A STUDY OF TCP-FRIENDLINESS ON THE SHORT TERM
WITH AN APPLICATION TO MEDIA-FRIENDLY
CONGESTION CONTROL

ADRIAN STERCA (1) AND ALEXANDRU VANCEA (2)

Abstract. TCP-friendliness is a desired quality of any congestion control
algorithm used in the Internet because it expresses fairness towards TCP
flows. However, all studies refer to the TCP-friendliness as a long term
characteristic of a flow, i.e. they consider only the long-term fairness to
TCP. In this paper we introduce the notion of TCP-friendliness on the
short term and apply it to a multiplicative-type media-friendly congestion
control algorithm.

1. Introduction

TCP’s AIMD (Additive Increase Multiplicative Decrease) congestion con-
trol is not well suited for multimedia streams due to its highly fluctuating
throughput. Consequently, other congestion control algorithms which offer a
smoother throughput were developed, the so-called TCP-friendly congestion
controls algorithms [1]. All these smooth congestion control algorithms have
a more stable throughput than TCP’s AIMD because they are less aggressive
than TCP in using new available bandwidth, but they are also slower respon-
sive to congestion than TCP. Because they offer a more stable throughput,
multimedia streams, especially CBR (Constant Bit Rate) ones, but also VBR
(Variable Bit Rate) ones, can be better adapted to predictable bandwidths by
the streaming servers. However, although smooth congestion controls improve
the delivery of multimedia streams, they are not the optimal solution, because
they don’t take into consideration media characteristics of the stream (i.e.
they are not media-friendly). This led to the development of media-friendly congestion control [7, 8]. It is important to note that a congestion control algorithm for multimedia streaming must have both characteristics: it must be TCP-friendly (i.e. fair with the network) and it also must be media-friendly to maximize the application benefit.

The contributions of this paper are the following:

- we try to give a classification of media-friendly and TCP-friendly congestion control algorithms

- and we refine the concept of "TCP-friendliness" and distinguish between two types of TCP-fairness: long-term TCP-fairness and short-term TCP fairness.

The rest of the paper is organized as follows. In Section 2 we review TCP-friendly congestion control, focusing on the TCP-Friendly Rate Control (TFRC). Then in Section 3 we define TCP-friendliness on the short term and its utility to media-friendly congestion control algorithms. The paper continues with Section 4 which presents simulations for assessing TCP-friendliness on the short term of UTFRC (Utility-driven TCP-Friendly Rate Control), a multiplicative-type of media-friendly and TCP-friendly congestion control. Finally, the conclusions from Section 5 end the paper.

2. TCP-FRIENDLY CONGESTION CONTROL

A TCP-friendly congestion control algorithm is a congestion control algorithm which exhibits the same throughput as employed by the TCP’s AIMD congestion control algorithm in the same network conditions [1]. This makes TCP-friendly flows fair to TCP flows when consuming network bandwidth. And because TCP-friendly congestion control algorithms typically have a smoother throughput than TCP [2], they are favored over TCP for multi-media streaming applications. There are several proposals for TCP-friendly congestion control [3, 4, 5], but probably the most well known is TCP-Friendly Rate Control (TFRC) [2].

The TCP-Friendly Rate Control [2] is a rate-based congestion control that has two main components: the throughput function and the WALI (i.e., Weighted Average Loss Intervals) mechanism for computing the loss rate. The throughput function is the throughput equation of a TCP-Reno source [6]:

\[X_{TFRC}(p) = \frac{s}{R\sqrt{\frac{2p}{3}} + t_{RTO}(3\sqrt{\frac{3p}{8}})p(1 + 32p^2)} \]

where \(X \) is the sending rate in bytes/sec, \(s \) is the packet size, \(R \) is the round-trip time (RTT), \(p \) is the steady-state loss event rate and \(t_{RTO} = 4 \cdot R \) is the
TCP retransmit timeout value. This throughput function is responsible for the TCP-friendliness of TFRC.

The way parameter p from the equation is computed is what gives TFRC its smoothness of throughput. p is computed using WALI as an average loss rate over a time interval including the most recent 8 loss events. The number of packets sent by the sender between two loss events is called a loss interval and the loss rate p is computed using the WALI mechanism as a weighted average of the loss rates in the last 8 loss intervals, where more recent loss intervals get a higher weight [2]:

$$s = \frac{1 \times s_0 + 1 \times s_1 + 1 \times s_2 + 1 \times s_3 + 0.8 \times s_4 + 0.6 \times s_5 + 0.4 \times s_6 + 0.2 \times s_7}{1 + 1 + 1 + 1 + 0.8 + 0.6 + 0.4 + 0.2}$$

$$p = \frac{1}{s}$$

In the above equation s_i is the length (in packets) of the i-th most recent loss interval, $i \in 0..7$ and the weights are 1, 1, 1, 0.8, 0.6, 0.4, 0.2 starting from the most recent loss interval to the oldest.

Because the loss rate, p, used in the TFRC throughput formula is averaged over time intervals much greater that one round-trip time using the WALI mechanism, the throughput achieved by TFRC is much smoother than the throughput of TCP. Several studies give evidence of this fact [9, 10, 11]. A direct consequence of this is that TFRC reacts slowly (more slowly than TCP) to an increase of the level of congestion in the network, but it reacts also slowly when additional bandwidth becomes available in the network.

Having a throughput smoother than TCP’s makes TFRC valuable for multimedia streaming applications because of the increased predictability of its throughput. However, several studies documented some of its limitations [7, 8, 12, 13], its lack of media-friendliness to be more specific.

3. Media-friendly congestion control and TCP-friendliness on the short term

Media-friendly congestion control is a type of congestion control which incorporates also media characteristics like bitrate, buffer fill level, quality measurements etc. in the throughput computing formula besides just network parameters (like round-trip time and loss rate) [7, 8, 15].

To the best of our knowledge, media-friendly and TCP-friendly congestion control algorithms are all based on TFRC and fall into two categories: multiplicative and additive. Both types consider a media-friendly function $\alpha(q(t))$ which embodies the usefulness of increasing TFRC’s throughput passed the rate computed with equation (1) to the streaming application and $q(t)$ is a n-dimensional function giving the values of various media characteristics across
time. For simplicity, from now on we will discard the media characteristics \(q(t) \) from our notation and write simply \(\alpha(t) \).

Multiplicative media-friendly congestion control algorithms use a formula like the following to compute the transmission rate [8]:

\[
X(t) = \alpha(t) \times X_{TFRC}(t)
\]

where \(X_{TFRC}(t) \) is given by equation (1). In this type of congestion controls the transmission rate computed by TFRC is altered in a multiplicative way.

Additive media-friendly congestion control algorithms use a formula like the following to compute the transmission rate [7]:

\[
X(t) = X_{TFRC}(t) + \alpha(t)
\]

where \(X_{TFRC}(t) \) is given by equation (1). In this type of congestion controls the transmission rate computed by TFRC is altered in an additive way by the media-friendly function \(\alpha(t) \). The media-friendly function, \(\alpha(t) \) may include network characteristics (like the loss rate) as parameters, but it does not include the throughput computed by TFRC, \(X_{TFRC}(t) \).

It is important that media-friendly congestion control algorithms are also TCP-friendly. However, all the media-friendly congestion control algorithms we are aware of [7, 8] and all TCP-friendly algorithms view the TCP-friendliness characteristic as a long term characteristic. We argue that it is important to distinguish between two types of TCP-friendliness: *long-term TCP-friendliness* describing the bandwidth usage and relation to other flows during the duration of the whole streaming session and *short-term TCP-friendliness* describing the local impact on other flows in a small period of time. The short-term TCP-friendliness can be important for flows with a short life time (e.g. web connections). For a short lifespan flow, it is not fair if a flow that is TCP-friendly on the long term consumes twice as much bandwidth as the short lived flow, during its short existence. Of course, by its very nature, a media-friendly flow occasionally consumes on short timescales more bandwidth than a TCP-friendly flow. This slight unfairness is inevitable in any media-friendly congestion control algorithm. It is even present in TFRC and also in TCP. On short time scales, 2 TCP flows get different throughputs even if they share the same network conditions (i.e. round-trip time, loss rate). The idea is to limit this ”short timescale unfairness” so that other flows (especially those with a short lifespan) are not affected too much.

At this point we can define the two concepts of TCP-friendliness.

Definition 1. The definition of TCP-friendliness on the long term is the definition of the original TCP-friendliness concept from [1]: A flow is termed *TCP-friendly on the long term* if its long-run average transmission rate, \(X(t) \), does not exceed the transmission rate of a TCP flow in the same network
A STUDY OF TCP-FRIENDLINESS ON THE SHORT TERM 29

conditions.

Definition 2. A flow is termed *TCP-friendly on the short term* if during any 8 loss events time interval (i.e. the time interval spanning over 8 consecutive loss events) the flow does not exceed twice the transmission rate of a TCP flow during the same time interval and in the same network conditions.

A few words about definition 2 are required. First, we have chosen as short-term time interval the time interval spanning over 8 consecutive loss events because this is the time interval it takes p (i.e. the loss rate) to completely renew itself. The current value of p depends not only on the number of packets lost in the last RTT or in the last loss interval, but it depends on the number of losses in the last 8 loss intervals and after 8 (loss) cycles, the value of p will completely renew itself (see the formula for computing p on page 3). Second, the upper limit for the transmission rate of a short-term TCP-friendly flow is twice the transmission rate of a TCP flow during the same time interval because we want to allow a media-friendly congestion controlled flow to temporarily use more bandwidth than its fair share rate (to maximize application benefit; this is the fundamental rationale behind media-friendly congestion control), but it should not starve other TCP flows even on short terms. So twice its fair share rate on short term seems like a good compromise.

Please note that if a flow uses more bandwidth than its fair share rate in each short-term time interval, but still less than twice its fair share rate, it is TCP-friendly on the short term, but not TCP-friendly on the long term. Also, if there exists at least one short-term time interval (i.e. a time interval spanning over 8 consecutive loss events) in which a flow consumes more bandwidth than twice its fair share rate, that flow is not TCP-friendly on the short term.

Starting from definition 2 we can also state a metric for the degree of short-term TCP-friendliness of a flow. A flow has a degree of short-term TCP-friendliness of

$$\frac{\max(X)}{2 \cdot X_{fair}}$$

where X is the average throughput of the flow in the time interval spanning over 8 consecutive loss events, $\max(X)$ is computed across the whole lifespan of the flow and X_{fair} is the average fair share rate of that flow during its lifetime. A value of the previous expression in $[0, 1]$ means the flow is TCP-friendly on the short term.
4. Simulation study of UTFRC’s TCP-friendliness on the short term

In this section we present the results of some simulations we have run using ns-2 [14] in order to assess the flexibility of the concept of TCP-friendliness on the short term introduced in this paper. More specifically, we are interested in an upper limit for the value of the media-friendly function, $\alpha(t)$, of a media-friendly congestion control algorithm and an upper limit on the length of the time interval in which this value of $\alpha(t)$ can be applied to a media-friendly congestion control algorithm so that it remains TCP-friendly on the short term. The larger these upper limits are, the better; in other words, the flexibility of TCP-friendliness on the short term is larger.

We have used in our simulations UTFRC[8] which is a multiplicative-type media-friendly congestion control algorithm (see equation (2)). The topology of the network is a dumbbell topology with 17 source nodes and 17 destination nodes which communicate with each other through a single 7.8 Mbps link. This link is shared by 16 TCP-Reno flows and one UTFRC flow. The simulation lasts for 430 simulated seconds. All flows start around second 0, but their start time is randomly distributed between simulated second 0 and 1. The $\alpha(t)$ function of UTFRC has the value of 1 until simulated second 100 and from then on it has a constant value. We have performed several simulations using the following constant values for $\alpha(t)$ starting from simulated second 100: 1.2, 1.4, 1.5 and 2. The multiplication of $\alpha(t)$ with the throughput computed by TFRC, X_{TFRC} is performed each time the TFRC throughput gets updated (i.e. once per RTT or when a loss event is detected, whichever happens first). During the simulation, the average RTT for each connection was 0.110 seconds.

In figures 1, 2 and 3 we can see that UTFRC can use a value of 1.2 for the $\alpha(t)$ function for 40 seconds and remains TCP-friendly on the short term. Also UTFRC can use a value of 1.4 or 1.5 for the $\alpha(t)$ function for approximately 10 seconds and still be called TCP-friendly on the short term. When $\alpha(t) = 2$ we can see in figure 3 that after approximately 5 seconds UTFRC is TCP-unfriendly on the short term.

5. Conclusions

In this paper we presented a classification of media-friendly congestion control algorithms and we underlined the need for the concept of TCP-friendliness on the short term. Consequently we introduced the concept of TCP-friendliness on the short term and explained its usefulness for multimedia flows. Simulations characterizing the TCP-friendliness on the short term of a media-friendly congestion control algorithm, UTFRC[8], were presented in the paper in order
to show that our definition of TCP-friendliness on the short term gives enough flexibility in choosing instant transmission rate to media-friendly congestion control algorithms while not harming too much short-lived TCP-flows.
Figure 3. UTFRC’s TCP-friendliness on the short term for $\alpha(t) = 2$

6. Acknowledgements

This work was supported by CNCSIS-UEFISCU, through project PN II-RU 444/2010.

References

(1) BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
1, M. KOGALNICEANU ST., 400084-CLUJ-NAPOCA, ROMANIA
E-mail address: forest@cs.ubbcluj.ro

(2) BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE,
1, M. KOGALNICEANU ST., 400084-CLUJ-NAPOCA, ROMANIA
E-mail address: vancea@cs.ubbcluj.ro