Characterizations of ε -duality gap statements for composed optimization problems

Horațiu-Vasile BONCEA

Characterizations of

Consider two separated locally convex vector spaces X and Y and their continuous dual spaces X^* and Y^* , endowed with the weak* topologies $w(X^*, X)$ and $w(Y^*, Y)$ respectively. Let the nonempty closed convex cone $C \subseteq Y$ and its dual cone $C^* = \{y^* \in Y^* : \langle y^*, y \rangle \ge 0 \ \forall y \in Y\}$. Let $f: X \to \overline{\mathbb{R}}$ be a proper function, $g: Y \to \overline{\mathbb{R}}$ be a proper function, which is also C-increasing and $h: X \to Y^\bullet$ be a proper vector function fulfilling $domg \cap (h(domf) + C) \neq \emptyset$. Unless otherwise stated, these hypotheses remain valid throught the entire chapter. Consider the optimization problem

$$\inf_{x \in X} [f(x) + (g \circ h)(x)]. \tag{P^C}$$

For $x^* \in X^*$ we also consider the linearly perturbed optimization problem

$$\inf_{x \in X} \left[f(x) + (g \circ h)(x) - \langle x^*, x \rangle \right]. \tag{P}_{x^*}^{\mathcal{C}}$$

To this problem we can attach different dual Fenchel-Lagrange-type problems. If f and (λh) are taken together one gets the following dual to $(P_{x^*}^{c})$

_haracterizations of

$$\sup_{\lambda \in C^*} \{ -g^*(\lambda) - (f + (\lambda h))^*(x^*) \}.$$
 $(D_{x^*}^C)$

When f and (λh) are separated, one gets the following dual problem

$$\sup_{\substack{\lambda \in C^*, \\ \beta \in X^*}} \{ -g^*(\lambda) - f^*(\beta) - (\lambda h)^*(x^* - \beta) \}.$$
 $(D_{x^*}^C)$

 ε -duality gap statements using epigraphs Let $\varepsilon \ge 0$. Consider the regularity conditions

$$\{ (x^*, 0, r) : (x^*, r) \in epi(f + g \circ h)^* \} \subseteq [\{0\} \times epi(g^*) + \bigcup_{\lambda \in C^*} \{ (a, -\lambda, r) \in epi((f + (\lambda h))^*) \}] \cap (X^* \times \{0\} \times \mathbb{R}) - (0, 0, \varepsilon)$$

$$(RC)$$

and

$$\{ (x^*, 0, r) : (x^*, r) \in epi(f + g \circ h)^* \} \subseteq [\{0\} \times epi(g^*) + \{ (x^*, 0, r) : (x^*, r) \in epi(f^*) \} + \bigcup_{\lambda \in C^*} \{ (a, -\lambda, r) : (a, r) \in epi((\lambda h)^*) \}] \cap$$

$$(X^* \times \{0\} \times \mathbb{R}) - (0, 0, \varepsilon)$$

(RC)

(H.-V. Boncea, S.-M. Grad, [1]) The condition (RC) is fulfilled if and only if for any $x^* \in X^*$ there exists a $\overline{\lambda} \in C^*$ such that

$$(f + g \circ h)^*(x^*) \ge g^*(\overline{\lambda}) + (f + (\overline{\lambda}h))^*(x^*) - \varepsilon.$$
(1)

Remark

In the left-hand side of (1) one can easily recognize $-v(P_{x^*}^C)$. The quantity in the right-hand side of (1) is not necessarily $-v(D_{x^*}^C) - \varepsilon$, as the supremum in $(D_{x^*}^C)$ is not shown to be attained at $\overline{\lambda}$. Though, (1) implies $v(P_{x^*}^C) \leq v(D_{x^*}^C) + \varepsilon$, which actually means that for $(P_{x^*}^C)$ and $(D_{x^*}^C)$ there is ε -duality gap. Thus, (RC) yields that there is stable ε -duality gap for (P^C) and (D^C) . Note also that $\overline{\lambda} \in C^*$ obtained in the above theorem is an ε -optimal solution of $(D_{x^*}^C)$.

(H.-V. Boncea, S.-M. Grad, [1]) The condition (\overline{RC}) is fulfilled if and only if for any $x^* \in X^*$ there exist some $\overline{\lambda} \in C^*$ and $\overline{\beta} \in X^*$ such that

$$(f + g \circ h)^*(x^*) \ge g^*(\overline{\lambda}) + f^*(\overline{\beta}) + (\overline{\lambda}h)^*(x^* - \overline{\beta}) - \varepsilon.$$
(2)

Remark

Horatiu-Vasile BONCEA ()

In the left-hand side of (2) one can easily recognize $-v(P_{x^*}^C)$. The quantity in the right-hand side of (2) is not necessarily $-v(\overline{D_{x^*}^C}) - \varepsilon$, as the supremum in $(\overline{D_{x^*}^C})$ is not shown to be attained at $\overline{\lambda}$ and $\overline{\beta}$. Though, (2) implies $v(P_{x^*}^C) \leq v(\overline{D_{x^*}^C}) + \varepsilon$, which actually means that for $(P_{x^*}^C)$ and $(\overline{D_{x^*}^C})$ there is ε -duality gap. Thus (\overline{RC}) guarantees stable ε -duality gap for (P^C) and $(\overline{D^C})$ and, moreover, also for (P^C) and (D^C) . Note also that the pair $(\overline{\lambda}, \overline{\beta}) \in C^* \times X^*$ obtained in the above theorem is an ε -optimal solution of $(\overline{D_{x^*}^C})$.

イロト イヨト イヨト イヨト

In order to characterize formulae similar to (1) and (2), where appear actually the optimal values of (D^{C}) and $(\overline{D^{C}})$, let us consider the following regularity conditions

$$epi(f + g \circ h)^* \subseteq epi\inf_{\lambda \in C^*}[g^*(\lambda) + (f + (\lambda h))^*(\cdot)] - (0, \varepsilon)$$
(RCI)

and

$$epi(f + g \circ h)^* \subseteq epi \inf_{\substack{\lambda \in C^* \\ \beta \in X^*}} [g^*(\lambda) + f^*(\beta) + (\lambda h)^*(\cdot - \beta)] - (0, \varepsilon). \ (\overline{RCI})$$

(H.-V. Boncea, S.-M. Grad, [1]) The condition (RCI) is fulfilled if and only if for any $x^* \in X^*$ we have

$$(f+g\circ h)^*(x^*) \ge \inf_{\lambda\in C^*}[g^*(\lambda) + (f+(\lambda h))^*(x^*)] - \varepsilon.$$
(3)

Remark

Relation (3) means actually
$$v(P_{x^*}^C) \le v(D_{x^*}^C) + \varepsilon$$
, i.e. we have stable ε -duality gap for (P^C) and (D^C) .

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) The condition (\overline{RCI}) is fulfilled if and only if for any $x^* \in X^*$ we have

$$(f + g \circ h)^*(x^*) \ge \inf_{\substack{\lambda \in C^*\\\beta \in X^*}} [g^*(\lambda) + f^*(\beta) + (\lambda h)^*(x^* - \beta)] - \varepsilon.$$
(4)

< 一型

ε-duality gap statements using subdifferentials

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$\partial(f + g \circ h)(x) \subseteq \bigcap_{\substack{\eta > 0 \\ \varepsilon_1 + \varepsilon_2 = \varepsilon + \eta \\ \lambda \in C^* \cap \partial_{\varepsilon_2} g(h(x))}} \partial_{\varepsilon_1}(f + (\lambda h))(x) \qquad (RCSC)$$

for all $x \in X$ if and only if (3) holds for all $x^* \in R(\partial(f + g \circ h))$.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$\partial(f + g \circ h)(x) \subseteq \bigcup_{\substack{\epsilon_{1,2} \ge 0\\ \epsilon_1 + \epsilon_2 = \varepsilon\\ \lambda \in C^* \cap \partial_{\epsilon_2}g(h(x))}} \partial_{\epsilon_1}(f + (\lambda h))(x)$$
(RCLC)

for all $x \in X$ if and only if for all $x^* \in R(\partial(f + g \circ h))$, there exists $\overline{\lambda} \in C^*$ such that (1) holds. Horatiu-Vasile BONCEA () Characterizations of

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$\partial(f+g\circ h)(x)\subseteq\bigcap_{\eta>0}\bigcup_{\substack{\varepsilon_{1,2}\geq 0\\\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}=\varepsilon+\eta\\\lambda\in C^{*}\cap\partial_{\varepsilon_{3}}g(h(x))}}\partial_{\varepsilon_{1}}f(x)+\partial_{\varepsilon_{2}}(\lambda h)(x)\quad(\overline{RCSC})$$

for all $x \in X$ if and only if for all $x^* \in R(\partial(f + g \circ h))$, (4) holds.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$\partial(f + g \circ h)(x) \subseteq \bigcup_{\substack{\epsilon_{1,2} \ge 0\\ \epsilon_1 + \epsilon_2 + \epsilon_3 = \epsilon + \eta\\ \lambda \in C^* \cap \partial_{\epsilon_3} g(h(x))}} \partial_{\epsilon_1} f(x) + \partial_{\epsilon_2} (\lambda h)(x) \qquad (\overline{RCLC})$$

for all $x \in X$ if and only if for all $x^* \in R(\partial(f + g \circ h))$, there exist $\overline{\lambda} \in C^*$ and $\overline{\beta} \in X^*$ such that (2) holds.

Results concerning ε -optimality conditions, ε -Farkas statements and (ε, η) -saddle points

From the results presented in the previous sections one can derive other useful statements concerning ε -optimality conditions, ε -Farkas assertions and characterizations for (ε, η) -saddle points. Let us consider the following regularity conditions:

$$(epi(f + g \circ h)^*) \cap (\{0\} \times \mathbb{R}) \subseteq (epi \inf_{\lambda \in C^*} [g^*(\lambda) + (f + (\lambda h))^*(\cdot)]) \cap (\{0\} \times \mathbb{R}) - (0, \varepsilon)$$

$$(RCI^0)$$

and

$$(epi(f + g \circ h)^*) \cap (\{0\} \times \mathbb{R}) \subseteq (epi \inf_{\substack{\lambda \in C^* \\ \beta \in X^*}} [g^*(\lambda) + f^*(\beta) + (\lambda h)^*(\cdot - \beta)]$$
$$\cap (\{0\} \times \mathbb{R}) - (0, \varepsilon).$$

(RCT)

(H.-V. Boncea, S.-M. Grad, [1]) (a) Let $\varepsilon, \eta \ge 0$. Suppose that the condition (RCI^0) is fulfilled. If \overline{x} is an ε -optimal solution of the problem (P^C) , then there exist $\varepsilon_1, \varepsilon_2 \ge 0$, and $\overline{\lambda} \in C^*$ such that (i) $g^*(\overline{\lambda}) + g(h(\overline{x})) \le (\overline{\lambda}h)(\overline{x}) + \varepsilon_2$, (ii) $(f + (\overline{\lambda}h))^*(0) + (f + (\overline{\lambda}h))(\overline{x}) \le \varepsilon_1$, (iii) $\varepsilon_1 + \varepsilon_2 = \varepsilon + \eta$. Moreover, $\overline{\lambda}$ is an $(\varepsilon + \eta)$ -optimal solution of the problem (D^C) . (b) If there exist $\varepsilon_1, \varepsilon_2 \ge 0$ and $\overline{\lambda} \in C^*$ such that the relations (i)-(iii) hold for $\overline{x} \in X$ and $\overline{\lambda} \in C^*$ then \overline{x} is an $(\varepsilon + \eta)$ -optimal solution of the problem (D^C) .

The similar statement for $(\overline{D^{C}})$ can be proven analogously.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) (a) Let $\varepsilon, \eta \ge 0$. Suppose that the condition (\overline{RCI}^0) is fulfilled. If \overline{x} is an ε -optimal solution of the problem (P^{C}) , then there exist $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \geq 0, \overline{\lambda} \in C^{*}$ and $\overline{\beta} \in X^{*}$ such that (i) $g^*(\overline{\lambda}) + g(h(\overline{x})) < (\overline{\lambda}h)(\overline{x}) + \varepsilon_3$, (ii) $f^*(\overline{\beta}) + f(\overline{x}) \leq \langle \overline{\beta}, \overline{x} \rangle + \varepsilon_1$, (iii) $(\overline{\lambda}h)^*(-\overline{\beta}) + (\overline{\lambda}h)(\overline{x}) < \langle -\overline{\beta}, \overline{x} \rangle + \varepsilon_2$, (iv) $\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \varepsilon + \eta$. Moreover, $(\overline{\lambda}, \overline{\beta})$ is an $(\varepsilon + \eta)$ -optimal solution of the problem (D^{C}) . (b) If there exist $\varepsilon_1, \varepsilon_2, \varepsilon_3 > 0$, $\overline{\lambda} \in C^*$ and $\overline{\beta} \in X^*$ such that the relations (i)-(iv) hold for $\overline{x} \in X$, $\overline{\lambda} \in C^*$ and $\overline{\beta} \in X^*$ then \overline{x} is an $(\varepsilon + \eta)$ -optimal solution of the problem (P^{C}). Moreover, $(\overline{\lambda}, \overline{\beta})$ is an $(\varepsilon + \eta)$ -optimal solution of the problem (D^{C}) .

In the following we give ε -Farkas-type results for (P^{C}) and its duals, too. Consider the following conditions:

$$\{ (0,0,r) : (0,r) \in epi(f + g \circ h)^* \} \subseteq [\{0\} \times epi(g^*) + \bigcup_{\lambda \in C^*} \{ (a, -\lambda, r) \\ (a,r) \in epi((f + (\lambda h))^*) \}] \cap (\{0\} \times \{0\} \times \mathbb{R}) - (0,0,\varepsilon)$$

$$(RC^0)$$

and

$$\{ (0,0,r) : (0,r) \in epi(f + g \circ h)^* \} \subseteq [\{0\} \times epi(g^*) + \{ (0,0,r) : (0,r) \in epi(f^*) \} + \bigcup_{\lambda \in C^*} \{ (a, -\lambda, r) : (a,r) \in epi((\lambda h)^*) \}] \cap$$

($\{0\} \times \{0\} \times \mathbb{R}) - (0,0,\varepsilon)$

Theorem

(i) Suppose that (RC^0) holds. If $f(x) + (g \circ h)(x) \ge \varepsilon/2$ for all $x \in X$ then there exists $\overline{\lambda} \in C^*$ such that $g^*(\overline{\lambda}) + (f + \overline{\lambda}h)^*(0) \le \varepsilon/2$. (ii) If there exists $\overline{\lambda} \in C^*$ such that $g^*(\overline{\lambda}) + (f + \overline{\lambda}h)^*(0) \le -\varepsilon/2$, then $f(x) + (g \circ h)(x) \ge \varepsilon/2$ for all $x \in X$.

(RC

Analogously, one can prove the following statements for (P^{C}) and (D^{C}) , too.

Theorem

(i) Suppose that (\overline{RC}^0) holds. If $f(x) + (g \circ h)(x) \ge \varepsilon/2$ for all $x \in X$ then there exist $\overline{\lambda} \in C^*$ and $\overline{\beta} \in X^*$ such that $f^*(\overline{\beta}) + g^*(\overline{\lambda}) + (\overline{\lambda}h)^*(-\overline{\beta}) \le \varepsilon/2$. (ii) If there exist $\overline{\lambda} \in C^*$ and $\overline{\beta} \in X^*$ such that $f^*(\overline{\beta}) + g^*(\overline{\lambda}) + (\overline{\lambda}h)^*(-\overline{\beta}) \le -\varepsilon/2$, then $f(x) + (g \circ h)(x) \ge \varepsilon/2$ for all $x \in X$. Nevertheless, one can extend the investigations from this section also towards generalized saddle points.

The Lagrangian function assigned to $(P^{C}) - (D^{C})$ is $L^{C} : X \times Y^{*} \to \overline{\mathbb{R}}$, defined by (cf. [5])

$$L^{C}(x,\lambda) = \begin{cases} f(x) + (\lambda h)(x) - g^{*}(\lambda), & \text{if } \lambda \in C^{*} \\ -\infty, & \text{otherwise.} \end{cases}$$

Let $\eta \geq 0$. We say that $(\overline{x}, \overline{\lambda}) \in X \times Y^*$ is (η, ε) -saddle point of the Lagrangian L^C if

$$L^{\mathcal{C}}(\overline{x},\lambda) - \eta \leq L^{\mathcal{C}}(\overline{x},\overline{\lambda}) \leq L^{\mathcal{C}}(x,\overline{\lambda}) + \varepsilon, \text{ for all } (x,\lambda) \in X \times Y^*.$$

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) Assume that g is a convex and lower semicontinuous function fulfilling $g(y) > -\infty$ for all $y \in Y$. If $(\overline{x}, \overline{\lambda})$ is an (η, ε) -saddle point of L^C then $\overline{x} \in X$ is an $(\varepsilon + \eta)$ -optimal solution to (P^C) , $\overline{\lambda} \in C^*$ is an $(\varepsilon + \eta)$ -optimal solution to (D^C) and there is $(\varepsilon + \eta)$ -duality gap for the pair of problems (P^C) and (D^C) , i.e. $v(P^C) \leq (D^C) + \varepsilon + \eta$.

An analogous result with the anterior theorem can be formulated for the pair of problems (P^{C}) and $(\overline{D^{C}})$ with the corresponding Lagrangian function given by (cf. [5]) $\overline{L^{C}} : X \times X^{*} \times Y^{*} \to \overline{\mathbb{R}}$

$$\overline{L^{C}}(x,\beta,\lambda) = \begin{cases} \langle \beta,x \rangle + (\lambda h)(x) - f^{*}(\beta) - g^{*}(\lambda), \text{ if } \lambda \in C^{*} \\ -\infty, \text{ otherwise.} \end{cases}$$

Theorem

Assume that g is a convex and lower semicontinuous function fulfilling $g(y) > -\infty$ for all $y \in Y$. If $(\overline{x}, \overline{\lambda})$ is an (η, ε) -saddle point of $\overline{L^C}$ then $\overline{x} \in X$ is an $(\varepsilon + \eta)$ -optimal solution to (P^C) , $\overline{\lambda} \in C^*$ is an $(\varepsilon + \eta)$ -optimal solution to $(\overline{D^C})$ and there is $(\varepsilon + \eta)$ -duality gap for the pair of problems (P^C) and $(\overline{D^C})$, i.e. $v(P^C) \leq (\overline{D^C}) + \varepsilon + \eta$.

Bibliography

- [1] H.-V. Boncea, S.-M. Grad, Characterizations of ε-duality gap statements for composed optimization problems, Nonlinear Analysis: Theory, Methods & Applications, 92, 96-107, 2013.
- [2] H.-V. Boncea, S.-M. Grad, Characterizations of ε-duality gap statements for constrained optimization problems, Central European Journal of Mathematics, 11(11), 2020-2033, 2013.
- [3] R.I. Boţ, Conjugate duality in convex optimization, Springer-Verlag, Berlin-Heidelberg, 2010.
- [4] R.I. Boţ, S.-M. Grad, G. Wanka: A new constraint qualification for the formula of the subdifferential of composed convex functions infinite dimensional spaces, Mathematische Nachrichten 281(8), 1088-1107, 2008.
- [5] R.I. Boţ, S.-M. Grad, G. Wanka, Duality in Vector Optimization, Springer-Verlag, Berlin Heidelberg, 2009.

- [6] R.I. Boţ, S.-M. Grad, G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Analysis: Theory, Methods & Applications 69(1), 323–336, 2008.
- [8] V. Jeyakumar, G.Y. Li: Stable zero duality gaps in convex programming: Complete dual characterizations with applications to semidefinite programs, Journal of Mathematical Analysis and Applications 360, 156–167, 2009.
- [9] R.T. Rockafellar, *Convex Analysis*, Princeton University Press, Princeton, 1970.
- [10] D. Tiba, C. Zălinescu, On the necessity of some constraint qualification conditions in convex programming, Journal of Convex Analysis 11(1), 95-110, 2004.
- [11] C. Zălinescu, Convex analysis in general vector spaces. World Scientific, River Edge, 2002.

Vă mulțumesc pentru atenție!

Characterizations of

2

э