A nonlinear eigenvalue-transmission problem with Neumann boundary condition

Cornel Pintea

(based on a joint work with Gh. Morosanu and L. Barbu)

22.11.2018

Abstract

Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$, be a bounded domain which is divided into two sub-domains Ω_1 and Ω_2 . Consider in Ω an eigenvalue-transmission problem associated with the *p*-Laplacian acting in Ω_1 and the *q*-Laplacian acting in Ω_2 , 1 , with Dirichlet-Neumann conditions on the inter $face separating the two sub-domains <math>\Omega_1$ and Ω_2 . The main result states the existence of a sequence of eigenvalues for this eigenvalue problem. The proof is based on the Ljusternik-Schnirelman principle. Using the method of Lagrange multipliers for constrained minimization problems, we show that if $2 \leq p < q$ then there exists an eigenfunction in any level set of some integral functional. The case of Robin conditions on $\partial\Omega$ and the Riemannian setting are also addressed.