	Part I-Content	Parametric problems-refrain 0 0 0	Condition (C) 0 0	00 0	Bibliography
--	----------------	--	-------------------------	---------	--------------

Parametric vector optimization

15 noiembrie 2012, Cluj-Napoca

Marcel BOGDAN Universitatea "Petru Maior" din Tîrgu-Mureş

Part I-Content	Parametric problems-refrain o o	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0000	Bibliography

Acknowledgements

- **1** EUROPT-2012, Lithuania;
 - 10th Europt Workshop on Advances in Continuous Optimization;
 - POSDRU/89/1.5/S/63663; I, Marcel Bogdan, have not received any postdoctoral scholarship so far from the mentioned entity, although in the period April 1^{st} to September 30^{th} 2012, I signed reports as a postdoctoral researcher;
- 2 presentation Šiauliai, July 5th 2012;
- **3** article submitted to journal Optimization.

Part I-Content	Parametric problems-refrain 0 0 0	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0000	Bibliography
----------------	--	-------------------------	--	--------------

Content

Results:

- (*EP*)_n, (*EP*);
- Parametric vector optimization.

Definitions and condition:

- Brézis topological pseudomonotonicity (for bifunction);
- Mosco convergence;
- Condition (*C*).

Applications:

abstract equilibrium problems; variational inequalities;

(日) (同) (三) (三)

- parametric optimization; variational calculus;
- Walras equilibrium.

Part I-Content	Parametric problems-refrain 0 0 0	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0000	Bibliography
Basics				

(*EP*) find $a \in X$ such that

$$f(a, b) \ge 0$$
, for all $b \in X$,

where $f : X \times X \rightarrow R$ is a given function. Particular cases:

•
$$f = -|g|$$
 neutral element;

•
$$f(a, b) = g(b) - g(a)$$
 optimization;

f(a, b) = ⟨g(a), b - a⟩ variational inequality; Fermat's theorem g(a) = ∇l(a) on [a, b] ⊂ R^m.

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(<i>VEP</i>) _n , Pareto equilibrium	Bibliography
			00	
			0000	

$(EP), (EP)_n$

Let (X, σ) be a Hausdorff topological space. Let D be a nonempty subset of X.

The scalar equilibrium problem supposes to find an element $a \in D$ such that $f(a, b) \ge 0$, for all $b \in D$, where $f : X \times X \to R$ is a given function.

For each $n \in N$, the (parametric) equilibrium problem is the following:

 $(EP)_n$ find $a_n \in D_n$ such that

$$f_n(a_n, b) \ge 0$$
, for all $b \in D_n$,

3

where D_n is a nonempty subset of X and $f_n : X \times X \to R$ is a given function.

0000	Part I-Content	Parametric problems-refrain	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0000	Bibliography
------	----------------	-----------------------------	-------------------------	--	--------------

$(P), (P)_n$

(Q) If $(a_n)_n$ is a sequence of solutions for a sequence of problems $(P)_n$ and $a_n \to x$ in a topological space X is it true that x is a solution for a problem P?

$$(EP)_n$$
, (EP) ; $(VEP)_n$, (VEP) . Same recipe for $(PO)_n$, (PO) .

Motivation

As a result of changes in the problem data, the solutions behavior is always of concern. For instance, a sequence of functions may provide a sequence of solutions, therefore we are interested to study a certain **stability of this sequence**.

Part I-Content	Parametric problems-refrain • ° •	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0 0000	Bibliography
(EP) _n				
Formalism				

Let X be a topological space.

 $(P)_n \tag{P}$

 $a_n \in S(n), a_n \to a$ $a \in S(\infty)$?

Denote by S(n) the set of the solutions for $(P)_n$ (*n* fixed) and by $S(\infty)$ the set of the solutions for (P).

イロン イロン イヨン イヨン

Ξ.

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(<i>VEP</i>) _n , Pareto equilibrium	Bibliography
			రంంం	

Result-2012

Denote by S(n) the set of the solutions for $(EP)_n$ (*n* fixed) and by $S(\infty)$ the set of the solutions for (EP).

Theorem

[Bogdan-Kolumbán, TMNA 2012]

Let X be a Hausdorff topological space with σ and τ topologies on X such that $\sigma \subseteq \tau$, i.e. σ is weaker than τ . Suppose that $S(n) \neq \emptyset$, for each $n \in N$, and the following conditions hold:

- conditions on Φ_n, Φ; (in particular parametric domains, Mosco)
- condition that relates f_n and the limit function f;
- the property on the limit function f.

Then, for each sequence $(a_n)_{n \in N}$ with $a_n \in S(n)$, $a_n \xrightarrow{\sigma} a$ implies $a \in S(\infty)$.

イロン 不得 とくほと くほとう

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(<i>VEP</i>) _n , Pareto equilibrium	Bibliography
	0		00	

Parametric domains

Parametric domains. Mosco convergence

Definition

([Mosco]) Let X be a Banach space and $U \subseteq X$. A sequence of sets (U_n) in X is Mosco convergent to $U (U_n \xrightarrow{M} U)$ if

$$w$$
 – Limsup $U_n \subseteq U \subseteq s$ – Liminf U_n .

In the definition above, $w - \text{Limsup } U_n$ denotes the set of all the points v such that $v_k \rightarrow v$, with $v_k \in U_{n_k}$, for all k and (U_{n_k}) , n_k subsequence and $s - \text{Liminf } U_n$ denotes the set of all the points v such that $v_n \rightarrow v$, with $v_n \in U_n$, for n sufficiently large.

Part I-Content	Parametric problems-refrain o o o	Condition (C) ○ ○	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0 0000	Bibliography

Condition (C)

The functions $f_n, f: X \times X \to R$ $(n \in N)$ verify condition: (C) For each sequences $(a_n)_{n \in N}$ and $(b_n)_{n \in N}$ with $a_n \in S(n)$, $a_n \xrightarrow{\sigma} a$, and $b_n \xrightarrow{\tau} b$, one has

$$\liminf_n \left(f(a_n, b) - f_n(a_n, b_n)\right) \ge 0.$$

Part I-Content	Parametric problems-refrain 0 0	Condition (C) ● ○	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00	Bibliography
			0 0000	

Topological pseudomonotonicity

Pseudomonotonicity in the sense of Brézis

Definition

([AUBIN], pg. 410) A function $f : X \times X \to R$ is said to be topologically pseudomonotone w.r.t. the first variable if, for each sequence $(a_n)_{n \in N} \subset X$ with $a_n \xrightarrow{\sigma} a$ in X, lim inf_n $f(a_n, a) \ge 0$ implies

$$\limsup_{n} f(a_n, b) \leq f(a, b), \text{ for all } b \in X.$$

イロン 不同 とくほう イロン

3

The case f(a, b) = g(b) - g(a).

Part I-Content	Parametric problems-refrain o o	Condition (C) ○ ●	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0000	Bibliography

Result-2012

We take f(a, b) = g(b) - g(a) and $f_n(a, b) = g_n(b) - g_n(a)$. If g is lower semi-continuous, then f is, obviously, topologically pseudomonotone w.r.t. the first variable. In this case condition (\mathbf{C}') becomes:

(**C**") For each sequence $(a_n)_{n \in \mathbb{N}}$ of solutions for $(M)_n$, $a_n \to a$ and $b \in X$, there exists a sequence $(b_n)_{n \in \mathbb{N}}$ such that $b_n \to b$ and

$$\liminf_n [g(b) - g_n(b_n) - g(a_n) + g_n(a_n)] \ge 0.$$

Corollary

Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of solutions for $(M)_n$ and let $a_n \to a$. Suppose that g is lower semi-continuous at a and the functions $g_n, g, n \in \mathbb{N}$, verify condition (\mathbb{C}'') . Then, limit a is solution for (M).

Part I-Content	Parametric problems-refrain o o	Condition (C) 0 0	Part II-(<i>VEP</i>)n, Pareto equilibrium ●0 ○0 ○0	Bibliography

$(VEP)_n$

$(VEP), (VEP)_n, Pareto optimization$

For vector problem there exists the following model. Let \mathcal{Z} be a real topological vector space with an ordering cone C, nonempty convex closed in \mathcal{Z} , different from \mathcal{Z} . For $n \in N$ consider the following vector equilibrium problem: (*VEP*)_n find $a_n \in D_n$ such that

$$h_n(a_n, b) \in (-\text{Int } C)^c$$
, for all $b \in D_n$,

where D_n is a nonempty subset of X and $h_n : X \times X \to \mathcal{Z}$ is given. By $(-\text{Int } C)^c$ the complementary of (-Int C) in \mathcal{Z} is denoted. Note that if $\mathcal{Z} = R$ and $C = [0, +\infty)$, then the vector equilibrium problem reduces to scalar equilibrium problem.

Part I-Content	Parametric problems-refrain o o o	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium ⊙● ○○ ○ ○○○○	Bibliography
(VFP)_				

Pareto optimization

The parametric generalized optimization (weak) Pareto problem is considered the following: $(PO)_n$ find $a_n \in D_n$ such that

$$\varphi_n(b) - \varphi_n(a_n) \in (-\text{Int } C)^c$$
, for all $b \in D_n$,

where $\varphi_n : X \to Z$ is a given function. Let S(n) be the set of solutions for $(PO)_n$ and let $S(\infty)$ be the solutions set of (PO). (Q) If $a_n \in S(n)$ and $a_n \to x$ in X when $n \to \infty$, is it true that $x \in S(\infty)$?

Part I-Content	Parametric problems-refrain 0 0 0	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium \circ \bullet \circ	Bibliography
			0000	

Condition (VC)

Vector topological pseudomonotonicity

Definition

([Salamon-Bogdan], 2010) Let (X, σ) be a Hausdorff topological vector space and let $D \subseteq X$ be nonempty. We say that a function $h: D \times D \to \mathcal{Z}$ is vector top. pseudomonotone if for all $b \in D$, $v \in \text{Int } C$ and for each sequence $(a_n)_{n \in N}$ in D with $a_n \xrightarrow{\sigma} a$ and

Liminf
$$h(a_n, a) = \emptyset$$
 or Liminf $h(a_n, a) \cap (-\text{Int } C)^c \neq \emptyset$

there exists an index n_0 such that

$$\overline{\{h(a_m,b):m\geq n\}}\subset h(a,b)+v-\mathrm{Int}\ C, \text{ for all }n\geq n_0.$$

Part I-Content	Parametric problems-refrain o o o	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium ○○ ○○ ○○○○	Bibliography
Condition (VC)				

Condition (C) vector case

The functions $f_n, f : X \times X \rightarrow \mathcal{Z}$ $(n \in N)$ verify the following vector condition:

(VC) For each sequence $(a_n)_{n \in N}$ with $a_n \in S(n)$, $a_n \to a$, there exists $(b_n)_{n \in N}$ with $b_n \to b$ such that

$$\operatorname{Liminf}\left(f(b)-f(a_n)-f_n(b_n)+f_n(a_n)\right)\cap C\neq\emptyset.$$

(日) (同) (三) (三)

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(VEP)n, Pareto equilibrium	Bibliography
			00	
			00	
			•	

Vector semi-continuity

Result for (PO)

Theorem

[Salamon-Bogdan, JMAA 2010] Let X be a Hausdorff topological space. Let $(a_n)_{n \in N}$ be such that a_n is a Pareto optima for $(PO)_n$ and let $a_n \to \bar{a}$ in X. Suppose that vector condition (**VC**) applies. If φ is C-lower semi-continuous at \bar{a} , then \bar{a} is a solution for (PO).

A function $\varphi : X \to \mathcal{Z}$ is said to be C-lower semicontinuous at a if for all $v \in \text{Int } C$ and for each sequence $(a_n)_{n \in N}$ with $a_n \to a$ there exists an index n_0 such that

$$\overline{\{\varphi(a_m):m\geq n\}}\subset \varphi(a)-v+{\rm Int}\ C, \ {\rm for \ all} \ n\geq n_0.$$

Part I-Content	Parametric problems-refrain	Condition (C)	Part II- $(VEP)_n$, Pareto equilibrium	Bibliography
			00	
			0000	

Vector semi-continuity

C-semi-continuity

Definition

(Tanaka, 1997) A function $\varphi: X \to \mathbb{Z}$ is said to be C-lower semi-continuous on X if for every $z \in \mathbb{Z}$ the set $f^{-1}(z + \text{Int } C)$ is open in X.

Definition

(Corley, 1980) Let C be a cone in Z. A function $\varphi : X \to Z$ is said to be C-semi-continuous on X if for every $y \in Z$ the set $f^{-1}(y + \operatorname{cl} C)$ is closed in X.

We are able to find the stability of solutions in the presence of vector condition (VC) and C-lower semi-continuity (in the Tanaka's sense) but we have no result so far on this issue with

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(VEP)n, Pareto equilibrium	Bibliography
			00	
			0000	

Vector semi-continuity

Strong *C*-**semi-continuity**

Definition

(Oppezzi-Rossi, 2006) A function $f: X \to Z$ is said to be strongly lower *C*-semi-continuous at the point $a \in X$ iff, for any $\varepsilon \in \text{Int } C$, there exists $U_{a\varepsilon}$, a neighborhood of *a* such that

$$f(x) \in f(a) - \varepsilon + C_0$$
, for all $x \in U_{a\varepsilon}$.

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(VEP)n, Pareto equilibrium	Bibliography
			00	
			0000	
Vector semi-conti	nuity			

Example

Example

$$\begin{array}{l} (\text{Oppezzi-Rossi; Jota, 2006}) \text{ Let } f:R \rightarrow R^2 \text{ be given by} \\ f(a) = \begin{cases} (a,1/a), \text{ if } a > 0, \\ (a,-a^2), \text{ if } a \leq 0 \end{cases} \text{ and } f_n = f, \ n \in N. \text{ Let} \\ C = \{(x,y) \in R^2: 0 \leq y \leq x\}. \end{array}$$

The function f is not strongly C-lower semi-continuous at a = 0. Although it is easy, let us proceed. There exists $\varepsilon = (1/2, 1/4) \in \text{Int } C$ such that for every U neighborhood of 0, we can find $x_U \in U$ such that

$$f(x_U) + \varepsilon \notin C_0.$$

Part I-Content	Parametric problems-refrain 0 0 0	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium ○○ ○○ ○○	Bibliography
Vector semi-contir	nuity			

Example

Let U be a neighborhood of 0. There exists 0 < r < 1 such that $(-r, r) \subseteq U$. Let us take $x_U = r/2$. We obtain $(r/2, 2/r) + (1/2, 1/4) \notin C_0$. Now, let us consider the sequence $(a_n)_{n \in \mathbb{N}}, a_n = 1/n$ that are global minimum points so they are also weak minimums for f. Condition (**VC**) applies since, for each $b \in X$ there exists a sequence $(b_n)_{n \in \mathbb{N}}, b_n \to b$ such that

$$\operatorname{Liminf} \left[f(b) - f(a_n) - f(b_n) + f(a_n) \right] \cap C \neq \emptyset.$$

Indeed, take $b_n = b$, $n \in N$, so (0,0) is the common element. Observe that 0 is not a weak minimum for f. Straight from the definition one has $(1/2, 1/4) \in [(0,0) - f(R)] \cap \text{Int } C \neq \emptyset$, i.e. there exists $b = -1/2 \in R$ such that

$$f(b) - f(0)
ot\in (-\mathrm{Int}\ C)^c$$
 , constants in the second seco

Part I-Content	Parametric problems-refrain o o o	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0 0000	Bibliography

References

- Bogdan, M., Kolumbán, J., *Some regularities for parametric equilibrium problems*, J. of Global Optim. 44(**2009**)481-492.
- Salamon, J., Bogdan, M., Closedness of the solution map for parametric vector equilibrium problems, J. of Math. Analysis and Appl., 364(2010) 483-491.
- Jofré, A., Wets, R.J.-B., *Continuity Properties of Walras Equilibrium Points*, Ann. of Op. Research, 114(**2002**)229 243.

Part I-Content	Parametric problems-refrain 0 0 0	Condition (C) 0 0	Part II-(<i>VEP</i>) _n , Pareto equilibrium 00 00 0 0000	Bibliography

References

- Mosco, U., Convergence of convex sets and of solutions of variational inequalities, Advances in Mathematics, 3(1969)510 - 585.
- Lignola, M.B., Morgan, J., Convergence of solutions of quasivariational inequalities and applications, Topological Meth. Nonl. Analysis, 10(1997)375-385.
- Bogdan, M., Kolumbán, J., On parametric equilibrium problems, Topological Meth. Nonl. Analysis, accepted(2012).

Part I-Content	Parametric problems-refrain	Condition (C)	Part II- $(VEP)_n$, Pareto equilibrium	Bibliography
			00	
			00	
			0000	

References on *C***-semi-continuity**

- Corley, H.W., An existence result for maximizations with respect to cones, J. Optim. Theory Appl. 31 (1980), pp. 277-281.
- Oppezzi, P., Rossi, A.M., *Existence and convergence of Pareto minima*, J. Optim. Theory Appl. 128 (2006), pp. 653-664.

Tanaka, T., Generalized semicontinuity and existence theorems for cone saddle points, Appl. Math. Optim. 36 (1997), pp. 313-322.

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(VEP)n, Pareto equilibrium	Bibliography
			00	
			00	
			0000	

Bibliography-monographs

- Aubin, J.P., *Mathematical Methods of Game and Economic Theory*, North Holland, Amsterdam, Netherlands, 1982.
- Roubiček, T., Nonlinear Differential Equations with Applications, Birkhäuser Verlag, Basel, Switzerland, 2005.
- Showalter, R.E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, American Math. Society, USA, vol. 49 1997.
- Zeidler, E., *Nonlinear Functional Analysis and its Applications*, Springer Verlag, Berlin, Germany, Vol. III 1990.

Part I-Content Parametric problems-retrain Condition (C) Part II-(VEP)n, Pareto equilibrium Bibliogra	Part I-Content	Parametric problems-refrain 0 0 0	Condition (C) 0 0	00 0	Bibliography
---	----------------	--	-------------------------	---------	--------------

Thank you !

Vă mulțumesc !

Parametric vector optimization

Part I-Content	Parametric problems-refrain	Condition (C)	Part II-(<i>VEP</i>) _n , Pareto equilibrium	Bibliography
			00	
			00	
			0000	

Întrebare din anul 2008

Care să fie condițiile impuse asupra unei funcții $f: X \times X \to R$ încât subdiferențiala sa $\partial f: X \times X \to 2^R$ să fie topologic pseudomonotonă ?

Part I-Content	Parametric problems-refrain	Condition (C)	Part II- $(VEP)_n$, Pareto equilibrium	Bibliography
			0000	

Set-valued pseudomonotone operator

Definition

An operator $\mathcal{A} : X \to 2^{X^*}$ is said to be topologically pseudomonotone if the following three conditions hold:

- (i) the set $\mathcal{A}u$ is nonempty, bounded, closed and convex for all $u \in X$;
- (ii) \mathcal{A} is upper semicontinuous from the segments of X to the weak topology on X^* ;

(iii) if $(u_i) \subset X$ with $u_i \rightharpoonup u$ in X and $u_i^* \in Au_i$ is such that $\liminf_i \langle u_i^*, u - u_i \rangle_X \ge 0$, then to each element $v \in X$ there exists $u^* \in Au$ to satisfy $\limsup_i \langle u_i^*, v - u_i \rangle_X \le \langle u^*, v - u_i \rangle_X, \forall v \in X.$