On semilinear integro-differential inclusions in Banach spaces under nonlocal conditions

Tiziana Cardinali - Paola Rubbioni - Sandra Bungardi

18 December 2014

Department of Mathematics and Informatics, University of Perugia, PERUGIA, ITALY Department of Mathematics, Babeş-Bolyai University, CLUJ NAPOCA, ROMANIA

Abstract

In this paper we deal with a nonlocal Cauchy problem governed by the following semilinear integro-differential inclusion:

$$\begin{cases} x'(t) \in A(t)x(t) + F(t, x(t), Kx(t)) \text{ a.e. } t \in [0, b] \\ x(0) = g(x) \end{cases}$$

On the linear part of the inclusion we assume that: $\{A(t) : t \in [0, b]\}$ is a family of linear operators (not necessarily bounded), $A(t) : D(A) \subset E \to E$, $t \in [0, b]$, D(A) is a dense subset of the Banach space E not depending on t and $T : \Delta = \{(t, s) : 0 \leq s \leq t \leq b\} \to \mathcal{L}(E)$ is a continuous evolution operator generated by this family.

Given a continuous function $k : \Delta \to \mathbb{R}^+$, we consider the Volterra-type integral operator $K : C([0, b], E) \to C([0, b], E)$ where

$$Kx(t) = \int_0^t k(t,s)x(s)ds, \ \forall \ t \in [0,b], \ x \in C([0,b],E).$$

We prove the existence of *mild solutions* of the problem.