Characterizations of ε-duality gap statements for composed optimization problems

Horațiu-Vasile BONCEA

Consider two separated locally convex vector spaces X and Y and their continuous dual spaces X^{*} and Y^{*}, endowed with the weak* topologies $w\left(X^{*}, X\right)$ and $w\left(Y^{*}, Y\right)$ respectively. Let the nonempty closed convex cone $C \subseteq Y$ and its dual cone $C^{*}=\left\{y^{*} \in Y^{*}:\left\langle y^{*}, y\right\rangle \geq 0 \forall y \in Y\right\}$. Let $f: X \rightarrow \overline{\mathbb{R}}$ be a proper function, $g: Y \rightarrow \overline{\mathbb{R}}$ be a proper function, which is also C-increasing and $h: X \rightarrow Y^{\bullet}$ be a proper vector function fulfilling domg $\cap(h(\operatorname{domf})+C) \neq \varnothing$. Unless otherwise stated, these hypotheses remain valid throught the entire chapter. Consider the optimization problem

$$
\begin{equation*}
\inf _{x \in X}[f(x)+(g \circ h)(x)] . \tag{C}
\end{equation*}
$$

For $x^{*} \in X^{*}$ we also consider the linearly perturbed optimization problem

$$
\begin{equation*}
\inf _{x \in X}\left[f(x)+(g \circ h)(x)-\left\langle x^{*}, x\right\rangle\right] . \tag{*}
\end{equation*}
$$

To this problem we can attach different dual Fenchel-Lagrange-type problems. If f and (λh) are taken together one gets the following dual to $\left(P_{x^{*}}^{C}\right)$

$$
\begin{equation*}
\sup _{\lambda \in C^{*}}\left\{-g^{*}(\lambda)-(f+(\lambda h))^{*}\left(x^{*}\right)\right\} \tag{*}
\end{equation*}
$$

When f and (λh) are separated, one gets the following dual problem

$$
\begin{equation*}
\sup _{\substack{\lambda \in C^{*}, \beta \in X^{*}}}\left\{-g^{*}(\lambda)-f^{*}(\beta)-(\lambda h)^{*}\left(x^{*}-\beta\right)\right\} \tag{*}
\end{equation*}
$$

ε-duality gap statements using epigraphs

Let $\varepsilon \geq 0$. Consider the regularity conditions

$$
\begin{align*}
& \left\{\left(x^{*}, 0, r\right):\left(x^{*}, r\right) \in e p i(f+g \circ h)^{*}\right\} \subseteq\left[\{0\} \times e p i\left(g^{*}\right)+\bigcup_{\lambda \in C^{*}}\{(a,-\lambda, r)\right. \\
& \left.\left.(a, r) \in e p i\left((f+(\lambda h))^{*}\right)\right\}\right] \cap\left(X^{*} \times\{0\} \times \mathbb{R}\right)-(0,0, \varepsilon) \tag{RC}
\end{align*}
$$

and

$$
\begin{aligned}
& \left\{\left(x^{*}, 0, r\right):\left(x^{*}, r\right) \in \operatorname{epi}(f+g \circ h)^{*}\right\} \subseteq\left[\{0\} \times \operatorname{epi}\left(g^{*}\right)+\left\{\left(x^{*}, 0, r\right):\right.\right. \\
& \left.\left.\left(x^{*}, r\right) \in \operatorname{epi}\left(f^{*}\right)\right\}+\bigcup_{\lambda \in C^{*}}\left\{(a,-\lambda, r):(a, r) \in \operatorname{epi}\left((\lambda h)^{*}\right)\right\}\right] \cap \\
& \left(X^{*} \times\{0\} \times \mathbb{R}\right)-(0,0, \varepsilon)
\end{aligned}
$$

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) The condition (RC) is fulfilled if and only if for any $x^{*} \in X^{*}$ there exists a $\bar{\lambda} \in C^{*}$ such that

$$
\begin{equation*}
(f+g \circ h)^{*}\left(x^{*}\right) \geq g^{*}(\bar{\lambda})+(f+(\bar{\lambda} h))^{*}\left(x^{*}\right)-\varepsilon . \tag{1}
\end{equation*}
$$

Remark

In the left-hand side of (1) one can easily recognize $-v\left(P_{x^{*}}^{C}\right)$. The quantity in the right-hand side of (1) is not necessarily $-v\left(D_{x^{*}}^{C}\right)-\varepsilon$, as the supremum in $\left(D_{x^{*}}^{C}\right)$ is not shown to be attained at $\bar{\lambda}$. Though, (1) implies $v\left(P_{x^{*}}^{C}\right) \leq v\left(D_{x^{*}}^{C}\right)+\varepsilon$, which actually means that for $\left(P_{x^{*}}^{C}\right)$ and $\left(D_{x^{*}}^{C}\right)$ there is ε-duality gap. Thus, $(R C)$ yields that there is stable ε-duality gap for $\left(P^{C}\right)$ and $\left(D^{C}\right)$. Note also that $\bar{\lambda} \in C^{*}$ obtained in the above theorem is an ε-optimal solution of $\left(D_{x^{*}}^{C}\right)$.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) The condition $(\overline{R C})$ is fulfilled if and only if for any $x^{*} \in X^{*}$ there exist some $\bar{\lambda} \in C^{*}$ and $\bar{\beta} \in X^{*}$ such that

$$
\begin{equation*}
(f+g \circ h)^{*}\left(x^{*}\right) \geq g^{*}(\bar{\lambda})+f^{*}(\bar{\beta})+(\bar{\lambda} h)^{*}\left(x^{*}-\bar{\beta}\right)-\varepsilon . \tag{2}
\end{equation*}
$$

Remark

In the left-hand side of (2) one can easily recognize $-v\left(P_{x^{*}}^{C}\right)$. The quantity in the right-hand side of (2) is not necessarily $-v\left(\overline{D_{x^{*}}^{C}}\right)-\varepsilon$, as the supremum in $\left(\overline{D_{x^{*}}^{C}}\right)$ is not shown to be attained at $\bar{\lambda}$ and $\bar{\beta}$. Though, (2) implies $v\left(P_{x^{*}}^{C}\right) \leq v\left(\overline{D_{x^{*}}^{C}}\right)+\varepsilon$, which actually means that for $\left(P_{x^{*}}^{C}\right)$ and $\left(\overline{D_{x^{*}}^{C}}\right)$ there is ε-duality gap. Thus $(\overline{R C})$ guarantees stable ε-duality gap for $\left(P^{C}\right)$ and $\left(\overline{D^{C}}\right)$ and, moreover, also for $\left(P^{C}\right)$ and $\left(D^{C}\right)$. Note also that the pair $(\bar{\lambda}, \bar{\beta}) \in C^{*} \times X^{*}$ obtained in the above theorem is an ε-optimal solution of $\left(\overline{D_{x^{*}}^{C}}\right)$.

In order to characterize formulae similar to (1) and (2), where appear actually the optimal values of $\left(D^{C}\right)$ and $\left(\overline{D^{C}}\right)$, let us consider the following regularity conditions

$$
\begin{equation*}
e p i(f+g \circ h)^{*} \subseteq e p i \inf _{\lambda \in C^{*}}\left[g^{*}(\lambda)+(f+(\lambda h))^{*}(\cdot)\right]-(0, \varepsilon) \tag{RCI}
\end{equation*}
$$

and

$$
e p i(f+g \circ h)^{*} \subseteq e p i \inf _{\substack{\lambda \in C^{*} \\ \beta \in X^{*}}}\left[g^{*}(\lambda)+f^{*}(\beta)+(\lambda h)^{*}(\cdot-\beta)\right]-(0, \varepsilon) .(\overline{R C I})
$$

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) The condition (RCI) is fulfilled if and only if for any $x^{*} \in X^{*}$ we have

$$
\begin{equation*}
(f+g \circ h)^{*}\left(x^{*}\right) \geq \inf _{\lambda \in C^{*}}\left[g^{*}(\lambda)+(f+(\lambda h))^{*}\left(x^{*}\right)\right]-\varepsilon . \tag{3}
\end{equation*}
$$

Remark

Relation (3) means actually $v\left(P_{x^{*}}^{C}\right) \leq v\left(D_{x^{*}}^{C}\right)+\varepsilon$, i.e. we have stable ε-duality gap for $\left(P^{C}\right)$ and $\left(D^{C}\right)$.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) The condition $(\overline{\mathrm{RCI}})$ is fulfilled if and only if for any $x^{*} \in X^{*}$ we have

$$
\begin{equation*}
(f+g \circ h)^{*}\left(x^{*}\right) \geq \inf _{\substack{\lambda \in C^{*} \\ \beta \in X^{*}}}\left[g^{*}(\lambda)+f^{*}(\beta)+(\lambda h)^{*}\left(x^{*}-\beta\right)\right]-\varepsilon . \tag{4}
\end{equation*}
$$

ε-duality gap statements using subdifferentials

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$
\partial(f+g \circ h)(x) \subseteq \bigcap_{\eta>0} \bigcup_{\substack{\varepsilon_{1,2} \geq 0 \\ \varepsilon_{1}=\varepsilon_{2}=\varepsilon+\eta \\ \lambda \in C^{*} \cap \partial_{\varepsilon_{2}} g(h(x))}} \partial_{\varepsilon_{1}}(f+(\lambda h))(x)
$$

for all $x \in X$ if and only if (3) holds for all $x^{*} \in R(\partial(f+g \circ h))$.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$
\partial(f+g \circ h)(x) \subseteq \bigcup_{\substack{\varepsilon_{1}, 2 \geq 0 \\ \varepsilon_{1}+\varepsilon_{2}=\varepsilon \\ \lambda \in C^{*} \cap \varepsilon_{2} g(h(x))}} \partial_{\varepsilon_{1}}(f+(\lambda h))(x)
$$

for all $x \in X$ if and only if for all $x^{*} \in R(\partial(f+g \circ h))$, there exists $\bar{\lambda} \in C^{*}$ such that (1) ho!ds.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$
\partial(f+g \circ h)(x) \subseteq \bigcap_{\eta>0} \bigcup_{\substack{\varepsilon_{1,2} \geq 0 \\ \varepsilon_{1}+\varepsilon_{1}+\varepsilon_{3}=\varepsilon+\eta \\ \lambda \in C^{*} \cap \partial_{\varepsilon_{3}} g(h(x))}} \partial_{\varepsilon_{1}} f(x)+\partial_{\varepsilon_{2}}(\lambda h)(x) \quad(\overline{R C S C})
$$

for all $x \in X$ if and only if for all $x^{*} \in R(\partial(f+g \circ h))$, (4) holds.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) One has

$$
\partial(f+g \circ h)(x) \subseteq \bigcup_{\substack{\varepsilon_{1,2} \geq 0 \\ \varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}=\varepsilon+\eta \\ \lambda \in C^{*} \cap \partial_{\varepsilon_{3}} g(h(x))}} \partial_{\varepsilon_{1}} f(x)+\partial_{\varepsilon_{2}}(\lambda h)(x)
$$

for all $x \in X$ if and only if for all $x^{*} \in R(\partial(f+g \circ h))$, there exist $\bar{\lambda} \in C^{*}$ and $\bar{\beta} \in X^{*}$ such that (2) holds.

Results concerning ε-optimality conditions, ε-Farkas statements and (ε, η)-saddle points
From the results presented in the previous sections one can derive other useful statements concerning ε-optimality conditions, ε-Farkas assertions and characterizations for (ε, η)-saddle points. Let us consider the following regularity conditions:

$$
\begin{align*}
&\left(e p i(f+g \circ h)^{*}\right) \cap(\{0\} \times \mathbb{R}) \subseteq\left(e p i \inf _{\lambda \in C^{*}}\left[g^{*}(\lambda)+(f+(\lambda h))^{*}(\cdot)\right]\right) \cap \\
&(\{0\} \times \mathbb{R})-(0, \varepsilon) \tag{0}
\end{align*}
$$

and

$$
\begin{aligned}
& \left(e p i(f+g \circ h)^{*}\right) \cap(\{0\} \times \mathbb{R}) \subseteq\left(e \operatorname{einf}_{\substack{\lambda \in C^{*} \\
\beta \in X^{*}}}\left[g^{*}(\lambda)+f^{*}(\beta)+(\lambda h)^{*}(\cdot-\beta)\right]\right. \\
& \cap(\{0\} \times \mathbb{R})-(0, \varepsilon) .
\end{aligned}
$$

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) (a) Let $\varepsilon, \eta \geq 0$. Suppose that the condition $\left(R C I^{0}\right)$ is fulfilled. If \bar{x} is an ε-optimal solution of the problem (P^{C}), then there exist $\varepsilon_{1}, \varepsilon_{2} \geq 0$, and $\bar{\lambda} \in C^{*}$ such that (i) $g^{*}(\bar{\lambda}) \pm g(h(\bar{x})) \leq(\bar{\lambda} h)(\bar{x})+\varepsilon_{2}$,
(ii) $(f+(\bar{\lambda} h))^{*}(0)+(f+(\bar{\lambda} h))(\bar{x}) \leq \varepsilon_{1}$,
(iii) $\varepsilon_{1}+\varepsilon_{2}=\varepsilon+\eta$.

Moreover, $\bar{\lambda}$ is an $(\varepsilon+\eta)$-optimal solution of the problem $\left(D^{C}\right)$.
(b) If there exist $\varepsilon_{1}, \varepsilon_{2} \geq 0$ and $\bar{\lambda} \in C^{*}$ such that the relations (i)-(iii) hold for $\bar{x} \in X$ and $\bar{\lambda} \in C^{*}$ then \bar{x} is an $(\varepsilon+\eta)$-optimal solution of the problem $\left(P^{C}\right)$. Moreover, $\bar{\lambda}$ is an $(\varepsilon+\eta)$-optimal solution of the problem $\left(D^{C}\right)$.

The similar statement for $\left(\overline{D^{C}}\right)$ can be proven analogously.

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) (a) Let $\varepsilon, \eta \geq 0$. Suppose that the condition $\left(\overline{R C l}^{0}\right)$ is fulfilled. If \bar{x} is an ε-optimal solution of the problem (P^{C}), then there exist $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \geq 0, \bar{\lambda} \in C^{*}$ and $\bar{\beta} \in X^{*}$ such that (i) $g^{*}(\bar{\lambda})+g(h(\bar{x})) \leq(\bar{\lambda} h)(\bar{x})+\varepsilon_{3}$,
(ii) $f^{*}(\bar{\beta})+f(\bar{x}) \leq\langle\bar{\beta}, \bar{x}\rangle+\varepsilon_{1}$,
(iii) $(\bar{\lambda} h)^{*}(-\bar{\beta})+(\bar{\lambda} h)(\bar{x}) \leq\langle-\bar{\beta}, \bar{x}\rangle+\varepsilon_{2}$,
(iv) $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}=\varepsilon+\eta$.

Moreover, $(\bar{\lambda}, \bar{\beta})$ is an $(\varepsilon+\eta)$-optimal solution of the problem $\left(\overline{D^{C}}\right)$. (b) If there exist $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3} \geq 0, \bar{\lambda} \in C^{*}$ and $\bar{\beta} \in X^{*}$ such that the relations (i)-(iv) hold for $\bar{x} \in X, \bar{\lambda} \in C^{*}$ and $\bar{\beta} \in X^{*}$ then \bar{x} is an $(\varepsilon+\eta)$-optimal solution of the problem $\left(P^{C}\right)$. Moreover, $(\bar{\lambda}, \bar{\beta})$ is an $(\varepsilon+\eta)$-optimal solution of the problem $\left(\overline{D^{C}}\right)$.

In the following we give ε-Farkas-type results for $\left(P^{C}\right)$ and its duals, too.
Consider the following conditions:

$$
\begin{aligned}
& \left\{(0,0, r):(0, r) \in \operatorname{epi}(f+g \circ h)^{*}\right\} \subseteq\left[\{0\} \times \operatorname{epi}\left(g^{*}\right)+\bigcup_{\lambda \in C^{*}}\{(a,-\lambda, r):\right. \\
& \left.\left.(a, r) \in \operatorname{epi}\left((f+(\lambda h))^{*}\right)\right\}\right] \cap(\{0\} \times\{0\} \times \mathbb{R})-(0,0, \varepsilon)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{(0,0, r):(0, r) \in \operatorname{epi}(f+g \circ h)^{*}\right\} \subseteq\left[\{0\} \times \operatorname{epi}\left(g^{*}\right)+\{(0,0, r):\right. \\
& \left.\left.(0, r) \in \operatorname{epi}\left(f^{*}\right)\right\}+\bigcup_{\lambda \in C^{*}}\left\{(a,-\lambda, r):(a, r) \in \operatorname{epi}\left((\lambda h)^{*}\right)\right\}\right] \cap \\
& (\{0\} \times\{0\} \times \mathbb{R})-(0,0, \varepsilon)
\end{aligned}
$$

Theorem

(i) Suppose that $\left(R C^{0}\right)$ holds. If $f(x)+(g \circ h)(x) \geq \varepsilon / 2$ for all $x \in X$ then there exists $\bar{\lambda} \in C^{*}$ such that $g^{*}(\bar{\lambda})+(f+\bar{\lambda} h)^{*}(0) \leq \varepsilon / 2$.
(ii) If there exists $\bar{\lambda} \in C^{*}$ such that $g^{*}(\bar{\lambda})+(f+\bar{\lambda} h)^{*}(0) \leq-\varepsilon / 2$, then $f(x)+(g \circ h)(x) \geq \varepsilon / 2$ for all $x \in X$.

Analogously, one can prove the following statements for $\left(P^{C}\right)$ and $\left(\overline{D^{C}}\right)$, too.

Theorem

(i) Suppose that $\left(\overline{R C}^{0}\right)$ holds. If $f(x)+(g \circ h)(x) \geq \varepsilon / 2$ for all $x \in X$ then there exist $\bar{\lambda} \in C^{*}$ and $\bar{\beta} \in X^{*}$ such that $f^{*}(\bar{\beta})+g^{*}(\bar{\lambda})+(\bar{\lambda} h)^{*}(-\bar{\beta}) \leqq \varepsilon / 2$.
(ii) If there exist $\bar{\lambda} \in C^{*}$ and $\bar{\beta} \in X^{*}$ such that
$f^{*}(\bar{\beta})+g^{*}(\bar{\lambda})+(\bar{\lambda} h)^{*}(-\bar{\beta}) \leq-\varepsilon / 2$, then $f(x)+(g \circ h)(x) \geq \varepsilon / 2$ for all $x \in X$.

Nevertheless, one can extend the investigations from this section also towards generalized saddle points.
The Lagrangian function assigned to $\left(P^{C}\right)-\left(D^{C}\right)$ is $L^{C}: X \times Y^{*} \rightarrow \overline{\mathbb{R}}$, defined by (cf. [5])

$$
L^{C}(x, \lambda)=\left\{\begin{array}{l}
f(x)+(\lambda h)(x)-g^{*}(\lambda), \text { if } \lambda \in C^{*} \\
-\infty, \text { otherwise. }
\end{array}\right.
$$

Let $\eta \geq 0$. We say that $(\bar{x}, \bar{\lambda}) \in X \times Y^{*}$ is (η, ε)-saddle point of the Lagrangian L^{C} if

$$
L^{C}(\bar{x}, \lambda)-\eta \leq L^{C}(\bar{x}, \bar{\lambda}) \leq L^{C}(x, \bar{\lambda})+\varepsilon, \text { for all }(x, \lambda) \in X \times Y^{*}
$$

Theorem

(H.-V. Boncea, S.-M. Grad, [1]) Assume that g is a convex and lower semicontinuous function fulfilling $g(y)>-\infty$ for all $y \in Y$. If $(\bar{x}, \bar{\lambda})$ is an (η, ε)-saddle point of L^{C} then $\bar{x} \in X$ is an $(\varepsilon+\eta)$-optimal solution to $\left(P^{C}\right), \bar{\lambda} \in C^{*}$ is an $(\varepsilon+\eta)$-optimal solution to $\left(D^{C}\right)$ and there is $(\varepsilon+\eta)$-duality gap for the pair of problems $\left(P^{C}\right)$ and $\left(D^{C}\right)$, i.e. $v\left(P^{C}\right) \leq\left(D^{C}\right)+\varepsilon+\eta$.

An analogous result with the anterior theorem can be formulated for the pair of problems $\left(P^{C}\right)$ and $\left(\overline{D^{C}}\right)$ with the corresponding Lagrangian function given by (cf. [5]) $\overline{L^{C}}: X \times X^{*} \times Y^{*} \rightarrow \overline{\mathbb{R}}$

$$
\overline{L^{C}}(x, \beta, \lambda)=\left\{\begin{array}{l}
\langle\beta, x\rangle+(\lambda h)(x)-f^{*}(\beta)-g^{*}(\lambda), \text { if } \lambda \in C^{*} \\
-\infty, \text { otherwise. }
\end{array}\right.
$$

Theorem

Assume that g is a convex and lower semicontinuous function fulfilling $g(y)>-\infty$ for all $y \in Y$. If $(\bar{x}, \bar{\lambda})$ is an (η, ε)-saddle point of $\overline{L^{C}}$ then $\bar{x} \in X$ is an $(\varepsilon+\eta)$-optimal solution to $\left(P^{C}\right), \bar{\lambda} \in C^{*}$ is an $(\varepsilon+\eta)$-optimal solution to $\left(\overline{D^{C}}\right)$ and there is $(\varepsilon+\eta)$-duality gap for the pair of problems $\left(P^{C}\right)$ and $\left(\overline{D^{C}}\right)$, i.e. $v\left(P^{C}\right) \leq\left(\overline{D^{C}}\right)+\varepsilon+\eta$.

Bibliography

[1] H.-V. Boncea, S.-M. Grad, Characterizations of ε-duality gap statements for composed optimization problems, Nonlinear Analysis: Theory, Methods \& Applications, 92, 96-107, 2013.
[2] H.-V. Boncea, S.-M. Grad, Characterizations of ε-duality gap statements for constrained optimization problems, Central European Journal of Mathematics, 11(11), 2020-2033, 2013.
[3] R.I. Boț, Conjugate duality in convex optimization, Springer-Verlag, Berlin-Heidelberg, 2010.

目 [4] R.I. Boț, S.-M. Grad, G. Wanka: A new constraint qualification for the formula of the subdifferential of composed convex functions infinite dimensional spaces, Mathematische Nachrichten 281(8), 1088-1107, 2008.
[5] R.I. Boț, S.-M. Grad, G. Wanka, Duality in Vector Optimization, Springer-Verlag, Berlin Heidelberg, 2009.
(0] [6] R.I. Boț, S.-M. Grad, G. Wanka, New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces, Nonlinear Analysis: Theory, Methods \& Applications 69(1), 323-336, 2008.

圊 [8] V. Jeyakumar, G.Y. Li: Stable zero duality gaps in convex programming: Complete dual characterizations with applications to semidefinite programs, Journal of Mathematical Analysis and Applications 360, 156-167, 2009.

䍰 [9] R.T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.
[10] D. Tiba, C. Zălinescu, On the necessity of some constraint qualification conditions in convex programming, Journal of Convex Analysis 11(1), 95-110, 2004.
[11] C. Zălinescu, Convex analysis in general vector spaces. World Scientific, River Edge, 2002.

Vă mulțumesc pentru atenție!

