Characterizations of ε -duality gap statements for composed optimization problems^{*}

Horațiu Boncea (Cluj-Napoca)

12.12.2013

Abstract

In this paper we present different regularity conditions that equivalently characterize ε -duality gap statements for optimization problems consisting of minimizing the sum of a function with the precomposition of a cone-increasing function to a vector function. These regularity conditions are formulated by using epigraphs and ε -subdifferentials. Taking $\varepsilon = 0$ one can rediscover recent results on stable strong and total duality and zero duality gap from the literature. Moreover, we deliver ε -optimality conditions and (ε, η) -saddle point statements for the aforementioned kind of problems, and ε -Farkas statements involving the sum of a function with the precomposition of a cone-increasing function to a vector function.

^{*}This presentation is based on the paper [H.-V. Boncea, S.-M. Grad, *Characterizations* of ε -duality gap statements for composed optimization problems, Nonlinear Anal. 92 (2013), 96-107, http://dx.doi.org/10.1016/j.na.2013.07.004].