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Basics

(EP) find a ∈ X such that

f (a, b) ≥ 0, for all b ∈ X ,

where f : X × X → R is a given function.
Particular cases:

f = −|g | neutral element;

f (a, b) = g(b)− g(a) optimization;

f (a, b) = 〈g(a), b − a〉 variational inequality; Fermat’s
theorem g(a) = ∇l(a) on [a, b] ⊂ Rm.
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(EP), (EP)n

Let (X , σ) be a Hausdorff topological space. Let D be a nonempty
subset of X .
The scalar equilibrium problem supposes to find an element a ∈ D
such that f (a, b) ≥ 0, for all b ∈ D, where f : X × X → R is a
given function.
For each n ∈ N, the (parametric) equilibrium problem is the
following:
(EP)n find an ∈ Dn such that

fn(an, b) ≥ 0, for all b ∈ Dn,

where Dn is a nonempty subset of X and fn : X × X → R is a
given function.
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(P), (P)n

(Q) If (an)n is a sequence of solutions for a sequence of problems
(P)n and an → x in a topological space X is it true that x is a
solution for a problem P ?

(EP)n, (EP); (VEP)n, (VEP). Same recipe for (PO)n, (PO).

Motivation

As a result of changes in the problem data, the solutions behavior
is always of concern. For instance, a sequence of functions may
provide a sequence of solutions, therefore we are interested to
study a certain stability of this sequence.
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(EP)n

Formalism

Let X be a topological space.

(P)n (P)

an ∈ S(n), an → a a ∈ S(∞)?

Denote by S(n) the set of the solutions for (P)n (n fixed) and by
S(∞) the set of the solutions for (P).
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Result-2012

Denote by S(n) the set of the solutions for (EP)n (n fixed) and by
S(∞) the set of the solutions for (EP).

Theorem

[Bogdan-Kolumbán, TMNA 2012]
Let X be a Hausdorff topological space with σ and τ topologies on
X such that σ ⊆ τ, i.e. σ is weaker than τ. Suppose that
S(n) 6= ∅, for each n ∈ N, and the following conditions hold:

conditions on Φn,Φ; (in particular parametric domains,
Mosco)

condition that relates fn and the limit function f ;

the property on the limit function f .

Then, for each sequence (an)n∈N with an ∈ S(n), an
σ→ a implies

a ∈ S(∞).
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Parametric domains

Parametric domains. Mosco convergence

Definition

([Mosco]) Let X be a Banach space and U ⊆ X . A sequence of

sets (Un) in X is Mosco convergent to U (Un
M−→ U) if

w − Limsup Un ⊆ U ⊆ s − Liminf Un.

In the definition above, w − Limsup Un denotes the set of all the
points v such that vk ⇀ v , with vk ∈ Unk , for all k and (Unk ), nk

subsequence and s − Liminf Un denotes the set of all the points v
such that vn → v , with vn ∈ Un, for n sufficiently large.
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Condition (C)

The functions fn, f : X × X → R (n ∈ N) verify condition:
(C) For each sequences (an)n∈N and (bn)n∈N with an ∈ S(n),
an

σ→ a, and bn
τ→ b, one has

lim inf
n

(
f (an, b)− fn(an, bn)

)
≥ 0.
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Topological pseudomonotonicity

Pseudomonotonicity in the sense of Brézis

Definition

([AUBIN], pg. 410) A function f : X × X → R is said to be
topologically pseudomonotone w.r.t. the first variable if, for
each sequence (an)n∈N ⊂ X with an

σ→ a in X ,
lim infn f (an, a) ≥ 0 implies

lim sup
n

f (an, b) ≤ f (a, b), for all b ∈ X .

The case f (a, b) = g(b)− g(a).
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Result-2012

We take f (a, b) = g(b)− g(a) and fn(a, b) = gn(b)− gn(a).
If g is lower semi-continuous, then f is, obviously, topologically
pseudomonotone w.r.t. the first variable. In this case condition
(C′) becomes:
(C′′) For each sequence (an)n∈N of solutions for (M)n, an → a and
b ∈ X , there exists a sequence (bn)n∈N such that bn → b and

lim inf
n

[g(b)− gn(bn)− g(an) + gn(an)] ≥ 0.

Corollary

Let (an)n∈N be a sequence of solutions for (M)n and let an → a.
Suppose that g is lower semi-continuous at a and the functions
gn, g , n ∈ N, verify condition (C′′).
Then, limit a is solution for (M).

How this result can be formulated for vector functions ?
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(VEP)n

(VEP), (VEP)n, Pareto optimization

For vector problem there exists the following model. Let Z be a
real topological vector space with an ordering cone C , nonempty
convex closed in Z, different from Z. For n ∈ N consider the
following vector equilibrium problem:
(VEP)n find an ∈ Dn such that

hn(an, b) ∈ (−Int C )c , for all b ∈ Dn,

where Dn is a nonempty subset of X and hn : X ×X → Z is given.
By (−Int C )c the complementary of (−Int C ) in Z is denoted.
Note that if Z = R and C = [0,+∞), then the vector equilibrium
problem reduces to scalar equilibrium problem.
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(VEP)n

Pareto optimization

The parametric generalized optimization (weak) Pareto problem is
considered the following:
(PO)n find an ∈ Dn such that

ϕn(b)− ϕn(an) ∈ (−Int C )c , for all b ∈ Dn,

where ϕn : X → Z is a given function.
Let S(n) be the set of solutions for (PO)n and let S(∞) be the
solutions set of (PO).
(Q) If an ∈ S(n) and an → x in X when n→∞, is it true that
x ∈ S(∞) ?
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Condition (VC)

Vector topological pseudomonotonicity

Definition

([Salamon-Bogdan], 2010) Let (X , σ) be a Hausdorff topological
vector space and let D ⊆ X be nonempty. We say that a function
h : D × D → Z is vector top. pseudomonotone if for all b ∈ D,
v ∈ Int C and for each sequence (an)n∈N in D with an

σ→ a and

Liminf h(an, a) = ∅ or Liminf h(an, a) ∩ (−Int C )c 6= ∅

there exists an index n0 such that

{h(am, b) : m ≥ n} ⊂ h(a, b) + v − Int C , for all n ≥ n0.
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Condition (VC)

Condition (C) vector case

The functions fn, f : X × X → Z (n ∈ N) verify the following
vector condition:
(VC) For each sequence (an)n∈N with an ∈ S(n), an → a, there
exists (bn)n∈N with bn → b such that

Liminf

(
f (b)− f (an)− fn(bn) + fn(an)

)
∩ C 6= ∅.
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Vector semi-continuity

Result for (PO)

Theorem

[Salamon-Bogdan, JMAA 2010] Let X be a Hausdorff topological
space. Let (an)n∈N be such that an is a Pareto optima for (PO)n
and let an → ā in X .
Suppose that vector condition (VC) applies. If ϕ is C−lower
semi-continuous at ā, then ā is a solution for (PO).

A function ϕ : X → Z is said to be C−lower semicontinuous at a
if for all v ∈ Int C and for each sequence (an)n∈N with an → a
there exists an index n0 such that

{ϕ(am) : m ≥ n} ⊂ ϕ(a)− v + Int C , for all n ≥ n0.
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Vector semi-continuity

C−semi-continuity

Definition

(Tanaka, 1997) A function ϕ : X → Z is said to be C−lower
semi-continuous on X if for every z ∈ Z the set f −1(z + Int C ) is
open in X .

Definition

(Corley, 1980) Let C be a cone in Z. A function ϕ : X → Z is
said to be C−semi-continuous on X if for every y ∈ Z the set
f −1(y + cl C ) is closed in X .

We are able to find the stability of solutions in the presence of
vector condition (VC) and C−lower semi-continuity (in the
Tanaka’s sense) but we have no result so far on this issue with
C−semi-continuity (in the Corley’s sense).
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Vector semi-continuity

Strong C−semi-continuity

Definition

(Oppezzi-Rossi, 2006) A function f : X → Z is said to be strongly
lower C−semi-continuous at the point a ∈ X iff, for any ε ∈ Int C ,
there exists Uaε, a neighborhood of a such that

f (x) ∈ f (a)− ε+ C0, for all x ∈ Uaε.
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Vector semi-continuity

Example

Example

(Oppezzi-Rossi; Jota, 2006) Let f : R → R2 be given by

f (a) =

{
(a, 1/a), if a > 0,

(a,−a2), if a ≤ 0
and fn = f , n ∈ N. Let

C = {(x , y) ∈ R2 : 0 ≤ y ≤ x}.

The function f is not strongly C−lower semi-continuous at a = 0.
Although it is easy, let us proceed. There exists
ε = (1/2, 1/4) ∈ Int C such that for every U neighborhood of 0,
we can find xU ∈ U such that

f (xU) + ε /∈ C0.
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Vector semi-continuity

Example

Let U be a neighborhood of 0. There exists 0 < r < 1 such that
(−r , r) ⊆ U. Let us take xU = r/2. We obtain
(r/2, 2/r) + (1/2, 1/4) /∈ C0. Now, let us consider the sequence
(an)n∈N , an = 1/n that are global minimum points so they are also
weak minimums for f . Condition (VC) applies since, for each
b ∈ X there exists a sequence (bn)n∈N , bn → b such that

Liminf
[
f (b)− f (an)− f (bn) + f (an)

]
∩ C 6= ∅.

Indeed, take bn = b, n ∈ N, so (0, 0) is the common element.
Observe that 0 is not a weak minimum for f . Straight from the
definition one has (1/2, 1/4) ∈ [(0, 0)− f (R)] ∩ Int C 6= ∅, i.e.
there exists b = −1/2 ∈ R such that

f (b)− f (0) 6∈ (−Int C )c .
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Thank you !

Vă mulţumesc !
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Întrebare din anul 2008

Care să fie condiţiile impuse asupra unei funcţii f : X × X → R
ı̂ncât subdiferenţiala sa ∂f : X × X → 2R să fie topologic
pseudomonotonă ?
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Set-valued pseudomonotone operator

Definition

An operator A : X → 2X
∗

is said to be topologically
pseudomonotone if the following three conditions hold:

(i) the set Au is nonempty, bounded, closed and convex for all
u ∈ X ;

(ii) A is upper semicontinuous from the segments of X to the
weak topology on X ∗;

(iii) if (ui ) ⊂ X with ui ⇀ u in X and u∗i ∈ Aui is such that
lim inf

i
〈u∗i , u − ui 〉X ≥ 0, then to each element v ∈ X there

exists u∗ ∈ Au to satisfy
lim supi 〈u∗i , v − ui 〉X ≤ 〈u∗, v − ui 〉X ,∀v ∈ X .

Parametric vector optimization
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