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Abstract

In this paper we show that some of the recent results on fixed point for CAT(0) spaces still hold
true for CAT(1) spaces, and so for any CAT(k) space, under natural boundedness conditions. We also
introduce a new notion of convergence in geodesic spaces which is related to the ∆-convergence and
applied to study some aspects on the geometry of CAT(0) spaces. At this point, two recently posed
questions in [13] (W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear
Anal. 68 (12) (2008), 3689-3696) are answered in the negative. The work finishes with the study of the
Lif̆sic characteristic and property (P) of Lim-Xu to derive fixed point results for uniformly lipschitzian
mappings in CAT(k) spaces. A conjecture raised in [4] (S. Dhompongsa, W.A. Kirk and B. Sims,
Fixed points of uniformly lipschitzian mappings, Nonlinear Anal., 65 (2006), 762–772) on the Lif̆sic
characteristic function of CAT(k) spaces is solved in the positive.
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1 Introduction

Metric spaces of bounded curvature, and in particular CAT(k) spaces, can be understood as a generalization
of Riemannian manifolds with bounded sectional curvature. In fact, it is very well-known that any com-
plete simply connected Riemannian manifold with nonpositive sectional curvature is a CAT(0) space. The
geometric idea behind CAT(k) spaces, as it is possible to appreciate in Section 2, is that geodesic triangles
are somehow thin or, at least, not too fat. The term CAT(k) was introduced by M. Gromov to denote
a distinguished class of geodesic metric spaces with curvature bounded above by k ∈ R. In recent years,
CAT(k) spaces have called the attention of many authors as they have played a very important role in
different aspects of geometry. A very thorough discussion on these spaces and the role they play in geometry
can be found in the book by M.R. Bridson and A. Haefliger [1] (see also [2, 9]).

As it was noted by W.A. Kirk in his fundamental works [11, 12], the geometry of CAT(k) spaces is rich
enough as for developing a very consistent theory on fixed point under metric conditions. These works were
followed by a series of new works by different authors (see for instance [3, 4, 13, 15, 20]) mainly focusing
on CAT(0) spaces and R-trees (see Section 2 for definitions) due to the particularly rich geometry of both
classes of spaces. It was also noted in [12] that any CAT(k) space is uniformly convex in a certain sense but
it turns out that CAT(0) spaces enjoy some other well-known and strong geometrical properties, such as an
Euclidean-like law of cosines, the CN-inequality or the good properties of the metric projection onto closed
convex subsets (see [1] for details) which are of very much help when dealing with their geometry. Also,
since any CAT(k) space is a CAT(k′) space for k′ > k, all these results originally obtained for CAT(0) spaces
immediately apply to any CAT(k) with k ≤ 0. In this work, among other questions, we take up the question
of finding out what can be said for CAT(k) spaces with k > 0 regarding the existence of fixed points under
metric conditions on the considered mappings. Since any result on general CAT(1) spaces can be extended
to any CAT(k) space with k > 0 without major changes we will mainly focus on CAT(1) spaces. We will
start working from the uniform convexity of CAT(1) spaces to show how, in addition to the boundedness of
the curvature, all the above-named properties of CAT(0) spaces as the CN-inequality are, in some way, not
required.

This work is organized as follows. In Section 2 we introduce some preliminary definitions and results
regarding some basic questions about metric fixed point theory and spaces of bounded curvature. In Section
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3 we recall some basic facts about the geometry of the spaces of bounded curvature of special relevance in
metric fixed point theory as those related to the uniform convexity or the normal structure in the sense of
Brodskii and Milman. In Section 4 we prove that CAT(1) spaces enjoy the Kadec-Klee property by means
of the ∆-convergence in a similar way as it has been recently shown for CAT(0) spaces in [13]. In this
section we also show a fixed point result for convex type mappings in CAT(1) spaces. In Section 5 we take
up some of the questions posed in [13] regarding the geometry of CAT(0) spaces, in particular we answer
in the negative two of those questions and improve one result about the ∆-convergence of a sequence of
interior points of geodesic segments when the sequences of the endpoints of such segments ∆-converge to
the same point. In order to prove these results we need to introduce a new notion of convergence in geodesic
spaces which is inspired in one of the two given by E.N. Sosov in [21] and which we relate to the notion of
∆-convergence. In Section 6, our last section, we follow the work [4] on the study of the Lif̆sic characteristic
and the property (P) of Lim-Xu in CAT(0) spaces for CAT(k) spaces with k ≥ 0. In particular we estimate
the Lif̆sic characteristic for any CAT(k) space, answering in the positive a conjecture raised in [4], and show
that CAT(1) spaces also enjoy property (P). Consequences on the existence of fixed points for uniformly
lipschitzian mappings are also deduced, sharpening some of the results from [4].

2 Preliminaries

Let (X, d) be a bounded metric space, then, for D ⊆ X nonempty, set

rx(D) = sup{d(x, y) : y ∈ D}, x ∈ X;

radX(D) = inf{rx(D) : x ∈ X};
diam(D) = sup{d(x, y) : x, y ∈ D};
cov(D) = ∩ {B : B is a closed ball and D ⊂ B}.

The number radX(D) (or simply rad(C) when confusion does not arise) stands for the Chebyshev radius
of D (in X) and cov(D) the admissible hull of D (in X).

A subset A of X is said to be admissible if cov(A) = A. The number

Ñ(X) = sup

{

rad(A)

diam(A)

}

where the supremum is taken over all nonempty bounded admissible subsets A of X for which diam(A) > 0
is called the normal structure coefficient of X. If Ñ(X) ≤ c for some constant c < 1, then X is said to have
uniform normal structure in the sense of Brodskii and Milman.

A mapping T : X → X is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y) for any x, y ∈ X. The following
theorem is known as the Kirk’s Fixed Point theorem for metric spaces (see [10, pg. 103] for more details on
this theorem or [7] for a thorough exposition on metric fixed point theory).

Theorem 2.1 Let X be a nonempty complete bounded metric space with uniform normal structure, then
every nonexpansive mapping T : X → X has a fixed point, i.e., there is x ∈ X such that Tx = x.

A geodesic path joining x ∈ X to y ∈ Y (or, more briefly, a geodesic from x to y) is a map c : [0, l] ⊆ R → X
such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is an isometry and
d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique
this geodesic is denoted [x, y]. The space (X, d) is said to be a geodesic space (D-geodesic space) if every
two points of X (every two points of distance smaller than D) are joined by a geodesic, and X is said to
be uniquely geodesic (D-uniquely geodesic) if there is exactly one geodesic joining x and y for each x, y ∈ X
(for x, y ∈ X such that d(x, y) < D). Let Y ⊂ X, we denote by G1(Y ) the union of all geodesic segments in
X with endpoints in Y . Then Y is said to be convex if G1(Y ) = Y or, equivalently, if every pair of points
x, y ∈ Y can be joined by a geodesic in X and the image of any such geodesic is contained in Y . Y is said
to be D-convex if this condition holds for all points x, y ∈ Y with d(x, y) < D. For n ≥ 2 we inductively
define Gn(Y ) = G1(Gn−1(Y )); then

conv(Y ) = ∪∞
n=1Gn(Y )
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is the convex hull of Y .
A geodesic triangle △(x1, x2, x3) in a metric space (X, d) consists of three points in X (the vertices of

△) and a geodesic segment between each pair of vertices (the edges of △). We will say that the triangle is
degenerate if all three vertices belong to a same geodesic.

Next we introduce the Model Spaces Mn
k , for a more detailed description of them as well as for the proofs

of results we state in this section the reader can check [1, Chapter I.2]. To begin we need to describe the
spaces En, Sn and H

n.
Let En stand for the metric space obtained by equipping the vector space R

n with the metric associated
to the norm arising from the Euclidean scalar product (x|y) =

∑i=n

i=1 xiyi, where x = (x1, · · · , xn) and
y = (y1, · · · , yn), i.e. Rn endowed with the usual Euclidean distance.

The n-dimensional sphere S
n is the set {x = (x1, · · · , xn+1) ∈ R

n+1 : (x|x) = 1}, where (·, ·) denotes
the Euclidean scalar product.

Proposition 2.2 Let d : Sn × S
n → R be the function that assigns to each pair (A,B) ∈ S

n × S
n the unique

real number d(A,B) ∈ [0, π] such that
cos d(A,B) = (A|B).

Then (Sn, d) is a metric space.

Geodesics in S
n coincide with sufficiently small arcs of great circles, i.e. intersections of Sn with a 2-

dimensional vector subspace of E
n+1. There is a natural way to parameterize arcs of great circles with

respect to arc length which will be useful in this work: given a point A ∈ S
n, a unit vector u ∈ E

n+1 with
(u|A) = 0 and a number a ∈ [0, π], the path c : [0, a] → S

n given by c(t) = (cos t)A+(sin t)u is a geodesic and
any geodesic in S

n can be parameterized this way. The next proposition summarizes some of the properties
of the metric space (Sn, d).

Property 2.3 Let (Sn, d) be as above and A,B ∈ S
n, then:

1. If d(A,B) < π then there is just one geodesic segment joining both points.

2. If B 6= A then the initial vector u of this geodesic is the unit vector, with to the Euclidean norm, in
the direction of B − (A|B)A.

3. Balls of radius smaller than π/2 are convex sets.

By definition, the spherical angle between two geodesics from a point of Sn, with initial vectors u and
v, is the unique number α ∈ [0, π] such that cosα = (u|v). Given △(A,B,C) a triangle in S

n, the vertex
angle at C is defined to be the spherical angle between the sides of △ joining C to A and C to B. Then the
Spherical Law of Cosines can be described as follows:

Proposition 2.4 Let △ be a spherical triangle with vertices A,B,C. Let a = d(B,C), b = d(C,A) and
c = d(A,B). Let γ denote the vertex angle at C. Then

cos c = cos a cos b+ sin a sin b cos γ.

Now, in order to introduce the Hyperbolic n-Space H
n, let En,1 denote the vector space R

n+1 endowed
with the symmetric bilinear form which associates to vectors u = (u1, · · · , un) and v = (v1, · · · , vn) the real
number 〈u|v〉 defined by

〈u|v〉 = −un+1vn+1 +
n
∑

i=1

uivi.

Then the real hyperbolic n-space H
n is

{u ∈ E
n,1 : 〈u|u〉 = −1, un+1 ≥ 1}.

Proposition 2.5 Let d : Hn × H
n → R be the function that assigns to each pair (A,B) ∈ H

n × H
n the

unique non-negative number d(A,B) such that

cosh d(A,B) = −〈A,B〉.

Then (Hn, d) is a uniquely geodesic metric space.
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Some of the most relevant properties of these spaces are summarized next.

Property 2.6 Let (Hn, d) be as above and A,B ∈ H
n, then:

1. If u is the unit vector, with respect to the bilinear form, in the direction B + 〈A|B〉A then the geodesic
segment joining A and B and starting at A is given by c(t) = (cosh t)A+ (sinh t)u.

2. Balls are convex sets.

3. (Hyperbolic Law of Cosines) Under the same notation of Proposition 2.4,

cosh c = cosh a cosh b− sinh a sinh b cos γ,

where γ stands for the hyperbolic angle which can be defined in a similar way to the spherical angle.

The Model Spaces Mn
k are defined as follows.

Definition 2.7 Given a real number k, we denote by Mn
k the following metric spaces:

1. if k = 0 then Mn
0 is the Euclidean space E

n;

2. if k > 0 then Mn
k is obtained from the spherical space S

n by multiplying the distance function by the

constant 1/
√
k;

3. if k < 0 then Mn
k is obtained from the hyperbolic space H

n by multiplying the distance function by the
constant 1/

√
−k.

Proposition 2.8 Mn
k is a geodesic metric space. If k ≤ 0 then Mn

k is uniquely geodesic and all balls in Mn
k

are convex. If k > 0 then there is a unique geodesic segment joining x, y ∈ Mn
k if and only if d(x, y) < π/

√
k.

If k > 0, closed balls in Mn
k of radius smaller than π/2

√
k are convex.

Let (X, d) be a geodesic metric space. A comparison triangle for a geodesic triangle △(x1, x2, x3) in
(X, d) is a triangle △(x̄1, x̄2, x̄3) in M2

k such that dM2
k

(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. If k ≤ 0 then

such a comparison triangle always exists in M2
k . If k > 0 then such a triangle exists whenever d(x1, x2) +

d(x2, x3) + d(x3, x1) < 2Dk, where Dk = π/
√
k.

A geodesic triangle △ in X is said to satisfy the CAT(k) inequality if, given △̄ a comparison triangle in
M2

k for △, for all x, y ∈ △
d(x, y) ≤ dM2

k

(x̄, ȳ),

where x̄, ȳ ∈ △̄ are the respective comparison points of x, y, i.e., if x ∈ [xi, xj ] is such that d(x, xi) =
λd(xi, xj) and d(x, xj) = (1 − λ)d(xi, xj) then x̄ ∈ [x̄i, x̄j ] is such that d(x̄, x̄i) = λd(x̄i, x̄j) and d(x̄, x̄j) =
(1− λ)d(x̄i, x̄j).

Definition 2.9 If k ≤ 0, then X is called a CAT(k) space if X is a geodesic space such that all of its
geodesic triangles satisfy the CAT(k) inequality.

If k > 0, then X is called a CAT(k) space if X is Dk-geodesic and all geodesic triangles in X of perimeter
less than 2Dk satisfy the CAT(k) inequality.

R-trees are a particular class of CAT(k) spaces for any real k which will be named at certain points of
our exposition (see [1, pg. 167] for more details).

Definition 2.10 An R-tree is a metric space T such that:

1. it is a uniquely geodesic metric space;

2. if x, y and z ∈ T are such that [y, x] ∩ [x, z] = {x}, then [y, x] ∪ [x, z] = [y, z].

Remark 2.11 Notice that all triangles in an R-tree are degenerate.
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Next we define the notion of comparison angle.

Definition 2.12 Let p, q and r be three points in a metric space. We call comparison angle between q and
r at p, which will be denoted as ∠p(q, r), to the interior angle of △̄(p, q, r) ⊆ E

2 at p̄.

The notion of angle in a geodesic space will be very important in our work.

Definition 2.13 Let X be a metric space and let c : [0, a] → X and c′ : [0, a′] → X be two geodesic paths
with c(0) = c′(0). Given t ∈ (0, a] and t′ ∈ (0, a′], we consider the comparison triangle △(c(0), c(t), c′(t′))
and the comparison angle ∠c(0)(c(t), c

′(t′)) in E
2. The (Alexandrov) angle or the upper angle between the

geodesic paths c and c′ is the number ∠c,c′ ∈ [0, π] defined by:

∠(c, c′) = lim sup
t,t′→0+

∠c(0)(c(t), c
′(t′)).

The angle between the geodesic segments [p, x] and [p, y] will be denoted ∠p(x, y).

Remark 2.14 The Alexandrov angle coincides with the spherical angle on S
n and the hyperbolic angle on

H
n.

A very important role in this work will be played by the notion of uniform convexity in a D-uniquely
geodesic space. We define the modulus of convexity of (X, d) by

δX(r, ε) = inf{1− 1

r
(d(a,m))},

where the infimum is taken over all points a, x, y and m the midpoint of [x, y] in X satisfying that d(a, x) < r,
d(a, y) < r and d(x, y) ≥ ε, with ε, r < D.

In this work we will need the estimation of the modulus of convexity of S2 with the spherical distance,
remember that D = D1 in this case. This can be found in [8, pg. 154] where the following is shown

δS2(r, ε) = 1− 1

r
arccos

(

cos r

cos(ε/2)

)

.

Definition 2.15 A D-uniquely geodesic metric space (X, d) will be said uniformly convex if δX(r, ε) < 1 for
every r ∈ (0, D) and ε ∈ (0, D).

We finish this section introducing the notions of Lif̆sic characteristic and property (P) of Lim-Xu for
metric spaces which will be used in the last section of this work for the study of uniformly l-lipschitzian
mappings.

Definition 2.16 A mapping T : X → X is said to be uniformly l-lipschitzian if there exists a constant l
such that d(Tnx, Tny) ≤ ld(x, y) for all x, y ∈ X and n ∈ N.

Balls in X are said to be c − regular if the following holds: for each l < c there exist µ, α ∈ (0, 1) such
that for each x, y ∈ X and r > 0 with d(x, y) ≥ (1− µ)r, there exists z ∈ X such that

B(x; (1 + µ)r)
⋂

B(y; l(1 + µ)r) ⊂ B(z;αr).

The Lif̆sic characteristic κ(X) of X is defined as follows:

κ(X) = sup{c ≥ 1 : balls in X are c-regular}.
The above characteristic was applied by Lif̆sic in the following theorem.

Theorem 2.17 (Lif̆sic [17] (see also [7])) Let (X, d) be a bounded complete metric space. Then every
uniformly l-lipschitzian mapping T : X → X with l < κ(X) has a fixed point.

In [18], Lim and Xu introduced the so-called property (P) for metric spaces. A metric space (X, d) is said
to have property (P) if given two bounded sequences {xn} and {zn} in X, there exists z ∈ ⋂

n≥1 cov({zj :
j ≥ n}) such that

lim sup
n

d(z, xn) ≤ lim sup
j

lim sup
n

d(zj , xn).

The following theorem was proved in [18].

Theorem 2.18 Let (X, d) be a complete bounded metric space with both property (P) and uniform normal

structure. Then every uniformly l-lipschitzian mapping T : X → X with l < Ñ(X)−
1
2 has a fixed point.
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3 Some basic facts

We begin this section with the study of the uniform convexity of CAT(1) spaces.

Proposition 3.1 Let X be a complete CAT(1) space. If diam(X) < π/2, then X is uniformly convex and
its modulus of convexity satisfies that

δX(r, ε) ≥ δS2(r, ε).

Notice that this result is optimal as the following example shows. Therefore, throughout this paper we
will assume the condition diam(X) < π/2 as a natural one when dealing with CAT(1) spaces.

Example 3.2 Let (S2, d) be the spherical space and ei ∈ S
2, for i = 1, 2, 3, be each of the elements of

the canonical basis of R
3. Let K be the closed convex hull over the sphere of {ei : i = 1, 2, 3}, i.e, the

positive octant of the sphere. Then we have that diam(K) = π/2 but K is not uniformly convex itself since
d(e1, ei) = π/2 for i = 2, 3 and d(e1,m) = π/2 for m the mid-point of the geodesic segment [e2, e3].

The following theorem, due to U. Lang and V. Schroeder [16], shows that a bit more can be said regarding
the normal structure of a CAT(1) space.

Theorem 3.3 Let X be a complete CAT(1) and S a nonempty bounded subset of X. If rad(S)< π/2, then
there is a unique center for S and diam(S) ≥ Ψ(rad(S)) > rad(S), where

Ψ(r) = 2 arcsin(
1√
2
sin r).

The next example shows that Theorem 3.3 is optimal with respect to the normal structure of the space.

Example 3.4 Let us consider the unit sphere Sℓ2 of the Hilbert space ℓ2 provided with the intrinsic metric
Ld. This space is a CAT(1) space. Consider the elements of the canonic basis {(ei)}∞i of ℓ2. Let K = {x =
(xn) ∈ Sℓ2 : xn ≥ 0 for all n ∈ N}, i.e. K is the closed convex hull of {(ei)}∞i in (Sℓ2 , Ld).

Since the intrinsic distance between two points x and y in Sℓ2 coincides with the real number d(x, y) ∈ [0, π]
such that (x|y)ℓ2 = cos d(x, y), the diameter of K can be estimated as follows:

diam(K) = sup
i,j

d(ei, ej) = sup
i,j

arccos(ei|ej) = arccos 0 = π/2.

Now, given x ∈ Sℓ2 we also have that d(x, en) = arccos(x|en) = arccosxn. Thus,

lim
n→∞

d(x, en) = lim
n→∞

arccosxn = arccos 0 = π/2.

Then, rad(K) = π/2 =diam(K).

The next proposition establishes very useful properties of the metric projection in CAT(1) spaces. Prop-
erties given by Statements (1) and (2), among others, are proved in [1] for CAT(0) spaces and proposed as
an exercise (Exercise 2.6 (1)) for CAT(k) spaces with k > 0. Statement (3) follows as a consequence of (2).

Proposition 3.5 Let X be a complete CAT(1) space, x ∈ X and C ⊂ X nonempty closed and π-convex
such that dist(x,C) < π/2, then the following facts hold:

1. The metric projection PC(x) of x onto C is a singleton.

2. If x /∈ C and y ∈ C with y 6= PC(x) then ∠PC(x)(x, y) ≥ π/2.

3. If diam(X) ≤ π/2, then, for any y ∈ C,

d(PC(x), PC(y)) = d(PC(x), y) ≤ d(x, y).

The following corollary, which will also be needed and follows by using similar techniques as those required
in the proof of the previous proposition, allows us to say that CAT(1) spaces are in somehow reflexive. Note
that r((cn)) stands for the asymptotic radius of the sequence (cn) which is defined in the next section.
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Corollary 3.6 Let X be a complete CAT(1) space and (Cn) a decreasing sequence of nonempty closed and
π-convex subsets of X. If there exists a sequence (cn) such that cn ∈ Cn for all n ∈ N and r((cn)) < π/2,
then ∩nCn 6= ∅.

In order to prove a counterpart of Kirk’s Fixed Point Theorem (see Theorem 2.1) for CAT(1) spaces, we
next define a new coefficient related to normal structure of a geodesic metric space X. The number

N̂(X) = sup

{

radA(A)

diam(A)

}

where the supremum is taken over all nonempty bounded closed convex and admissible subsets A of X for
which diam(A) > 0 will be called the ∧-normal structure coefficient of X. If N̂(X) ≤ c for some constant
c < 1, then X will be said to have ∧-uniform normal structure.

The next lemma will be the key to show that CAT(1) spaces have the ∧-uniform normal structure under
natural conditions on the diameter. Notice that this lemma is closely related to Proposition 2 in [12].

Lemma 3.7 Let C be a nonempty closed and convex subset of a complete CAT(1) space X. If radX(C) <
π/2, then radX(C) =radC(C).

Corollary 3.8 If X is a complete CAT(1) space with rad(X) < π/2 then X has ∧-uniform normal structure.

Next we give Kirk’s Fixed Point Theorem for CAT(1) spaces. In its proof, we follow the same patterns
than the proof given in [10, pg. 103] of Theorem 2.1.

Theorem 3.9 Let X be a complete nonempty CAT(1) space such that rad(X) < π/2. Then every nonex-
pansive mapping T : X → X has at least one fixed point.

Remark 3.10 W. A. Kirk in Theorem 11 of [12] also proved this last result but under the stronger assump-
tion of diam(X) < π/2.

As a consequence of Lemma 3.7 it also follows that Theorem 3.9 still holds true for convex subsets rather
than for the whole space.

Corollary 3.11 Let C be a nonempty closed and convex subset of a complete CAT(1) space X. If radX(C) <
π/2, then every nonexpansive mapping T : C → C has at least one fixed point.

Remark 3.12 Notice that neither Lemma 3.7 nor above corollary hold true if the condition radX(C) < π/2
is replaced by radX(C) ≤ π/2. For that it is enough to consider C as any great circumference of S2.

4 ∆-convergence and the Kadec-Klee property

In this section we show that ∆-convergence can be used in CAT(1) spaces in a similar way as it is used
in [13] for CAT(0) spaces, obtaining a collection of similar results with the only difference that we have to
impose the natural bound on the diameter of the CAT(1) space. To show this we begin with the definition
of ∆-convergence.

Let X be a complete CAT(1) space and (xn) a bounded sequence in X. For x ∈ X set

r(x, (xn)) = lim sup
n→∞

d(x, xn).

The asymptotic radius r((xn)) of (xn) is given by

r((xn)) = inf{r(x, (xn)) : x ∈ X},

the asymptotic radius rC((xn)) with respect to C ⊆ X of (xn) is given by

rC((xn)) = inf{r(x, (xn)) : x ∈ C},
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the asymptotic center A((xn)) of (xn) is given by the set

A((xn)) = {x ∈ X : r(x, (xn)) = r((xn))},

and the asymptotic center AC((xn)) with respect to C ⊆ X of (xn) is given by the set

AC((xn)) = {x ∈ C : r(x, (xn)) = rC((xn))}.

Proposition 4.1 Let X be a complete CAT(1) space, C ⊆ X nonempty closed and π-convex, and (xn) a
sequence in X. If rC({xn}) < π/2, then AC((xn)) consists of exactly one point.

The next example shows the optimality of the last bound on the asymptotic radius.

Example 4.2 As in Example 3.4, we consider the unit sphere Sℓ2 of the Hilbert space ℓ2 provided with the
intrinsic metric Ld. Consider the sequence consisting of the canonic basis {(ei)}∞i of ℓ2. Let y = (yn) ∈ Sℓ2 ,
then

r(y, ((en)) = lim sup
n

d(y, en) = lim sup
n

arccos yn = π/2.

Thus, r((en)) = π/2 and A((en)) = Sℓ2 .

Definition 4.3 A sequence (xn) in X is said to ∆-converge to x ∈ X if x is the unique asymptotic center
of (un) for every subsequence (un) of (xn). In this case we write ∆− limn xn = x and call x the ∆-limit of
(xn).

The next result follows as a consequence of the previous proposition.

Corollary 4.4 Let X be a complete CAT(1) space and (xn) a sequence in X. If r({xn}) < π/2, then (xn)
has a ∆− convergent subsequence.

The next proposition gives a very important property of ∆-convergent sequences.

Proposition 4.5 Let X be a complete CAT(1) space such that diam(X) < π/2. If a sequence (xn) in X
∆− converges to x ∈ X, then

x ∈
∞
⋂

k=1

conv{xk, xk+1, . . .},

where conv(A) =
⋂{B : B ⊇ A and B is closed and convex}.

Remark 4.6 Note that the previous result is also true if we only assume that diam(X) < π and r({xn}) <
π/2.

Next we show the Kadec-Klee property for CAT(1) spaces. This property was shown for CAT(0) space
in [13].

For a bounded sequence (xn) in a metric space we denote

sep(xn) := inf{d(xn, xm) : n 6= m}

the separation of the points of the sequence (xn).

Theorem 4.7 (Kadec-Klee Property) Let X be a complete CAT(1), let p ∈ X, and let ε > 0. Then
there exists δ > 0 such that d(p, x) ≤ 1− δ for every sequence (xn) ⊂ X such that d(p, xn) ≤ 1, sep(xn) > ε
and ∆− limn xn = x.

Next we show that we can give analogs in CAT(1) spaces to those other results in Section 3 of [13] for
CAT(0) spaces. Notice that this shows that the CN inequality of Bruhat and Tits (see [1, pg. 163]) is not
really required to obtain these results. In all the next definitions X is a CAT(1) space and K ⊆ X convex.
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Definition 4.8 A mapping T : K → X is said to be of type Γ if there exits a continuous strictly increasing
convex function γ : R+ → R

+ with γ(0) = 0 such that, if x, y ∈ K and if m and m′ are the mid-points of
the segments [x, y] and [T (x), T (y)] respectively, then

γ(d(m′, T (m))) ≤ |d(x, y)− d(T (x), T (y))|.

Definition 4.9 A mapping T : K → X is called α − almost convex for α : R+ → R
+ continuous, strictly

increasing, and α(0) = 0, if for x, y ∈ K,

JT (m) ≤ α(max{JT (x), JT (y)}),

where m is the mid-point of the segment [x, y], and JT (x) := d(x, T (x)).

Definition 4.10 A mapping T : K → X is said to be of convex type on K if for (xn),(yn) two sequences in
K and (mn) the sequence of the mid-points of the segments [xn, yn],

limn→∞ d(xn, T (xn)) = 0
limn→∞ d(yn, T (yn)) = 0

}

⇒ lim
n→∞

d(mn, T (mn)) = 0.

Proposition 4.11 Let K be a nonempty closed convex subset of a CAT (1) space X and let T : K → X. If
diam(K) < π/2, then the following implications hold:

T is nonexpansive ⇒ T in of type Γ ⇒
T is α− almost convex ⇒ T is of convex type.

We finish this section with the equivalent result of Theorem 3.14 in [13] for CAT(1) spaces.

Theorem 4.12 Let K be a bounded closed convex subset of X a complete CAT(1) space, and let T : K → X
be continuous and of convex type. Suppose

inf{d(x, T (x)) : x ∈ K} = 0

If diam(X) < π/2, then T has a fixed point in K.

Remark 4.13 Notice that the same result holds if the condition on the boundedness of X is replaced by the
weaker one of the existence of such a sequence (xn) ⊂ X that r((xn)) < π/2 and lim d(xn, Txn) = 0.

5 A notion of weak convergence and an application

In [21] E. N. Sosov introduces two different notions of convergence in geodesic metric spaces. These notions
coincide with ∆ and weak convergence in Hilbert spaces. Next we inspire in one of the notions given by
Sosov to introduce a new one more adequate to our purposes. We will adopt the same notation used by
Sosov.

Let X be a CAT(0) space and p a fixed point in X. Let S be the set of all the geodesic segments
containing the point p. Given I ∈ S and x ∈ X, we define the function φI : X → R as φI(x) = d(p, PI(x))
where PI(x) is the projection of x onto I. The set of all these φI is denoted by Φp(X).

Definition 5.1 A bounded sequence (xn) ⊆ X φp-converges to a point x ∈ X if

lim
n→∞

φ(xn) = φ(x)

for any φ ∈ Φp(X).

The following proposition establishes an easy connection between ∆ and φ convergence.

Proposition 5.2 A sequence (xn) ⊂ X ∆-converges to p if, and only if, φp-converges to p.

Remark 5.3 Note that all we have just done remains valid for CAT(1) spaces of diameter bounded by π/2.
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In [13] a four point condition, the so-called (Q4) condition, was studied for CAT(0) spaces. In that
work it was asked if any CAT(0) space enjoys the (Q4) condition as well as if this condition is necessary for
their Proposition 4.2. We next answer in the negative both questions at the time that improve this latter
proposition by means of a weaker geometrical condition than condition (Q4).

Definition 5.4 A complete CAT(0) space X is said to verify the (Q4) condition if for any four points
x, y, p, q ∈ X

d(x, p) < d(x, q)
d(y, p) < d(y, q)

}

⇒ d(m, p) ≤ d(m, q)

for any point m on the segment [x, y].

Remark 5.5 Note that condition (Q4) is also well defined for any uniquely geodesic metric space or even
for D-uniquely geodesic spaces under some conditions on the points x and y.

While asked in [13] if any complete CAT(0) space satisfies the (Q4) condition, the only examples of such
CAT(0) spaces explicitly named there were Hilbert spaces and R−trees. Next we present a larger collection
of CAT(0) spaces which satisfy this condition.

Definition 5.6 Let k ≤ k′, we will say that a CAT(k′) space is of constant curvature equal to k if any
non-degenerate triangle (with adequate boundedness condition if k > 0) in it is isometric to its comparison
triangle in M2

k .

Then the following theorem, which we state for CAT(0) spaces for expository reasons, holds.

Theorem 5.7 Any CAT(0) space of constant curvature satisfies the (Q4) condition.

Remark 5.8 A similar result holds for spaces of positive constant curvature.

In contrast to this theorem, the next example shows that there exist in fact CAT(0) spaces without the
(Q4) condition.

Example 5.9 Let A = {(x, y) ∈ R
2 : x ≥ 0} endowed with the Euclidean distance d1 and B = {(x, 0) ∈

R
2 : x ≤ 0} with the usual metric d2 on R. Let X be the gluing A ⊔(0,0) B with the natural gluing metric d

defined as

d(x, y) =

{

di(x, y), if x, y are both either in A or B
d1(x, 0) + d2(0, y), if x ∈ B and y ∈ A.

(See [1, pg. 67] for more details on gluings). By Reshetnyak gluing theorem ([1, pg. 347]) (X, d) is a
CAT(0) space; however if we take x = (0, 1), y = (0,−1), p = (11/10, 0) and q = (−1, 0) we have that
d(p, x) = d(p, y) < d(q, y) = d(q, x) but since m, the mid-point of the segment [x, y], is equal to the pair (0, 0)
we obtain that d(p,m) > d(q,m), contradicting the (Q4) condition.

The next theorem shows that this example is a particular case in a class of CAT(0) spaces missing the
(Q4) condition. Notice also that two spaces of constant curvature can be glued only through geodesic lines,
geodesic segments or singletons so Reshetnyak gluing theorem can be applied. The following lemma will be
needed.

Lemma 5.10 Let △(x, y, z) be a triangle of constant curvature k and △(x̄, ȳ, z̄) a comparison triangle for
△(x, y, z) in M2

k′ with k < k′. Then d(x,m) < d(x̄, m̄) for any m ∈ [y, z] and m̄ its comparison point in
△(x̄, ȳ, z̄).

Theorem 5.11 Any CAT(0) gluing space containing two spaces of constant but different curvature does not
satisfy the (Q4) condition.

Condition (Q4) was used in [13] to prove the following proposition.

Proposition 5.12 Let X be a complete CAT(0) space with the (Q4) condition, and suppose that (xn) and
(yn) both ∆-converge to p ∈ X. Suppose mn ∈ [xn, yn] satisfies d(xn,mn) = λd(xn, yn) for fixed λ ∈ (0, 1).
Then (mn) also ∆-converge to p.
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The authors of [13] ask if condition (Q4) is necessary in this proposition. This question seems to make
sense only in the absence of compactness since the above proposition trivially holds for proper CAT(0) spaces
as it is the case of Example 5.9. Of course, this answers in the negative this question. However we will see
next that condition (Q4) can be replaced by a weaker one which is still sufficient for a stronger version of
Proposition 5.12.

Definition 5.13 A complete CAT(0) space X has the property of the nice projection onto geodesics (property
(N) for short) if, given any geodesic segment I ⊆ X and PI the metric projection onto I, it is the case that
PI(m) ∈ [PI(x), PI(y)] for any x and y in X, and m ∈ [x, y].

Remark 5.14 It is easy to see that among gluings given in Theorem 5.11, those which are obtained through
singletons enjoy the (N) property if the original spaces do. The situation seems to be more complicated for
gluings along geodesic segments. Still we do not know of any example of a CAT(k) space which does not
enjoy the (N) property.

Question. Does every complete CAT(0) space enjoy property (N)?

The following lemma shows the relation between the (Q4) condition and the (N) property.

Lemma 5.15 If a complete CAT(0) space enjoys the (Q4) condition then it satisfies the (N) property.

Now we show that property (N) implies a stronger version of Proposition 5.12.

Theorem 5.16 Let X be a complete CAT(0) space with property (N), and suppose that (xn) and (yn) both
∆-converge to p ∈ X. Suppose mn ∈ [xn, yn] for any n ∈ N. Then (mn) also ∆-converges to p.

6 The Lif̆sic characteristic and uniformly Lipschitzian mappings
in CAT(k) spaces

In this section we first estimate the Lif̆sic characteristic for any CAT(k) space and second we study the
property (P) in CAT(1) spaces. In both cases we obtain the corresponding fixed point results for uniformly
lipschitzian mappings.

6.1 Lif̆sic characteristic in CAT(k) spaces

We begin with the estimation of the Lif̆sic characteristic in model spaces.

Proposition 6.1 If k < 0, k(Mn
k ) =

√

(2) for all n ∈ N.

Remark 6.2 Following similar patterns as in the proof of previous result, it is even possible to prove that
the Lif̆sic characteristic of every CAT(0) space of curvature bounded below is also the square root of 2. Notice
that the main idea to apply in this case is the fact that in these metric spaces we can find a point x and a
metric segment [y, z] such that

∠p(x, y) = ∠p(x, z) = π/2,

where p stands for P[y,z](x). (See for instance Chapter 10 in [2] and [5].)

Proposition 6.3 Let k < 0. If (X, d) is a complete CAT(k) space, then κ(X) ≥ κ(M2
k ).

Remark 6.4 In [4] it was proved that κ(X) ≥
√
2 for any CAT(k) space with k ≤ 0 and that κ(X) = 2 for

X an R-tree, then it was conjectured in Remark 1 that the Lif̆sic characteristic of a CAT(k) space for k < 0
is a continuous decreasing function on k which takes values in the interval (

√
2, 2). Notice that the above

proposition answers this conjecture in the negative.

The next theorem sharpens Theorem 6 in [4].
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Theorem 6.5 Let k < 0. If (X, d) is a bounded complete CAT(k), then every uniformly l-lipschitzian
mapping T : X → X with l <

√

(2) has a fixed point.

Remark 6.6 In this section we have only focused in the case CAT(k) with k ≤ 0 for expository reasons. In
a similar way it can be proved that, under adequate boundedness conditions,

κ(X) =
Arccos(cos2

√
k)√

k

for X a CAT(k) space with k > 0, where Arccos(cos2(
√
k)) must be understood as the value arccos(cos2(

√
k))

which varies in a continuous and increasing way with respect to k.

6.2 Property (P ) in CAT(1) spaces

In this section we show that every complete CAT(1) space under natural condition on the boundedness of
its diameter has property (P).

Let {xn} be a bounded sequence in a metric spaceX. Define ϕ : X → R by setting ϕ(x) = lim supn→∞ d(x, xn), x ∈
X.

Theorem 6.7 Let X be a complete CAT(1) space. If diam(X) < π/2, then X has property (P).

The corresponding fixed point theorem for uniformly lipschitzian mappings follows as immediate conse-
quence of Theorem 2.18.

Theorem 6.8 Let (X, d) be a complete bounded CAT(1) space. If diam(X) < π/2, then every uniformly

k-lipschitzian mapping T : X → X with k < Ñ(X)−
1
2 has a fixed point.
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