0} \end{cases}$$

then $\Phi(\cdot, \cdot)$ is uniformly exponentially stable.

Proof. Let $\delta > r$ such that $g(\delta) < 1$.

For $t \ge t_0 \ge 0$ there is $n \in \mathbb{N}$ such that $n\delta \le t - t_0 < (n+1)\delta$. Let $x \in X_{t_0}$. Then

$$\|\Phi(t,t_0)x\| \le M e^{\omega(t-n\delta-t_0)} \|\Phi(t_0+n\delta,t_0)x\| \le$$

$$\leq M e^{\omega(t-n\delta-t_0)} g(\delta)^n \|x\|.$$

Denoting $\nu = \frac{-\ln g(\delta)}{\delta} > 0$, it follows that

$$\|\Phi(t,t_0)x\| \le M e^{\omega\delta} e^{\nu\delta} e^{-\nu(t-t_0)} \|x\|.$$

Denoting $N = M e^{(\omega + \nu)\delta}$, we obtain

$$\|\Phi(t,t_0)x\| \le Ne^{-\nu(t-t_0)} \|x\|,$$

for $t \ge t_0 \ge 0$ and $x \in X_{t_0}$. \Box

Theorem 1. The evolution operator $\Phi(\cdot, \cdot)$ is uniformly exponentially stable if and only if there is $K \in (0, \infty)$ such that

$$\int_t^\infty \left(\int_u^{u+1} \|\Phi(s,t)x\| ds\right) du \le K \|x\|, \text{ for all } t \ge 0 \text{ and } x \in X_t.$$

Proof. Let $\Phi(\cdot, \cdot)$ be an evolution operator which satisfy, for a K > 0, the condition of the hypothesis. We have

$$\|\Phi(t,t_0)x\| \le Me^{\omega(t-s)} \|\Phi(s,t_0)x\|,$$

 \mathbf{SO}

$$e^{\omega s} \|\Phi(t,t_0)x\| \le M e^{\omega t} \|\Phi(s,t_0)x\|$$
, for $t \ge s \ge t_0 \ge 0$ and $x \in X_{t_0}$.

Let $t \ge t_0 + 1$. Integrating successively the last relation we obtain

$$\frac{1}{\omega}(e^{\omega} - 1)e^{\omega u} \|\Phi(t, t_0)x\| \le M e^{\omega t} \int_u^{u+1} \|\Phi(s, t_0)x\| ds,$$

for $u \in [t_0, t-1]$, and so

$$\frac{e^{\omega}-1}{\omega^2}(e^{\omega t-\omega}-e^{\omega t_0})\|\Phi(t,t_0)x\| \le$$
$$\le Me^{\omega t}\int_{t_0}^{t-1}\left(\int_u^{u+1}\|\Phi(s,t_0)x\|ds\right)du \le MKe^{\omega t}\|x\|.$$

It follows that

$$e^{-\omega} \|\Phi(t,t_0)x\| \le e^{-\omega(t-t_0)} \|\Phi(t,t_0)x\| + \frac{MK\omega^2}{e^{\omega} - 1} \|x\| \le M\left(1 + \frac{K\omega^2}{e^{\omega} - 1}\right) \|x\|.$$

For $t_0 \leq t < t_0 + 1$ and $x \in X_{t_0}$ we have

$$\|\Phi(t, t_0)x\| \le M e^{\omega(t-t_0)} \|x\| \le M e^{\omega} \|x\|.$$

Denoting $L = Me^{\omega} \left(1 + \frac{K\omega^2}{e^{\omega} - 1} \right)$. we obtain

$$\|\Phi(t,t_0)x\| \le L\|x\|$$
, for all $t \ge t_0 \ge 0$ and $x \in X_{t_0}$.

It follows that, for $t \ge s \ge t_0 \ge 0$, $x \in X_{t_0}$, we have

$$\|\Phi(t,t_0)x\| = \|\Phi(t,s)\Phi(s,t_0)x\| \le L\|\Phi(s,t_0)x\|.$$

When $t \ge t_0 + 1$, we obtain

$$\|\Phi(t,t_0)x\| \le L \int_u^{u+1} \|\Phi(s,t_0)x\| ds, \text{ for all } u \in [t_0,t-1],$$

and so

ble.

$$(t-1-t_0)\|\Phi(t,t_0)x\| \le L \int_{t_0}^{t-1} \left(\int_u^{u+1} \|\Phi(s,t_0)x\|ds\right) du \le LK\|x\|.$$

It follows by the preceding lemma that $\Phi(\cdot, \cdot)$ is uniformly exponentially sta-

The converse is immediately by direct calculation. \Box

Theorem 2. Let $\Phi(\cdot, \cdot)$ be an evolution operator. If there are $\alpha > 0$ and a function $H(\cdot) : \mathbb{R}_+ \to (0, \infty)$ such that

$$\int_t^\infty \left(\int_u^{u+1} e^{\alpha(s-t)} \|\Phi(s,t)x\| ds\right) du \le H(t) \|x\|, \text{ for all } t \ge 0 \text{ and } x \in X_t,$$

then there is a function $N(\cdot): \mathbb{R}_+ \to (0,\infty)$ such that

$$\|\Phi(t,t_0)x\| \le N(t_0)e^{-\alpha(t-t_0)}\|x\|$$
, for all $t \ge t_0 \ge 0$ and $x \in X_{t_0}$.

Hence $\Phi(\cdot, \cdot)$ will be exponentially stable.

Proof. Let $t_0 \ge 0$, $t \ge t_0 + 1$ and $x \in X_{t_0}$. We have

$$\|\Phi(t,t_0)x\| \le M e^{\omega(t-s)} \|\Phi(s,t_0)x\|, \text{ for } s \in [t_0,t].$$

It follows that

$$e^{-\alpha t_0} e^{(\omega+\alpha)s} \|\Phi(t,t_0)x\| \le M e^{\omega t} e^{\alpha(s-t_0)} \|\Phi(s,t_0)x\|,$$

and by integration, for $u \in [t_0, t-1]$, we have

$$e^{-\alpha t_0} \frac{e^{\omega + \alpha} - 1}{\omega + \alpha} e^{(\omega + \alpha)u} \|\Phi(t, t_0)x\| \le M e^{\omega t} \int_u^{u+1} e^{\alpha(s - t_0)} \|\Phi(s, t_0)x\| ds,$$

and so

$$(e^{(\omega+\alpha)(t-1)} - e^{(\omega+\alpha)t_0}) \|\Phi(t,t_0)x\| \le \le M e^{\omega t} \int_{t_0}^{t-1} \left(\int_u^{u+1} e^{\alpha(s-t_0)} \|\Phi(s,t_0)x\| ds \right) du,$$

from which

$$(e^{\alpha(t-t_0)-(\omega+\alpha)} - e^{-\omega(t-t_0)}) \|\Phi(t,t_0)x\| \le M \frac{(\omega+\alpha)^2}{e^{\omega+\alpha}-1} H(t_0) \|x\|$$

It follows that

$$e^{\alpha(t-t_0)} \|\Phi(t,t_0)x\| \le e^{\omega+\alpha} \left(M \frac{(\omega+\alpha)^2}{e^{\omega+\alpha}-1} H(t_0) + M\right) \|x\|$$

Denoting
$$N(t_0) = M e^{\omega + \alpha} \left(\frac{(\omega + \alpha)^2}{e^{\omega + \alpha - 1}} H(t_0) + 1 \right)$$
, we obtain
 $\|\Phi(t, t_0)x\| \le N(t_0) e^{-\alpha(t - t_0)} \|x\|.$

For $t_0 \leq t < t_0 + 1$ and $x \in X_{t_0}$ we have

$$\|\Phi(t, t_0)x\| \le M e^{\omega} e^{\alpha} e^{-\alpha(t-t_0)} \|x\|.$$

So, it follows that

$$\|\Phi(t,t_0)x\| \le N(t_0)e^{-\alpha(t-t_0)}\|x\|$$
, for all $t \ge t_0 \ge 0$ and $x \in X_{t_0}$.

Using in the proofs of the theorems the p power of the norm, respectively the p power of the inner integral $(p \in [1, \infty))$, we obtain the following results.

Corollary 1. Let $\Phi(\cdot, \cdot)$ be an evolution operator and $p \in [1, \infty)$ be arbitrarily. The following assertions are equivalent.

1) $\Phi(\cdot, \cdot)$ is uniformly exponentially stable.

2) There is $K \in (0, \infty)$ such that

$$\int_t^\infty \left(\int_u^{u+1} \|\Phi(s,t)x\|^p ds\right) du \le K \|x\|^p, \text{ for all } t \ge 0 \text{ and } x \in X_t.$$

3) There is $K \in (0, \infty)$ such that

$$\int_t^\infty \left(\int_u^{u+1} \|\Phi(s,t)x\| ds\right)^p du \le K \|x\|^p, \text{ for all } t \ge 0 \text{ and } x \in X_t.$$

Corollary 2. Let $\Phi(\cdot, \cdot)$ be an evolution operator and $p \in [1, \infty)$ be arbitrar-

1) If there are $\alpha > 0$ and a function $H(\cdot) : \mathbb{R}_+ \to (0, \infty)$ such that

$$\int_t^\infty \left(\int_u^{u+1} e^{\alpha(s-t)} \|\Phi(s,t)x\|^p ds\right) du \le H(t) \|x\|^p, \text{ for all } t \ge 0 \text{ and } x \in X_t,$$

then there is $N(\cdot): \mathbb{R}_+ \to (0,\infty)$ such that

$$\|\Phi(t,t_0)x\| \le N(t_0)e^{-\frac{\alpha}{p}(t-t_0)}\|x\|$$
, for all $t \ge t_0 \ge 0$ and $x \in X_{t_0}$.

2) If there are a function
$$H(\cdot): \mathbb{R}_+ \to (0,\infty)$$
 and $\alpha > 0$ such that

$$\int_t^\infty \left(\int_u^{u+1} e^{\alpha(s-t)} \|\Phi(s,t)x\| ds\right)^p du \le H(t) \|x\|^p, \text{ for all } t \ge 0 \text{ and } x \in X_t,$$

then there is $N(\cdot): \mathbb{R}_+ \to (0,\infty)$ such that

$$\|\Phi(t,t_0)x\| \le N(t_0)e^{-\alpha(t-t_0)}\|x\|$$
, for all $t \ge t_0 \ge 0$ and $x \in X_{t_0}$.

References

ily.

- W.A. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, vol.629, Springer-Verlag, Berlin, 1978.
- R. Datko, Uniform asymptotic stability of evolution processes in Banach spaces, Siam. J. Math. Anal. 3(1973), 428-445.
- [3] J.L. Massera, J.J. Schäffer, Linear Differential Equations and Functional Analysis, Annals of Math., Vol.67, No.3, 1958.
- [4] M. Megan, P. Preda, Exponential dichotomy of evolutionary processes in Banach spaces, Czechosl. Math. Journal, 35(110), 1985, 312-323.

West University, Dept. of Mathematics, Bd. V. Pîrvan, 1900 Timişoara, Romania

 $E\text{-}mail\ address: \verb"latcu@info.uvt.ro"$