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ON USING GENERICS FOR IMPLEMENTING ALGEBRAIC

STRUCTURES

VIRGINIA NICULESCU

Abstract. Object oriented programming and design patterns form a very

good framework for implementing a computational algebra system. Object

oriented programming offers different kinds of mechanisms for obtaining

high level of genericity; and these are also mechanisms for reusing.

The need to represent and work with abstract algebraic structures im-

plies the need for genericity. This could be achieved by using parametric

polymorphism or type polymorphism. We analyze in this article the suit-

ability of using parametric polymorphism, in an object-oriented program-

ming context, for implementation of algebraic structures, showing some

advantages but also some problems. The implementation issues are dis-

cussed for the particular case of the square matrices of a certain order.

The analysis emphasizes also general advantages of using parametric

types – such as type safety, but also some constrains forced by them.

1. Introduction

In modern programming, genericity and reusing are very important and
much discussed issues, and so there are different mechanisms to achieve them.
In object oriented programming we may distinct two main types of such mecha-
nisms: one based on inheritance of type polymorphism (or polymorphic types),
specific to pure object oriented languages, and another based on parametric
types [1].

Computer algebra provides a compelling application of parametric poly-
morphism, where various algebraic constructions, such as polynomials, series,
matrices, vector spaces, etc, are used over various different coefficient struc-
tures, which are typically rings or fields [2]. The work initiated by Jenks and
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Trager [11] led to the formulation of domain and category constructors in Ax-
iom [24, 10], and higher-order domain and category producing functions in
specialized language Aldor [3, 4].

Parametric genericity, initially represented in object oriented setting by
source code reuse mechanism as C++ templates, became more and more pop-
ular and other object oriented languages as Java and C# enhanced their new
versions with mechanisms that offer parametric types.

In C++ the template mechanism allows us not to create a single class, but
to specify only once the pattern for creation of some classes that are different
only by the type of some parameters. The template mechanism allows a very
high degree of flexibility, but it is considered in some literature not a really
parametric polymorphism mechanism since for each actual parameter a new
class is created

Both the NTL library for number theory [22] and the Linbox library for
symbolic linear algebra [6] use C++ templates to achieve genericity.

The mechanism which was included in Java since JDK 1.5 is considered
more efficient since just one class is created for each parameterized class. Also,
the mechanism of parameterized Java classes allows bounded polymorphism –
the specification of a certain behavior of parameters by interface implementa-
tion.
A similar mechanism is implemented in C# too.

A comparison between C++ templates and the extensions for generics of
the C# and Java languages based on their suitability for scientific computing
was done in [8]. These measurements suggest that both Java(TM) and C#
generics introduce only little run time overhead when compared with non-
parameterized implementations. With respect to scientific application, C#
generics have the advantage of allowing value types (including builtin types)
as parameters of generic classes and methods. Also, in [5] there is study about
the performance of generics for scientific computing in various programming
languages, based on a standard numeric benchmarks. The conclusion was that
in current implementations of generics must be improved before they are used
for efficiency-critical scientific applications.

Design patterns [7] are also very important when we need genericity and
reusing. They already showed there power, and for the case of a computer
algebra system they bring important advantages. Creational design pattern
are particularly important in this context, and the analysis in this paper is
focused on the suitability of using them in the specified languages, too.

An efficient design for a computer algebra system with certain advantages
has been presented in our previous papers [17, 18, 19]. This approach allows
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working not only with concrete algebraic structures, but also with abstract
algebraic structures. The advantages of this approach result from the usage
of:

• creational design patterns – which allow us to build not only a flexi-
ble numerical algebraic system, but also a general abstract algebraic
system (these bring the most important advantages of implementing
abstract algebraic structures);

• reflection and dynamic loading – which allow automatic conversions
between compatible structures, and also allow dynamic creation of
new classes that correspond to different algebras specified by the user;

• representation independence – which allows us to operate with alge-
braic elements independently of how their component values are rep-
resented.

Implementation of this previous approach was based on type polymor-
phism. Polymorphic types based on inheritance offer several advantages (a
greater flexibility, efficiency, conversions), but they have also important dis-
advantages: they cannot assure the homogeneity, and the possible errors are
identified and eventually treated only at the run time. Because of this it has
been advocated that the parametric polymorphism is more appropriate for the
implementation of the algebraic structures.

The Java Algebra System (JAS)[14, 13, 12] provides a software library
using generic types for algebraic computations implemented in the Java pro-
gramming language. Our idea of using the creational design patterns has been
used, but in the context of the Java generic types. The project emphasized
nice advantages of using Java (object-orientation, type safety, multi-threaded),
but also some inconveniences of using Java generics for a CAS related to type
erasure, dependent types, and performance.

2. General requirements for the algebraic structures
implementation

The main requirement is the possibility of working with abstract algebraic
structures like groups, rings, fields, etc. The user has to be allowed to define
concrete algebraic structures by using these abstractions.

This implies that we have to define abstract classes for elements of each
abstract algebraic structure.

New abstract algebraic structures may be built over other algebraic struc-
tures; for example polynomials and matrices. Polynomials are built over a
unitary commutative ring, and they also form a unitary commutative ring.



20 VIRGINIA NICULESCU

We may have polynomials or matrices that have different coefficient types:
real, complex, etc. Also, a polynomial or a matrix can be built over any kind
of algebraic unitary commutative ring (R,+, ∗), and they also form rings.

The Composite design pattern may be used to implement these kinds of
structures. Using the Composite pattern we may define polynomials over other
polynomials. Similar examples may be given for matrices – we can define
matrices over polynomials, or matrices over matrices. So, we may achieve the
flexibility imposed by our goal.

We will analyze in what it follows the possible solutions for general al-
gebraic structures implementation by considering two approaches: one based
on the classic C++ templates, and one based on generic classes as they are
implemented in Java.

First obvious conclusion is that the conversions will not be allowed any
more, but very often the mathematicians’ opinion was that it is enough if we
are able to operate only inside one algebraic structure.

2.1. Basic design. The basic algebraic structures are algebras with one or
two binary operations such as groups, rings, and fields.

Following the definition of the basic algebraic structures we have interfaces
that correspond to semigroups, monoids, groups, rings, unitary rings, divi-
sion rings, and fields. These interfaces characterize the elements of the alge-
braic structures and their behavior. So, we have interfaces such as GroupElem,

RingElem, etc.
The operations defined by these interfaces such as plus(), minus(), opposite(),

create new elements.
For concrete groups, rings, etc. concrete classes are built by implementing

the corresponding interfaces.
An algebraic structure is defined by the domain of its elements and by a set

of operations. The operations could have different properties (i.e. commuta-
tivity, neutral element, etc). These properties are characteristics of the entire
algebraic structure; they do not characterize each element of the domain. So,
these properties are specified into separate classes for which we normally have
to apply the Singleton pattern [7]; only one single instance would be not only
enough, but also necessary in order to assure a safe representation. These
classes can also be viewed as Abstract Factories [7], since they are able to
create products which are the neutral elements for the algebraic operations.

A factory class associated to a ring structure will define operations such
as:

-: isCommutative()

-: isUnitary()
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-: createZero();
-: createOne()

An important issue is represented by the way in which is implemented
the connection between the instances of the class that represents the algebraic
elements, and the class that characterized the entire algebraic structure and
which is also the factory of the neutral elements.

If the Abstract Factory and Singleton design patterns are used, then the
connection between the elements and the singleton instance of their algebraic
structure is done through the single global access point assured by the Single-
ton pattern. An elegant solution to implement this is to define the factories
as static nested classes within the classes that define the algebraic elements.

If static definitions are not available, then a simple association relation
between each element instance and a factory instance have to be implemented.
In this case, problems may arise since we may have more factory instances for
the same algebraic structure. We have to verify the correct association between
each element and the corresponding factory, too.

Since we will focus more on implementation decisions we will restrain the
analysis just to the case of square matrices implementation over unitary rings.
So, we will consider the interface RingElem and the associated factory. The
class MatrixElem implements also the interface RingElem since the set of all
matrices over a ring forms also a ring. So, we have to be able to create
matrices of matrices, etc.

3. C++ templates

In C++ we have the possibility to overload the operators and so we will
use the classic operators for defining addition, difference, multiplication, etc.
The interface RingElem can be specified based on operators.

template<typename T>

class RingElem{
public:

...

virtual T operator+( const T&) = 0;

virtual T operator-(const T&) = 0;

virtual T operator*(const T&) = 0;

virtual T& operator-() = 0;

//////////////////////////////////

class Factory{
public:
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virtual bool isCommutative()=0;

virtual bool isUnitary()=0;

virtual T createZero()=0;

virtual T createOne()=0;

};
//////////////////////////////////

virtual Factory* getFactory()=0;

};

The instance method getFactory() has to be defined in order to make the
factory object accessible through each created element of the structure. This is
particular important when the global access point to the factory object could
not be implemented.

The parameter type T can be replaced by any type which may be consid-
ered as a unitary ring. An example is the class Complex for which we give a
partial implementation.

class Complex: public RingElem<Complex>{
double re, im;

public:

...

//the implementation of the operators

...

class Factory: public RingElem<Complex>::Factory{
Factory(){}
static Factory* instance;

public:

Complex createZero(){
return Complex(0,0);

}
...

static Factory* getInstance(){
if (instance==0) instance = new Factory();

return instance;

}
};
RingElem<Complex>::Factory* getFactory(){

return Factory::getInstance();

}
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static RingElem<Complex>::Factory* getFactoryStatic(){
return Factory::getInstance();

}
};

We may emphasize the fact that we were able to use the Singleton de-
sign pattern, and also to implement a static method getFactoryStatic() that
returns the unique factory instance.

The class MatrixElem is built over a ring, so the parameter T has to im-
plement the interface RingElem. But this constrain cannot be specified for a
C++ template. This is a clear disadvantage.

template <typename T>

class MatrixElem: public RingElem<MatrixElem>{
Storage<T> mat;

int n;

RingElem<T>::Factory* factoryE;

public:

...

MatrixElem (int n, RingElem<T>::Factory* f){
//matrix Zero

factoryE=f;

...

for(int i=0;i<n;i++)

for(int j=0;j<n;j++)

mat.add(i,j, factoryE->createZero());

this->n=n;

}

class Factory: public RingElem<MatrixElem>::Factory{
int n;

RingElem<T>::Factory* f;

Factory(int n, RingElem<T>::Factory* f){
this->n = n;

this->f = f;

}
static vector<Factory*> instance;

public:

...

MatrixElem createZero(){return MatrixElem(n, f);}

static Factory* getInstance(int n, RingElem<T>::Factory* f){
for(int i=0;i<instance.size();i++)

if ((instance)[i]->n==n)return instance[i];

Factory * fnew=new Factory(n,f);

instance.push back(fnew);
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return fnew;

}
};
RingElem<MatrixElem>::Factory* getFactory(){

return Factory::getInstance(n,factoryE);

}
};

A general storage is used for the elements because we want to preserve the
advantage of representation independence. The class MatrixElem has to work
with a factory (factoryE for managing the type of its elementary elements of
type T). This factory is used, for example, when the matrix zero and the matrix
one are created.

Also, the MatrixElem is itself a RingElem, so it has to be related to a factory
class corresponding to this new structure of ring type.

A matrix algebraic structure is characterized by the order of the matrix,
too. In the proposed implementation we have only one class for all the matrix
structures with elements of the same type. So, the associated factory has to
create the zero and the one matrices with the order given as parameter. The
factory class associated to the template class MatrixElem uses a generalization
of the Singleton design pattern, and stores a vector of instances, one for each
order of the matrices in use.

Each matrix has to be associated to a ring factory. Because we could use
Singleton design pattern for the factory implementation, the creation of the
factory objects is very well controlled; we will have only one factory for each
algebraic structure (in our case one for each order and element type). But
since we have a different factory for a different order we cannot implement a
static method getFactoryStatic() – as we did for complex numbers.

All the operations are correctly defined if they operate only on elements
from the same algebraic structure – matrices of the same order and with
elements of the same type. The template parameter imposes the same type
for the elements type but the order is not constrained. Exceptions have to be
thrown when the operations are called with wrong parameters.

In order to solve this problem related to dependent types [21], a better
solution defines the matrix order as a template parameter, too. This leads
to the creation of one class for any particular algebraic structure. From the
programming point of view this is not very efficient (a bunch of classes will
be created), but assures a high degree of rigor from the mathematical point
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of view, and also a static verification of the operands.

template <typename T, int order>

class MatrixOrdElem: public RingElem<MatrixOrdElem>{
Storage<T> mat;

static RingElem<T>::Factory* factoryE;

public:

MatrixOrdElem (){// matrix Zero

factoryE=T::getFactoryStatic();

for(int i=0; i<order;i++)

for (int j=0; j<order;i++)

mat.add(i,j,factoryE->createZero());

}

class Factory: public RingElem<MatrixOrdElem>::Factory{
Factory(){ }
static Factory* instance;

public:

MatrixOrdElem createZero(){return MatrixOrdElem();}
...

static Factory* getInstance(){
if (instance==0) instance = new Factory();

return instance;

}
};
static RingElem<MatrixOrdElem>::Factory* getFactoryStatic(){

return Factory::getInstance();

}
};
With this variant we eliminate the necessity to give the associated factory
instance (for the type T) as a constructor argument, and so, the necessity to
create/access a factory instance each time a new matrix instance is created.
The presented solution uses a static method getFactoryStatic that returns
the singleton instance. This method is called inside the constructors of the
class MatrixOrdElem.

For creating factories, this solution is safe because the responsibility of
correct initialization of the factory is not let to the user. But this brings some
other disadvantages: C++ predefined types (int, double, etc.) could not be
used anymore as values of the parameter T. The possibility of using predefined
type as a template parameter is one of the nicest characteristic of genericity
based on templates. One solution to preserve this possibility (different from
that with factory parameter of the constructor) is to set the static member
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factoryE only from outside (the user has to do this setting properly before
instantiation – which is an important disadvantage). Also, corresponding fac-
tories for the predefined types have to be defined.

class IntFactory: public RingElem<int>::Factory{
IntFactory(){}
static IntFactory* instance;

public:

int createZero(){return 0;}
static IntFactory* getInstance(){

if (instance==0) instance = new IntFactory();

return instance;

}
...

};

4. Java Generics Approach

Using Java generics is similar in many aspects to C++ templates, but there
are important differences imposed by the different mechanism for achieving
parametric polymorphism.

In this case the implementation of the RingElem interface uses recursive
bounded polymorphism –which is a clear advantage of this solution. Factory
interfaces could also be defined as nested interface.

public interface RingElem <T extends RingElem<T>> {
public interface Factory <T >{

T createZero();

...

}
public T plus(T e );

public boolean isZero();

...

public Factory<T> getFactory();

}

For a simple implementation of a concrete type (such as Int for integer
numbers, or Complex for complex numbers) the implementation of the factory
could be based on Singleton pattern and on static members, in a similar way
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as for C++ templates. The predefined types are used based on autoboxing
properties.

The class MatrixElem is defined as a generic class with a type parameter
bounded to RingElem<T>. All the matrices of a certain order and with a cer-
tain type of its elements type also form a ring, and so the class MatrixElem

implements the interface RingElem<MatrixElem<T>>.

public class MatrixElem <T extends RingElem<T>> implements RingElem<MatrixElem<T>>{
private Storage<T> a;

private int n;

private RingElem.Factory<T> factory;

public MatrixElem(int n,RingElem.Factory<T> f){
//create a zero matrix

this.n=n;

factory =f;

a=...

for(int i=0;i<n;i++){
for(int j=0;j<n;j++)

a.add(i,j, factory.createZero());

}
...

public MatrixElem<T> plus(MatrixElem<T> x) throws Exception{
if (n!=x.getOrder())

throw new Exception("illegal arguments");

...

}

public Ring.Factory<T> getFactory(){
return new MatrixFactory<T>(n,factory);

}
}

If we intend to follow the design based on which factories classes are de-
fined inside elements classes, then for this kind of objects the factory is defined
as an inner class. Since we work with generics we cannot define static mem-
bers and so the nested class cannot be static. If we let the factory class to
be an inner class, then each factory instance of type MatrixElem<T>.Factory is
connected as a member with an instance of the outer class MatrixElem. This
could lead to the creation of one factory instance for each matrix element –
which is abnormal. Because of this, the general design decision to define the
associated factory class as nested class has to be eliminated, and we have to
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define the factory class outside the class MatrixElem. In any cases, the Single-
ton pattern cannot be used.

class MatrixFactory<T extends RingElem<T>> implements RingElem.Factory<MatrixElem<T>>{
private RingElem.Factory<T> factory;

private int n;

public MatrixFactory(int n,RingElem.Factory<T> f){
this.n=n;

factory = f;

}
public MatrixElem<T> createZero(){

return new MatrixElem<T>(n,f);

}
...

}

The connection between elements and factories is done through the con-
structor arguments. (This solution has been also chosen in JAS.) In order to
obtain a factory for elements which are matrices of a certain order and a cer-
tain elements type, we may use directly the factory constructor or the instance
method of the MatrixElem class getFactory(). This solution is not a very safe
solution since the creation of the factory instances is not controlled. Also, the
responsibility for correct association between the elements and factories is let
to the user and could become very complicated when matrices of matrices are
created.

Another solution to assure an implicitly correct done association is to use
reflection, but there are several drawbacks too. Implicit constructors (with no
arguments) have to be defined for all elements, and also the problem related to
dependent types (different structures for different orders of matrices) cannot
be solved efficiently. The following code shows a possible definition based on
reflection of a constructor for MatrixElem.

public MatrixElem( Class<T> c, int n){
try{

this.n=n;

java.lang.reflect.Method meth=null;

Object retobj=null;

try{
meth = c.getMethod("getFactoryStatic");

retobj = meth.invoke(null);

}
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catch(java.lang.NoSuchMethodException e){
try{

meth = c.getMethod("getFactory");

retobj = meth.invoke(c.newInstance());

}
catch(java.lang.NoSuchMethodException e1){

...

}
}

factory = (Ring.Factory<T>)retobj;

...

}

First a possible invocation of the method getFactoryStatic() is done; if
this fails then the instance method getFactory() is invoked. This means that
for the classes for which we may define the static method getFactoryStatic(),
this method will be used, and for the others the instance method getFactory()

will be used.
An example of using such a constructor is:

Matrix<Int> a = new MatrixElem<Int>(Int.class ,2);

It can be noticed that no factory instance creation is necessary.

5. Conclusions

The problem of implementing a general matrix over any kind of commuta-
tive and unitary ring emphasizes the fact that we need more than specifying
a parameter with a certain behavior; we need to refer and work with some
specific instances from the domain of the type parameter before knowing their
exact concrete type.

The main emphasized problem related to the C++ templates was the fact
that we cannot specify explicitly any restriction related to the parameters,
to bound them. A step forward in this direction has been done for generic
Java classes, where for a parameter we can specify that it implements a cer-
tain interface. But we may ask if restraining the behavior is powerful enough.
The C++ templates mechanism is considered for implementing parametric
polymorphism based on an “heterogeneous” approach. The “heterogeneous”
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approach constructs a special class for each different use of the type parame-
ters. The compiled code is fast, but the object code could become bulky since
we have many different versions of each class.

Still, the analysis emphasized the fact that we have certain advantages
using the old C++ templates over the new Java or C# generics, for this case.
Java generics implement “homogenous” approach of the parametric polymor-
phism. Since is based on “type erasing” we have strong restrictions, and the
most important one, for the analyzed case, was the impossibility of speci-
fying static members for the generics, and so the impossibility of specifying
properties related to an entire algebraic structure.

For creation and usage of the neutral elements at the abstraction level im-
posed by the generic type definition, there are solutions based on the creational
design patterns: Factory Method, Prototype, or Abstract Factory. Abstract
Factory is the best solution since all these special values can be considered
products from the same family. Abstract Factory is usually used together with
Singleton pattern that assures a global access point the factory instance. Still,
we have to define a concrete factory for each concrete type in order to be used
as an actual parameter.

Some problems could be observed also from the Java implementation of
JAS library. For example, for the simple coefficients (elements) rings such as
integer or rational numbers, there are classes that implement the both inter-
faces: one defined for the elements of the structure, and the second defined for
the associated factory. These kinds of solutions may locally simplify things but
they are not based on appropriate object-oriented design decisions. Factories
have to be related to the type (class) and not to each element of an algebraic
structure.
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