SOME PROPERTIES OF THE INTEGRAL OPERATORS IN UNIVALENT FUNCTION

R. AGHALARY AND S.R. KULKARNI

Abstract. In this paper we have obtained some properties of the integral operators on the lines of Miller and Mocanu [2], Nour [4], after generalizing several lemmas of the above mentioned authors needed in the course of research.

1. Introduction

Let \mathcal{A} denote the class of functions analytic in the unit disc $U = \{z : |z| < 1\}$ and normalized by f(0) = f'(0) - 1 = 0. Also let S denote the subclass of \mathcal{A} consisting of (normalized) functions f which are univalent in U. A function f(z) in S is said to be starlike of order α if and only if

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \quad (z \in U, \ 0 \le \alpha < 1).$$

Let $S^*(\alpha)$ denote the class of all functions which are starlike of order α in U. It is well known that $S^*(\alpha) \subseteq S^*(0) \equiv S^*$.

Let f, g be analytic in the unit disc U. We call the function f is a subordinate to g, written $f \prec g$, if there exists an analytic function ϕ with $\phi(0) = 0$ and $|\phi(z)| < 1$ such that $f(z) = g(\phi(z))$.

Let $\rho(A, B)$ consist of all functions g that are analytic in U with g(0) = 1and satisfy the condition

$$g(z) \prec \frac{1+Az}{1+Bz} \quad (-1 \le B < A \le 1).$$

Finally a function $f(z) \in \mathcal{A}$ is said to be in the class $S^*(A, B)$ if and only if

$$\frac{zf'(z)}{f(z)} \in \rho(A,B)$$

In the present paper we will investigate some properties of the integral operators. We shall make use of the results due to Miller and Mocanu [2] and Noor [4]. For the sake of convenience, we recall those results as the following lemmas:

Lemma 1 (Miller and Mocanu [2]). Let $\alpha \ge 0$, $\beta > 0$ and $\alpha + \delta = \beta + \gamma > 0$ and let the functiona $\varphi(z)$ and $\phi(z)$ be in the class D defined by

 $D := \{\theta: \ \theta(z) \ analytic \ in \ U, \ \theta(z) \neq 0, \ and \ \theta(0) = 1\}.$

Suppose also that

$$\delta + Re\left\{\frac{z\varphi'(z)}{\varphi(z)}\right\} \ge \gamma \quad and \quad Re\left\{\frac{z\phi'(z)}{\phi(z)}\right\} \le \beta w(0)$$

where $w(\rho)$ is given, in terms of the Gaussian hypergeometric function $_2F_1$, by

$$w(\rho) = \frac{1}{\beta} \left[\frac{(\beta + \gamma)2^{-2\beta(1-\rho)}}{{}_2F_1[2\beta(1-\rho), \beta + \gamma; \beta + \gamma + 1; -1]} - \gamma \right]$$
$$(\max\{(\beta - \gamma - 1)/2\beta, -\gamma/\beta\} \le \rho < 1)$$

Then for the integral operator I defined by

$$I(f)(z) = \left(\frac{\beta + \gamma}{z^{\gamma}\phi(z)} \int_{0}^{z} \{f(t)\}^{\alpha}\varphi(t)t^{\delta - 1}dt\right)^{1/\beta}$$

we have

 $\beta > 0,$

$$I(S^*) \subset \begin{cases} S^* & (\phi(z) \neq 1) \\ S^*(w(0)) & (\phi(z) \equiv 1) \end{cases}$$

Lemma 2 (Noor [4]). Let $\rho_j(z) \in \rho(A, B)$, (j = 1, 2). Then, for $\alpha > 0$ and

$$\frac{\alpha\rho_1(z)+\beta\rho_2(z)}{\alpha+\beta}\in\rho(A,B).$$

2. Some results related to the function space $\rho(A, B)$

Lemma 3. Let $\alpha \ge 0$ and D(z) maps U onto a (possibly many-sheeted) region which is starlike with respect to the region. Let N(z) be analytic in E with N(0) = D(0) = 0.

Then

$$(1-\alpha)\frac{N(z)}{D(z)} + \alpha\frac{N'(z)}{D'(z)} \prec \frac{1+Az}{1+Bz} \Rightarrow \frac{N(z)}{D(z)} \prec \frac{1+Az}{1+Bz}$$

where $(1 \leq B < A \leq 1)$.

 $\mathbf{Proof.}\ \mathrm{Let}$

$$\frac{N(z)}{D(z)} = \frac{1 + Aw(z)}{1 + Bw(z)}.$$

D(z) 1 + Bw(z)Clearly w(0) = 0. We will prove that |w(z)| < 1, $\forall z \in U$ for, if not, by

Jack's lemma [1] there exists $z_0 \in U$, such that $|w(z_0)| = 1$ and $z_0w'(z_0) = kw(z_0)$, $k \ge 1$. We consider

$$\geq$$
 1. We consider

$$\varphi(z) = (1-\alpha)\frac{N(z)}{D(z)} + \alpha \frac{N'(z)}{D'(z)}$$

since

$$\frac{N'(z)}{D'(z)} = \frac{N(z)}{D(z)} + \frac{D(z)}{D'(z)} \left(\frac{(A-B)w'(z)}{(1+Bw(z))^2}\right).$$

 So

$$\begin{split} \varphi(z_0) &= (1-\alpha) \frac{N(z_0)}{D(z_0)} + \alpha \frac{N'(z_0)}{D'(z_0)} = \\ &= \frac{N(z_0)}{D(z_0)} + \alpha \left(\frac{D(z_0)}{z_0 D'(z_0)} \right) \left(\frac{(A-B)kw(z_0)}{(1+Bw(z_0))^2} \right). \end{split}$$

Now

$$\left|\frac{\varphi(z_0) - 1}{B\varphi(z_0) - A}\right| = \left|\frac{\frac{(A - B)w(z_0)}{1 + Bw(z_0)}\left(1 + \frac{D(z_0)}{z_0 D'(z_0)}\frac{k\alpha}{1 + Bw(z_0)}\right)}{\frac{(B - A)}{1 + Bw(z_0)}\left(1 - \frac{D(z_0)k\alpha Bw(z_0)}{z_0 D'(z_0)(1 + Bw(z_0))}\right)}\right|$$

or

$$\left|\frac{\varphi(z_0) - 1}{B\varphi(z_0) - A}\right| = \left|\frac{1 + \frac{D(z_0)k\alpha}{z_0 D'(z_0)(1 + Bw(z_0))}}{1 - \frac{D(z_0)k\alpha\beta w(z_0)}{z_0 D'(z_0)(1 + \beta w(z_0))}}\right|$$

Therefore

$$\begin{aligned} \left| \frac{\varphi(z_0) - 1}{B\varphi(z_0) - A} \right| > 1 \iff \left| 1 + \frac{k\alpha D(z_0)}{z_0 D'(z_0)(1 + Bw(z_0))} \right| > \\ > \left| 1 - \frac{k\alpha w(z_0) D(z_0)}{z_0 D'(z_0)(1 + Bw(z_0))} \right| \end{aligned}$$

 But

$$\begin{split} \left| 1 + \frac{k\alpha D(z_0)}{z_0 D'(z_0)(1 + Bw(z_0))} \right|^2 - \left| 1 - \frac{k\alpha Bw(z_0)D(z_0)}{z_0 D'(z_0)(1 + Bw(z_0))} \right|^2 = \\ &= (1 - B)^2 \left| \frac{D(z_0)}{z_0 D'(z_0)} \right|^2 \left| \frac{k\alpha}{1 + Bw(z_0)} \right|^2 + 2k\alpha Re\left(\frac{D(z_0)}{z_0 D'(z_0)}\right) > 0. \end{split}$$
 Hence
$$\begin{aligned} \left| \frac{\varphi(z_0) - 1}{B\varphi(z_0) - A} \right| > 1 \end{split}$$

R. AGHALARY AND S.R. KULKARNI

and this is contradiction with this fact that $\varphi(z) \prec \frac{1+Az}{1+Bz}$ so |w(z)| < 1 and the proof is complete.

By putting $\alpha = 0$ we get the result due to Miller and Mocanu [3] as:

Corollary 1. Let the functions M(z) and N(z) be analytic in U with M(0) = N(0) = 0 and let γ be a real number. Suppose also that N(z) maps U onto a (possibly many-sheeted) region which is starlike with respect to the origin. Then

$$Re\left\{\frac{M'(z)}{N'(z)}\right\} > \gamma, \quad (z \in U) \; \Rightarrow \; Re\left(\frac{M(z)}{N(z)}\right) > \gamma, \; (z \in U).$$

Lemma 4. Let $\alpha \ge 0$ and D(z) maps U onto a (possibly many-sheeted) region which is starlike with respect to the region. Let N(z) be analytic in E with N(0) = D(0) = 0 and $\frac{N'(0)}{D'(0)} = k$ then

$$(1-\alpha)\frac{N(z)}{kD(z)} + \alpha\frac{N'(z)}{kD'(z)} \prec \frac{1+Az}{1+Bz} \Rightarrow \frac{N(z)}{kD(z)} \prec \frac{1+Az}{1+Bz}$$

(where $-1 \leq B < A \leq 1$).

Proof. Proceeding as in the proof of Lemma 3 we get our result.

By putting $\alpha = 0$ we get the result due to Reddy and Padmanabhan [5] as: **Corollary 2.** Let the functions N(z) and D(z) be analytic in U and let D(z)maps U onto a many-sheeted starlike region. Suppose also that N(0) = D(0) = 0, $\frac{N'(0)}{D'(0)} = k$ and $\frac{N'(z)}{kD'(z)} \in \rho(A, B)$, $(k \ge 1)$ then $\frac{N(z)}{kD(z)} \in \rho(A, B)$. **Lemma 5.** Let $\alpha > 0$ and $f \in A$. Then

Lemma 5. Let $\alpha > 0$ and $j \in A$. Then

$$(1-\lambda)\left(\frac{f(z)}{z}\right)^{\alpha-1}f'(z) + \lambda\left(\frac{f(z)}{z}\right)^{\alpha} \in \rho(A,B) \Rightarrow \left(\frac{f(z)}{z}\right)^{\alpha} \in \rho(A,B)$$

(where $-1 \leq B < A \leq 1$ and $0 \leq \lambda \leq 1$).

Proof. Let

$$\left(\frac{f(z)}{z}\right)^{\alpha} = \frac{1 + Aw(z)}{1 + Bw(z)}.$$

Clearly w(0) = 0. We will prove |w(z)| < 1, $\forall z \in U$. For, if not, by Jack's lemma [1] there exists $z_0 \in E$, such that $|w(z_0)| = 1$ and $z_0w'(z_0) = kw(z_0)$, $k \ge 1$. Let

$$\psi(z) = (1 - \lambda) \left(\frac{f(z)}{z}\right)^{\alpha - 1} f'(z) + \lambda \left(\frac{f(z)}{z}\right)^{\alpha}.$$

But

$$\alpha\left(\frac{zf'(z) - f(z)}{z^2}\right)\left(\frac{f(z)}{z}\right)^{\alpha - 1} = \frac{(A - B)w'(z)}{(1 + Bw(z))^2}$$

or

$$f'(z)\left(\frac{f(z)}{z}\right)^{\alpha-1} = \frac{1+Aw(z)}{1+Bw(z)} + \frac{(A-B)zw'(z)}{\alpha(1+Bw(z))^2}$$

Hence

$$\psi(z_0) = \frac{1 + Aw(z_0)}{1 + Bw(z_0)} + \frac{(1 - \lambda)kw(z_0)(A - B)}{\alpha(1 + Bw(z_0))^2}$$

If we take $\phi(z) = \frac{(1-\lambda)k}{\alpha(1+Bw(z))}$ then we have

$$\left|\frac{\psi(z_0) - 1}{B\psi(z_0) - A}\right| = \left|\frac{\frac{(A - B)w(z_0)}{1 + Bw(z_0)}\left(1 + \frac{(1 - \lambda)k}{\alpha(1 + Bw(z_0))}\right)}{\frac{B - A}{1 + Bw(z_0)}\left(1 - \frac{(1 - \lambda)kw(z_0)B}{\alpha(1 + Bw(z_0))}\right)}\right| = \left|\frac{1 + \phi(z_0)}{1 - \phi(z_0)Bw(z_0)}\right|$$

But the right hand side of above equivality is greater than 1, because

$$|1 + \phi(z_0)|^2 - |1 - Bw(z_0)\phi(z_0)|^2 = (1 - B^2)|\phi(z_0)|^2 + \frac{2(1 - \lambda)k}{\alpha} > 0$$

and this is contradiction with hypothesis, so |w(z)| < 1 and the proof is complete.

By putting $\lambda = 0$ we get the result due to Noor [4] as **Corollary 3.** If $f(z) \in \mathcal{A}$ and $\left(\frac{f(z)}{z}\right)^{\alpha-1} f'(z) \in \rho(A, B)$ then $\left(\frac{f(z)}{z}\right)^{\alpha} \in \rho(A, B)$ (where $\alpha \in N = \{1, 2, 3, ...\}$).

3. Some properties of the integral operators

Theorem 1. Let $g \in S^*(A, B)$, then the function F(z) defined by

$$F(z) = \left[\alpha^{-1} \int_0^z g(t)^{1/\alpha} t^{-1} dt\right]^{\alpha}$$

is in the class $S^*(A, B)$, $(\alpha > 0)$.

Proof. We know from Lemma 1 that $F(z) \in S^*$. But with direct calculation we can write

$$\frac{zg'(z)}{g(z)} = (1-\alpha)\frac{zF'(z)}{F(z)} + \alpha \left(1 + \frac{zF''(z)}{F'(z)}\right)$$

So, by hypothesis,

$$(1-\alpha)\frac{zF'(z)}{F(z)} + \alpha\left(1 + \frac{zF''(z)}{F'(z)}\right) \in \rho(A, B).$$

$$(3.1)$$

We consider N(z) = zF'(z) and D(z) = F(z), then functions N(z) and D(z)

satisfy the conditions of Lemma 3. Now from (3.1) we have

$$(1-\alpha)\frac{N(z)}{D(z)} + \alpha \frac{N'(z)}{D'(z)} \in \rho(A, B).$$

So, by lemma 3,

$$\frac{zF'(z)}{F(z)} = \frac{N(z)}{D(z)} \in \rho(A,B)$$

and this completes the proof.

Theorem 2. Let $\alpha > 0$, $\gamma > 0$, $f(z) \in \mathcal{A}$ and F(z) be defined by

$$F(z) = \left(\frac{\alpha + \gamma}{z^{\gamma}} \int_0^z f(t)^{\alpha} t^{\gamma - 1} dt\right)^{1/\alpha}$$

then

$$\left(\frac{f(z)}{z}\right)^{\alpha} \in \rho(A,B) \Rightarrow \left(\frac{F(z)}{z}\right)^{\alpha} \in \rho(A,B).$$

Proof. Since

$$\alpha F'(z) = \left(\frac{-\gamma(\alpha+\gamma)}{z^{\gamma+1}} \int_0^z f(t)^\alpha t^{\gamma-1} dt + \frac{\alpha+\gamma}{z^{\gamma}} f(z)^\alpha z^{\gamma-1}\right) F(z)^{1-\alpha} = \\ = \left(-\frac{\gamma}{z} F(z)^\alpha + \frac{\alpha+\gamma}{z} f(z)^\alpha\right) F(z)^{1-\alpha}$$

 \mathbf{or}

$$\frac{\alpha}{\alpha+\gamma} \left(\frac{F(z)}{z}\right)^{\alpha-1} + \frac{\gamma}{\alpha+\gamma} \left(\frac{F(z)}{z}\right)^{\alpha} = \left(\frac{f(z)}{z}\right)^{\alpha}$$
(3.2)

But, by hypothesis, $\left(\frac{f(z)}{z}\right)^{-1} \in \rho(A, B)$. Therefore from (3.2) we have

$$\frac{\alpha}{\alpha+\gamma} \left(\frac{F(z)}{z}\right)^{\alpha-1} F'(z) + \frac{\gamma}{\alpha+\gamma} \left(\frac{F(z)}{z}\right)^{\alpha} \in \rho(A, B)$$
(3.3)

Hence from (3.3) and Lemma 5 we get the desired result.

Theorem 3. Let $\alpha > 1$, $f, g \in \mathcal{A}$ and function F(z) is defined by

$$F(z) = \left[\alpha^{-1} \int_0^z f(t)^{1/\alpha} g(t)^{(\alpha-1)/\alpha_t - 1} dt\right]^{\alpha}.$$
 (3.4)

 $\begin{array}{l} Then \; \frac{zg'(z)}{g(z)} \in \rho(A,B) \; and \; \frac{zf'(z)}{f(z)} \in \rho(A,B) \; \Rightarrow \; \frac{1}{\alpha} \frac{zF'(z)}{F(z)} \in \rho(A,B). \\ \textbf{Proof. It is clear, by Lemma 1, } F \in S^*. \; \text{By differentiation from (3.4) we get} \end{array}$

$$F'(z) = (f(z)^{1/\alpha}g(z)^{(\alpha-1)/\alpha_z-1})(F(z))^{(\alpha-1)/\alpha_z}$$

or

$$zF(z)^{(1-\alpha)/\alpha}F'(z) = f(z)^{1/\alpha}g(z)^{(\alpha-1)/\alpha}.$$
(3.5)

By differentiation from (3.5) we get

$$\left(1 + \frac{zF''(z)}{F'(z)}\right) + \left(\frac{1-\alpha}{\alpha}\right)\frac{zF'(z)}{F(z)} = \frac{1}{\alpha}\frac{zf'(z)}{f(z)} + \frac{\alpha-1}{\alpha}\frac{zg'(z)}{g(z)}.$$

But the right habd side of the above equality belongs to $\rho(A, B)$, by lemma

2. So we have

$$\left(1 + \frac{zF''(z)}{F'(z)}\right) + \left(\frac{1-\alpha}{\alpha}\right)\frac{zF'(z)}{F(z)} \in \rho(A, B).$$
(3.6)

Let N(z) = zF'(z) and $D(z) = \alpha F(z)$ then functions N(z) and D(z) satisfy addition of Lemma 3. But

the condition of Lemma 3. But

$$\left(1 + \frac{zF''(z)}{F'(z)}\right) + \frac{1 - \alpha}{\alpha} \frac{zF'(z)}{F(z)} = \alpha \frac{N'(z)}{D'(z)} + (1 - \alpha) \frac{N(z)}{D(z)}$$
(3.7)

So from relations (3.6), (3.7) and lemma 3 we have $\frac{N(z)}{D(z)} = \frac{zF'(z)}{\alpha F(z)} \in \rho(A, B)$

and the proof is complete.

References

- [1] Jack, I.S., Functions starlike and convex of order $\alpha,$ J. London Math. Soc. (2)3(1971), 469-474.
- Miller, S.S. and Mocanu, P.T., Classes of univalent integral operators, J. Math. Anal., 157(1991), 147-165.
- [3] Miller, S.S. and Mocanu, P.T., Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65(1978), 289-305.
- [4] Noor, K.I., On some univalent integral operators, J. Math. Anal. Appl., 128(1981), 586-592.
- [5] Reddy, G.L. and Padmanabhan, K.S., On analytic functions with reference to the Bernardi integral operator, Bull. Austral. Math. Soc., 25(1982), 387-396.

Department of Mathematics, Fergusson College, Pune, Maharashtra, India $\left(411004\right)$