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Thesis Summary

In recent years there has been an increased interest in applying non-parametric methods to real-world

problems. Significant research has been devoted to Gaussian processes (GPs) due to their increased

flexibility when compared with parametric models. These methods use Bayesian learning, which

generally leads to analytically intractable posteriors.

This thesis proposes a two-step solution to construct a probabilistic approximation to the posterior.

In the first step we adapt the Bayesian online learning to GPs: the final approximation to the posterior

is the result of propagating the first and second moments of intermediate posteriors obtained by

combining a new example with the previous approximation. The propagation of functional forms is

solved by showing the existence of a parametrisation to posterior moments that uses combinations

of the kernel function at the training points, transforming the Bayesian online learning of functions

into a parametric formulation. The drawback is the prohibitive quadratic scaling of the number of

parameters with the size of the data, making the method inapplicable to large datasets.

The second step solves the problem of the exploding parameter size and makes GPs applicable to

arbitrarily large datasets. The approximation is based on a measure of distance between two GPs, the

KL-divergence between GPs. This second approximation is with a constrained GP in which only a

small subset of the whole training dataset is used to represent the GP. This subset is called the Basis

Vector, or BV set and the resulting GP is a sparse approximation to the true posterior.

As this sparsity is based on the KL-minimisation, it is probabilistic and independent of the way

the posterior approximation from the first step is obtained. We combine the sparse approximation

with an extension to the Bayesian online algorithm that allows multiple iterations for each input and

thus approximating a batch solution.

The resulting sparse learning algorithm is a generic one: for different problems we only change the

likelihood. The algorithm is applied to a variety of problems and we examine its performance both

on more classical regression and classification tasks and to the data-assimilation and a simple density

estimation problems.

Keywords: Gaussian processes, online learning, sparse approximations
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Chapter 1

Introduction

Advances in computing capabilities have allowed increasingly complex learning procedures to be imple-

mented in practical scenarios. In recent years there has been a growing interest in more powerful but

demanding methods such as sampling techniques, non-parametric algorithms, boosting, or nearest-

neighbour techniques. These methods are able to learn non-linear, i.e. more complex relationships

in the data. Their limiting factor is the computational time: sampling techniques like Monte Carlo

methods or particle filtering are costly since they require an extensive search in the parameter space

when making predictions, leading to very long convergence times when applied for high-dimensional

data sets.

Non-parametric methods, like various kernelised algorithms, provide the solutions as function of

all training data, in this case the required memory scales with the size of the data set, implying both

a prolonged computation and large storage requirement. The ongoing interest in their application

is justified by the good performance of the non-parametric methods for real tasks, see e.g. [Smola

and Schölkopf 2002], this performance usually being better then that of the semi-parametric neural

networks [Haykin 1994]. However, the cost of an increased performance is the increased computational

time, the basic (i.e. non-probabilistic) neural networks providing results in shorter time and without

the need for an increased memory.

The complexity and the computational cost of a learning algorithm is also increased if one uses

Bayesian probabilistic methods. Bayesian learning is a probabilistic parameter estimation method

that uses Bayes theorem both to infer the distribution of the parameters from the data and to obtain

the probabilistic prediction corresponding to an example.

In this thesis Bayesian learning is applied in the family of kernel methods: we study inference

using Gaussian processes (GPs). GPs associate a random variable to each input location. For any

finite set of inputs the associated random variables are jointly Gaussian. The GPs are thus random

functions characterised by the mean and kernel functions. The kernel provides the covariance: each

pair of random variables at input locations xxx and xxx ′ has covariance K0(xxx,xxx
′). Using GPs requires the

manipulation of the covariance matrix for the whole training set. The scaling of the memory required

for the GP is thus quadratic in the size of the training data. The main problem when using GPs

in practise is, as with general kernel and non-parametric methods, the data dependent scaling of the

parameter space, scaling that is quadratic in the case of Gaussian processes.

This thesis addresses the problem of efficient representation of a GP. The proposed representation

uses only a fraction of the training data, and the size of this subset can be fixed before learning. Fixing

9



Chapter 1. Introduction

the size of this subset extends the applicability of GPs to arbitrarily large datasets.

After an overview of Bayesian learning in the next section, we describe the application of this

learning technique to GPs in Section 1.2. The problems faced when applying GPs to realistic data,

and the solutions put forward in this thesis are also outlined.

1.1 Bayesian learning

The advantages of Bayesian methods over other methods stem from the probabilistic treatment of the

problem. An immediate advantage is that we are able to estimate the uncertainty about a predicted

output.

To apply Bayesian learning we assume a probabilistic framework for the data: we consider the data

likelihood. Let xxxi ∈ Rm be the inputs, yyyi ∈ Rd the outputs, and assume we have a set of N inputs-

output pairs: D = {(xxx1,yyy1), . . . , (xxxN,yyyN)}. The data is assumed to be conditionally independent with

a factorising likelihood:

P(D|θθθ) =

N∏

i=1

P(yyyi|xxxi,θθθ) (1.1)

where θθθ = [θ1, . . . , θp] is the set of parameters for the model. For Bayesian inference we need prior

knowledge about the parameters θθθ which is given via the prior distribution p0(θθθ). Bayes’ rule is then

used to derive the posterior for θθθ:

ppost(θθθ|D) =
P(D|θθθ) p0(θθθ)∫
dθ P(D|θθθ) p0(θθθ)

(1.2)

If we are looking for a single value of θθθ, then the most probable value, the maximum a-posteriori

(MAP) estimate of the parameters is given by maximising the posterior in eq. (1.2). The priors over

the parameters is the penalty term added to the cost function, the log-likelihood of the data, thus

the MAP solution is equivalent to the regularisation framework for solving noisy problems [Tikhonov

1963; Poggio and Girosi 1990].

When using Bayesian methods we are not interested in a single value for the parameter θθθ but rather

the entire probability distribution. This means that we have to evaluate the normalising integral from

eq. (1.2) and represent, exactly or approximately, the whole distribution. The exact representation

is feasible only for a restricted class of models like regression with Gaussian noise if we assume a

Gaussian prior distribution. Generally, analytical results for the posterior exist only for likelihoods

that are conjugate to the prior distribution [Bernardo and Smith 1994]. The exploitation of the full

probabilities for general cases requires us either to sample from the posterior distribution, or to find

appropriate approximations.

Our main interest, irrespective of the model we are using, is in predicting the distribution of the

output for an input xxx. For this we have to integrate over the posterior distribution for the parameter

θθθ from eq. (1.2):

p(yyy|xxx,D) =

∫

dθθθ P(yyy|xxx,θθθ) ppost(θθθ|D). (1.3)

The presence of the normalisation integral as in eq. (1.2), means that computing the predictive dis-

tribution is also difficult and we need approximations within the Bayesian framework.

The approximation considered in this thesis is Bayesian online learning [Opper 1996]. In this

learning scheme the approximation to the posterior distribution is found by exploiting the factorising

structure of the likelihood in eq. (1.1): the posterior is built by successive refinement steps, at each step

10



Chapter 1. Introduction

including a single term from the product. These iterations still do not make the posterior tractable,

but they can provide efficient approximations in a number of cases.

The online approximation has a particularly appealing structure if we assume both the prior and

the posterior distributions for the parameters are Gaussians [Opper 1998]: online learning retains the

mean and covariance of the intractable posterior at each iteration. These statistics are computable

for a variety of likelihoods. This simple structure is exploited in applying Bayesian online learning to

inference using GPs.

1.2 Gaussian Processes

While Bayesian methods provide the posterior probability of the model parameters, the number of

parameters and the prior for each parameter is generally fixed in advance. These characteristics cannot

be changed during data processing. Consequently, we decide to use GPs which allow us to choose

from a larger class of functions whilst retaining the probabilistic treatment.

In Gaussian processes [Blight and Ott 1975; O’Hagan 1978; Wahba 1990; Williams and Rasmussen

1996], instead of specifying the particular parametric model, we encode all our prior belief about the

parameters into a function class FFF and the prior probability of each function drawn from FFF . The

interest in GPs from the machine learning community was stimulated by the work of Neal [1997]

who showed that using Gaussian prior distributions for the hidden-to-output weights of a two-layered

neural network, in the limit of infinitely many hidden neurons and a correspondingly scaled prior

variances, is equivalent to a Gaussian process. The advantage of the functional specification (GPs)

over the parametric one (neural networks) is that usually the function class is larger, giving us more

flexibility in modelling, whilst over-fitting is avoided using the Bayesian framework.

Probabilities for functions are translated to probabilities for random variables using a finite sample

from the function at input positions X = {xxx1, . . . , xxxN}. GPs assign to each xxx from the input set

a random variable fxxx. The joint distribution of the random variables fffX = [f(xxx1), . . . , f(xxxN)]T is

Gaussian:

p0(fffX ) ∝ exp

{

−
1

2
(fff−µµµ0)

T
KKK

−1
0 (fff−µµµ0)

}

(1.4)

with KKK0 = {K0(xxxi, xxxj)}
N
ij=1 the positive definite covariance matrix and µµµ0 = [µ0(xxx1), . . . , µ0(xxxN)]T

is the mean function given a-priori. The function generating the covariance matrix is the positive

definite kernel function: the matrix KKK0 is a positive definite matrix for any choice of the input set X .

To use GPs for inference, we condition the data likelihood on the GP as P(yyy|xxx, fxxx). Bayesian

inference for the posterior process can be written similarly to the parametric case in eq. (1.2) from the

previous section using the set of training inputs X . The predictive distribution for an unseen input

xxx, as in eq. (1.3) is:

p(yyy|xxx, fxxx,D) ∝
∫

dfffX p0(fxxx, fffX ) P(yyy|xxx, fxxx)

N∏

i=1

P(yyyi|xxxi, fxxxi) (1.5)

where p0(fxxx, fffX ) is the joint Gaussian distribution of the random variables at the training and test

locations, and marginalisation is done only with respect to fffX .

From the predictive distribution we see the problems we have to address when GP inference is

used in practise:

11
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• For a data set of size N the computation of the predictive distribution requires the evaluation

of an N-dimensional integral. When computing the posterior mean, we need to average N + 1

jointly Gaussian random variables.

• When new data is added to the training set we can not use the result we had from the inference

using the first N data points. Using previous results is only possible for regression [Williams

and Rasmussen 1996; Neal 1997], for other cases like classification or non-gaussian regression we

have to re-estimate the predictive distribution when adding a new input.

Both problems are a result of the non-parametric nature of GPs: the “parameters” to be learnt are

the continuous mean and covariance functions which describe fxxx. To solve these problems, in this

thesis we propose:

• a general parametrisation of the posterior GP;

• a Bayesian online algorithm [Opper 1998] for the GP parameters.

Since we use GPs that are non-parametric, we expect that the number of our parameters will scale

with the size of the data set. This scaling is obvious if we consider the MAP solution to the posterior

of eq. (1.2) given by the representer theorem of Kimeldorf and Wahba [1971] (generalised by Schölkopf

et al. [2001]): for any log-likelihood function, the maximiser of the posterior eq. (1.2) is given in terms

of a linear combination of kernel functions K0(xxx,xxx
′) centred at the data points:

f̂(xxx) =
∑

i

αiK0(xxx,xxxi) (1.6)

The importance of the representer theorem is that the solution f̂(xxx) is given by the set of coefficients

ααα = [αi]
T that are independent of the input xxx at which the value of the function is estimated. This

theorem is the basis for the successful applications of the kernel methods [Smola et al. 1999; Schölkopf

et al. 1999] and support vector machines (SVMs) [Vapnik 1995].

From a Bayesian perspective, the drawback of the representer theorem is that it does not provide

probabilistic estimates. Using the Bayesian framework, in Chapter 2 we give a parametrisation lemma

that is similar to the representer theorem and provides a representation of the moments of the posterior

GP. It is shown that the moments can be expressed, similarly to eq. (1.6), using combinations of the

kernel function. For the first moment the parametrisation has the form given by the representer

theorem, and additionally to eq. (1.6), we have the posterior kernel as:

Kpost(xxx,xxx
′) = K0(xxx,xxx

′) +

N∑

ij=1

K0(xxx,xxxi)CijK0(xxxj, xxx
′) (1.7)

with “parameter” matrix CCC = {Cij} specifying the posterior kernel function. Estimation of the pos-

terior kernel leads directly to estimating the uncertainty when making predictions. We consider ap-

proximations to the posterior process by keeping only the first two moments. Thus the representation

lemma provides the parameters that represent the GP approximation to the posterior process.

We can use now GPs as a latent process which will be approximated during learning. Predictions

are based on the marginalisation of the approximated posterior process. If we assume factorising

likelihoods, the prediction for xxx will only involve a single Gaussian random variable fxxx and combining

with the likelihood function, requiring a one-dimensional integral.
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Approximating the underlying GP allows the modeller to assess the uncertainty of the predictions

using Bayesian confidence intervals in the regression case, or to estimate the posterior class probabili-

ties for classification. It also opens the possibility to treat other nonstandard data models like density

modelling (Section 5.3) or inference of wind-fields [Nabney et al. 2000a; Berliner et al. 2000]) using

GPs (Section 5.4). The GP approximation of the posterior process also allows the estimation of the

marginal likelihood, leading to model selection. Although it is important, the model selection is not

discussed in this thesis, being an area of further research.

1.3 Feature spaces

The MAP solution of eq. (1.6) provides an intuitive understanding of kernel algorithms and SVMs:

to increase the degrees of freedom in these algorithms the inputs are first projected into a high-

dimensional feature space. A simple, usually linear, algorithm is employed therein to obtain the

results.

The key element of the design of such algorithms is that the results are written using only the

scalar product between the feature space images of the inputs, thus the explicit projection into the

feature space is never needed. The scalar products are replaced with a bivariate function, the kernel

function of the GP; this way the feature space associated to a particular kernel need not even be finite-

dimensional (e.g. the feature space associated with an RBF kernel). This procedure of “kernelising”

linear algorithms was frequently applied and the over-fitting due to the increased flexibility of the

model was avoided by considering penalties on model complexity. The classical example of using

kernels is for classification [Vapnik 1995]: the Support Vector Machines (SVMs).

To illustrate the relation between the kernel function and the feature spaces, we use the eigen-

decomposition of the kernel function K0(xxx,xxx
′)

K0(xxx,xxx
′) =
∑

i

φi(xxx)λiφi(xxx
′) (1.8)

with φi(xxx) are the eigenfunctions of the kernel and λi are the eigenvalues corresponding to φi(xxx). The

kernel functions need to be positive definite, meaning that the summation is over a countable number

of functions and λi > 0 [Mercer 1909] (or e.g. in Vapnik [1999]). Grouping the rescaled functions
√
λiφi(xxx) in a vector denoted φxxx leads to a space of features into which each input xxx is projected. We

will use FFF to denote the feature space and φxxx will be the image of xxx.

Using the feature space FFF , the kernel function K0(xxx,xxx
′) becomes a scalar product in the Euclidean

feature space and eq. (1.8) is rewritten as:

K0(xxx,xxx
′) = φTxxxφxxx ′ . (1.9)

With scalar products replacing the kernel functions in eq. (1.6), the MAP solution of the representer

theorem is a scalar product between φxxx, the feature space image of the input and the MAP solution, an

element of the feature space, written as in eq. (1.10). In Section 2.3.1 we show that the parametrisation

lemma for GPs implies that the approximated posterior process is a normal distributions in the feature

space FFF with mean and covariance

µµµ =
∑

i

αiφi (1.10)

ΣΣΣ = IIIFFF +
∑

ij

φiCijφ
T
j . (1.11)
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Chapter 1. Introduction

where IIIFFF is the unit matrix, the prior distribution of the parameters in the feature space. The

equivalence of the GPs with the normal distributions is explored in the thesis. Similarly to the

design of kernel algorithms, we consider the fictitious feature space and the normal distribution of the

parameters and express various quantities in terms of the kernel function and the parameters of the

normal distribution.

1.4 Sparsity

The parametrisation lemma provides the approximated posterior process using the parameters αi and

Cij, solving the problem of representing the functional entity concisely.

A different issue, faced when implementing GP inference in practise, is the increasing number of

parameters as the data size grows. For non-probabilistic kernel machines the scaling is linear: we need

to store only αi. When computing these parameters, however, we need the whole kernel matrix and

usually inversions for these matrices. This makes kernel methods computationally infeasible for large

datasets: the time required to compute a general matrix inversion grows as N3. The time requirement

for GPs given by the parametrisation lemma is also cubic in the number of data points, resulting in

the same limitation as the other kernel methods.

The main contribution of this thesis is to provide a framework for a sparse parametrisation of GPs.

The reduction of parameters is achieved by retaining only a subset of the inputs in the expressions of

the posterior mean and kernel functions. This is achieved by minimising a distance between two GPs

parametrised using a small number of basis vectors. Basis vectors in this thesis denote the input data

that are retained in the sums of eqs. (1.6) and (1.7) after the algorithm finished.

In Chapter 3 sparsity is combined with the Bayesian online learning to produce an efficient algo-

rithm to infer the latent GP. The learning rules are such that the size of the basis vector set can be

set in advance and the computing time is reduced to linear with respect to the data size: O(Np2)

with p the cardinality of the basis vector set.

The sparse solution is similar to the result of the popular SVMs that also obtain an expansion

of the result using a small set of support vectors. To get sparse solutions, in SVMs we need to

solve a quadratic optimisation problem involving the whole data set, irrespective how sparse the final

solutions are. In this thesis the iterative online algorithm eliminates the need to solve this demanding

problem, reducing the computational requirement.

The framework for sparsity does not make assumptions about the likelihood of the problem, thus

the resulting algorithm is a general one, applicable for a large class of likelihoods.

1.5 Structure of the thesis

The thesis is organised as follows:

Chapter 1 is this introductory chapter.

Chapter 2 introduces Gaussian processes and the different approximation techniques employed for

inference using GPs. The parametrisation lemma for the posterior process is provided and is

applied to the Bayesian online learning of the GPs. Using the parametrisation, the equivalence

of the GPs with normal distributions in the feature space is provided.
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Chapter 3 addresses the main problem faced by kernel methods: the scaling of the number of pa-

rameters with the data. The sparse Gaussian processes and the basis vectors used to represent

them are introduced. The sparse approximation is combined with the online learning to yield

an efficient algorithm for approximating the posterior GPs.

Chapter 4 further improves on the sparse online algorithm. The online algorithm, where each input

example could be processed only once, is extended to an iterative algorithm where the inputs can

be processed arbitrarily many times, providing a more accurate approximation to the posterior

process and at the same time retaining the sparse nature of the algorithm.

Chapter 5 presents various applications of sparse GP inference. It starts with the regression case

and examines the effect of sparsity on GP performance. This chapter then presents results for

the classification using real data. The possibilities of applying the method to non-parametric

Bayesian density estimation are studied. The final application considered in this thesis is the

problem of wind-field estimation from scatterometer observations.

Chapter 6 concludes this thesis by summarising the achievements and raises some important ques-

tions that need to be considered in the future.

The details of calculations, to preserve the flow of the main ideas, are put in appendices.

1.6 Notations

We use bold lowercase letters for vectors and bold uppercase for matrices. Scalar quantities will

be typeset in normal, such as the particular elements of a vector or matrix, thus a vector ααα =

[α1, α2, . . . , αd]T is a d-dimensional vector with corresponding components.

We summarise the notation in the thesis:

xxx – inputs from a d-dimensional space, usually Rn.

yyy – the output corresponding to a given input xxx, it can be continuous or discrete.

D = {(xxx1, y1), . . . , (xxxN, yN)} – the data set, P(D|θ) is the likelihood of the data given the parameters.

N – the number of examples, i.e. the size of the dataset.

K0(xxx,xxx
′) – the kernel function.

fxxx – the value of the random function at xxx.

FFF – the feature space, given by the kernel.

φxxx = φ(xxx) – the projection from the input space to the feature space. We will use φxxxi = φi to avoid

multiple indexes.

ΦΦΦ =
[
φ1, . . . , φN

]T
– design matrix obtained by concatenating the feature vectors for all inputs.

θθθ – the model parameters.

µµµ, ΣΣΣ – the mean and covariance of the parameters, they also denote the GPs in the feature space.

ααα, CCC – the parameters of the mean and the covariance.
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BV – the set of “basis vectors”, the indexes of the data set kept by the GP learning algorithm.

KKKN, QQQN – the kernel or Gram matrix and its inverse for the input set {xxx1, . . . , xxxN}.
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Chapter 2

Gaussian Process Representation and

Online Learning

Summary: Having an arbitrary likelihood and using Gaussian process priors, we show
that the moments of the posterior process are expressible as a weighted sum of the prior
kernels at the data location. This provides a representation for the posterior process
exploited in the online learning setup where the first two moments of the posterior process
are propagated sequentially to find an approximate solution to the problem.

Modelling with Gaussian processes (GPs) has received increased attention in the machine learning

community. A formal definition of the GPs is that of a collection of random variables fxxx having a

(usually) continuous index where any finite collection of the random variables has a joint Gaussian

distribution [Cressie 1993]. The realisation of a GP is a random function f(xxx) = fxxx specified by the

mean and covariance function of the GP.

Inference with GPs is non-parametric since the “parameters” to be learnt are the mean and co-

variance functions describing fxxx. The function fxxx is used as a latent variable in a likelihood P(y|xxx, fxxx)

which denotes the probability of an observable output variable y given the input xxx. For the infer-

ence using GPs, we only need to specify the prior mean and the prior covariance functions of fxxx,

the latter is called the kernel K0(xxx,xxx
′) = Cov(fxxx, fxxx ′) [Wahba 1990]. The prior mean function is

usually the zero function, thus the choice of the kernel fully specifies the GP. Having the training

data {(xxxn, yn)}Nn=1, the posterior process for fxxx is obtained from the prior and the likelihood using

the Bayesian approach [Bernardo and Smith 1994; Williams 1999], as outlined in Section 1.2.

There are two major obstacles in implementing this theoretically simple Bayesian inference: non-

Gaussianity of the posteriors and the size of the kernel matrix K0(xxxi, xxxj). In this chapter we consider

the problem of representing the non-Gaussian posterior, and an intuitive KL-based approximation to

reduce the size of the kernel matrix is proposed in Chapter 3.

Obtaining analytical results in GP inference is precluded by the non-tractable integrals in the

posterior averages, the normalisation from eq. (1.2). Various methods have been introduced to ap-

proximate these averages. A variety of such methods may be understood as approximations of the

non-Gaussian posterior process by a Gaussian one [Jaakkola and Haussler 1999; Seeger 2000], for in-

stance in [Williams and Barber 1998] the posterior mean is replaced by the posterior maximum (MAP)

and information about the fluctuations are derived by a quadratic expansion around this maximum.

The modelling approach proposed here is also an approximation to the posterior GP and uses the

likelihood to obtain predictions. For this we need to represent the posterior GP using a finite number

of parameters. This parametrisation is possible for the moments of the posterior process. Based on
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minimising a KL-distance, the parametrisation proposed for the posterior GP uses the form provided

by the posterior mean and kernel functions. This form of the parametrisation does not depend on

the likelihood model we are using, thus the particular likelihood will be left unspecified. Since we are

propagating Gaussians, the framework presented suits unimodal likelihood functions. Using multi-

modal likelihoods, as in Section 5.4 is not theoretically difficult but the quality of approximation is

poorer.

This chapter starts by introducing GPs using generalised linear models, in Section 2.1 and the

Bayesian learning applied to GPs in Section 1.2. We then deduce the parametrisation for the posterior

moments, one of the main contributions of this thesis in Section 2.3. Based on the parametrisation we

derive the online learning rules for approximating the posterior process in Section 2.4 and the chapter

ends with a short discussion.

2.1 Generalised linear models

For an illustration of Bayesian learning from Section 1.1 we consider the problem of quadratic re-

gression with additive Gaussian noise. This problem is analytically tractable and will be used in

subsequent chapters to illustrate different aspect of the deduced algorithms. The likelihood for a

single example is

P(yyyi|xxxi,θθθ) ∝ exp

[
−
‖yyyi − f(xxxi, θ)‖2

2σ2

]
(2.1)

with σ2 the variance of the noise and function f(xxx,θθθ) specifying the class of regressors to be used.

The prior over the parameters θθθ is Gaussian with zero mean and spherical covariance σ20. Applying

Bayes rule from eq. (1.3) leads to the posterior probability for the parameters θθθ:

p(θθθ|D) ∝ exp

{

−
1

2σ2

[
∑

i

‖yyyi − f(xxxi,θθθ)‖2 +
σ2

σ20
‖θθθ‖2

]}
. (2.2)

In generalised linear models [McCullagh and Nelder 1989] the function f(xxx) is a linear combination of

k functions {φi(xxx)}
k
i=1, called the function dictionary:

f(xxx) =

k∑

i=1

θiφi(xxx) = θθθTΦΦΦxxx (2.3)

with model coefficients θθθ. We introduce the more compact vectorial notationΦΦΦxxx = [φ1(xxx), . . . , φk(xxx)]
T .

Since GPs can be obtained by a further generalisation step of the generalised linear models, we intro-

duce the basic notation in this section; this notation is used in later chapters.

The Gaussian data likelihood is the product of the individual likelihoods from eq. (2.1) and leads

to a Gaussian posterior obtained by using eq. (2.2). To express the posterior, we group the values

of the dictionary function ΦΦΦxxx for all data in the matrix ΦΦΦ = [ΦΦΦxxx1 , . . . ,ΦΦΦxxxN ], introduce the bivariate

kernel function K(xxx,xxx ′) = σ20
∑k

l=1φl(xxx)φl(xxx
′) = σ20ΦΦΦ

T
xxxΦΦΦxxx ′ , and build the N × N matrix KKKN =

{K(xxxr, xxxs)}
N
rs=1. With these notations the mean and covariance of the posterior distribution, after an

algebraic rearrangement of eq. (2.1), is:

µµµθ = −

N∑

rs=1

σ20ΦΦΦxxxrCrsyyys = −σ20ΦΦΦCCCyyy

Σθ = σ20IIIk +
∑

rs

σ20ΦΦΦxxxrCrsΦΦΦ
T
xxxs
σ20 = σ20IIIk + σ20ΦΦΦCCCΦΦΦ

T
σ20

(2.4)
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where we used the notation yyy = [yyy1, . . . ,yyyN]T and CCC = −
(
σ2IIIN +KKKN

)−1
. The latter notation, used

for the the posterior covariance, is rather complicated, but this is the form it appears later in this

chapter (section 2.4, page 33) for the general non-parametric case.

Similarly to the posterior, the predictive distribution of the output f(xxx) = yyy given the input xxx has

also a Gaussian distribution, denoted p(yyy|xxx,D) = N (µy, σ
2
y) with parameters

µy = xxxTµµµθ = −kkkTxxxCCCyyy

σ2y = σ2 + xxxTΣθxxx = σ2 + k∗ + kkkTxxxCCCkkkxxx
(2.5)

where σ2 is the noise variance and we used kkkxxx = [K(xxx,xxx1), . . . , K(xxx,xxxN)]T and k∗ = K(xxx,xxx) for the

kernel products. Note that σ20 was included into the kernel K, thus it is not explicit in eq. (2.5).

General Gaussian processes are obtained from extending the Bayesian learning for the generalised

linear models to a large set of basis functions. We can use arbitrarily large, even infinite dictionaries

{φi(xxx)}
∞
i=1 in building the approximation from eq. (2.3). For the predictive distribution we only need

to specify the kernel function K(xxx,xxx ′), i.e. the covariance of the random variables f(xxx) and f(xxx ′):

〈f(xxx), f(xxx ′)〉 = K(xxx,xxx ′) =

k∑

i=1

σ2iφi(xxx)φi(xxx
′) (2.6)

where we considered different variances σ2i for the random variables θi.

We can choose the dictionary and the variances of the normal random variables freely, however

this choice would only change the kernel K(xxx,xxx ′). In GPs we only consider the kernels and ignore

the possible dictionaries that might have generated it. Using the kernels provides larger flexibility:

as long as the sum K(xxx,xxx ′) from eq. (2.6) converges, the dictionary is not important, it can be any

countable set.

The condition for K(xxx,xxx ′) to be used as a kernel function is to generate a valid covariance matrix for

any input set X : the matrix KKKN is positive definite for arbitrary set of inputs, i.e. the kernel function

is positive definite. It has been shown that any positive definite kernel function can be written, using

Mercer’s theorem [Vapnik 1995; Schölkopf et al. 1999], in the form of eq. (2.6), thus they indeed can

be viewed as being generated from a family of generalised linear models. The difference is that for

kernels the size of the function dictionary does not need to be finite. Using infinite dictionaries, e.g.

the dense family of RBF kernels, within the maximum likelihood estimation leads to over-fitting, this

is not the case for the Bayesian parameter estimation method. In this case setting priors over the

weights acts like regularisation [Tikhonov 1963; Poggio and Girosi 1990], preventing over-fitting.

In the following we illustrate the decomposition of kernels into dictionary functions using two

popular kernels: the polynomial and the radial basis kernel.

Let us first consider one-dimensional inputs and the dictionary for the generalised linear model be{
1,
√
2xxx,xxx2

}
with random variables {θi}

3
i=1 all having zero means and unit variances. The random

functions drawn from this model have the form f(xxx) = θ1 + θ2
√
2xxx+ θ3xxx

2 and we have the kernel as

K(xxx,xxx ′) = 〈f(xxx)f(xxx ′)〉 = 1+ 2xxxxxx ′ + (xxxxxx ′)
2

= (1+ xxxxxx ′)
2
.

To find the functions and priors corresponding to the RBF kernels we will proceed in the opposite

direction: we are considering the Taylor expansion of the exponential in the RBF kernel:

KRBF(xxx,xxx
′) = exp

(
−

(xxx− xxx ′)2

2σ2

)
= exp

(
−
xxx2 + xxx ′2

2σ2

) ∞∑

n=0

(xxxxxx ′)n

n!(2σ2)n
=

∞∑

n=0

σ2nφn(xxx)φn(xxx ′) (2.7)
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where we have φn(xxx) = exp(−xxx2/(2σ2))xxxn and σ2n = 1/(n!2σ2)n and we can indeed see that the RBF

kernel has a set of corresponding basis of functions with infinite cardinality. It is also obvious that by

rescaling each component with σn, we have a spherical Gaussian prior for the parameter vector θθθ, a

vector that will have infinitely many elements.

It is important to mention that the decomposition of the kernels in pairs of feature spaces and

associated scalar products is not unique. The quadratic polynomial kernel for example can be written

using a set of dictionary with four elements:
{
1,xxx,xxx,xxx2

}
and requiring four random variables.

Different embedding spaces for the RBF kernels can also be considered. For example a decompo-

sition to an orthonormal set of functions with respect to an input measure has been employed in Zhu

et al. [1997]. The decomposition was used to prune the components of the infinite sum in eq. (2.6) to

obtain a finite-dimensional linear model. The pruning considered only the most important dictionary

functions and the result was a low-dimensional representation that kept as much information about

the model as it was possible.

In kernel methods the dictionary of the kernel defines the feature space FFF . Assuming we have k

functions in the dictionary, the feature space is Rk and the projection function is defined by φ(xxx) =

[σ1φ1(xxx), . . .]
T . Using the projection function φ and the feature space FFF , φ(xxx) = φxxx is the image of

the input xxx in the feature space and then the kernel function is

K(xxx,xxx ′) = φTxxxφxxx ′ (2.8)

where we concatenate the outputs of the different φi-s into a vector. The kernel functions can then

be viewed as scalar products of the projections from the input space to the feature space FFF and the

easiest way to gain insight into the kernel algorithms is by looking at the (usually) simpler linear

algorithm in the feature space.

The generalised linear model for the regression is tractable, however, the problem now is compu-

tational: usually the number of inputs is much higher than k, the number of parameters of the model.

This implies that a direct inversion of matrix CCC for computing the predictive distribution is inefficient.

For the class of generalised linear models with finite dictionary there are efficient methods to find

the predictive distribution, we can exploit that KKKN is not a full-rank matrix. For the non-parametric

GPs, discussed next, the rank of KKKN generally equals the size of the data. This implies that matrix CCC

cannot be inverted efficiently, and the problem of cubic computational time cannot be avoided.

2.2 Bayesian Learning for Gaussian Processes

In the following we will use GPs as priors with the prior kernel K0(xxx,xxx
′): an arbitrary sample fff from

the GP at spatial locations X = [xxx1, . . . , xxxN]T has a Gaussian distribution with covariance KKKX :

p0(fff) ∝ exp

{

−
1

2
fff
T
KKKXfff

}

. (2.9)

Using fffD = {f(x1), . . . , f(xN)} for the random variables at the data positions, we compute the posterior

distribution as

ppost(fff) =

∫
dfffD P(D|fff)p0(fff, fffD)

〈P(D|fffD)〉0
, (2.10)

where p0(fff, fffD) is the joint Gaussian distribution of the random variables at the training and sample

locations, 〈P(D|fffD)〉0 is the average of the likelihood with respect to the prior GP marginal, p0(fff).
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Figure 2.1: The mean function (thick dashed line) and the standard deviation (thin cont. line) of
the posterior Gaussian process when presenting noisy samples (dots) of the sinc function (thick cont.
line) using (a) RBF and (b) 6-th order polynomial kernels. The absence of the inputs in [2.5, 4] leads
to higher uncertainty only for the RBF kernel. This is due to the localised nature of the RBF kernels:
the further away from the origin, the higher the uncertainty in the predictions is.

Computing the predictive distributions is the combination of the posterior with the likelihood of the

data at xxx

p(y) =

∫

dfxxxP(y|fxxx, xxx)ppost(fxxx) =

∫
dfxxxdfffD P(y|fxxx, xxx)P(D|fffD)p0(fffD, fxxx)

〈P(D|fffD)〉0
(2.11)

The analytic treatment is possible only for regression with Gaussian noise, which is presented next.

The different approximation techniques to the posterior are given in Section 2.2.2

2.2.1 Exact results for regression

For regression we can immediately read from eq. (2.5) the predictive distribution corresponding to

input xxx. It is a Gaussian with mean and covariance given by

µxxx = −kkkTxxxCCCyyy

σ2xxx = σ2 + k∗ + kkkTxxxCCCkkkxxx
(2.12)

where yyy is the vector of observed (noisy) outputs, kkk(xxx) = [K0(xxx,xxx1), . . . , K0(xxx,xxxN)]T , k∗ = K0(xxx,xxx),

CCC = −(σ2III+KKKN)−1 with KKKN the kernel matrix of the data, and σ2. This is the same as eq. (2.5) for

the generalised linear models from Section 1.1.

Figure 2.1 shows the result of the GP learning with a polynomial and an RBF kernel. The function

we approximate is the noisy sinc function f(x) = sinc(x) + η (continuous line) where η is a zero mean

Gaussian noise of variance σ2 = 0.2, noise variance assumed to be known. For this illustration we

had equidistant inputs (dots) from the interval [−4, 2.5] and we plotted the mean and deviation of the

predictive marginal distributions from the interval [−4, 4]. We see that due to the localised nature

of the RBF kernels, the predictive uncertainty of the model is increasing in the regions where there

are no input data (the right part of Fig 2.1.a). In contrast, when polynomial kernels are used, due

to their non-localised kernel, the variance does not increase significantly outside the input region,

providing a worse model. The differences can also be understood by comparing the supports for the

two classes of kernels. Polynomial kernel has an infinite support, i.e. each data has effect over the
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whole input region. In contrast, the support of the RBF kernel is practically vanishing after a certain

distance from the origin, depending on the value of the kernel parameters. This means that the RBF

kernel is better suited to modelling the sinc function when the width of the RBF function being set

appropriately. The 6-th order polynomial gives a crude estimation in this case.

The GP regression is impossible for large datasets since the matrix CCC from eq. (2.12) has the

number of columns and rows equal to the size of the dataset and we need an inversion to obtain it.

Easing this computational load was considered by Gibbs and MacKay [1997]: the predictive mean

from eq (2.12) was iteratively approximated using conjugate gradient minimisation of the quadratic

form

Q(uuu) = yyyTuuu+
1

2
uuuTCCC

−1
uuu (2.13)

with respect to uuu. Since Q(uuu) is quadratic, the conjugate gradient algorithm will converge to the

true minima −CCCyyy after N steps, and results at any previous stage constitute approximations to −CCCyyy

(again, due to the notation, CCC−1 is the known entity). A lower and an upper bound for the error

based on eq. (2.13) has also been proposed, this gave a stopping criterion to the algorithm. Optimising

simultaneously a pair of quadratic forms with a first one in eq. (2.13) and a second, slightly different

function: Q∗(uuu) = yyyTKKKNuuu+ 1
2
uuuTCCC

−1
KKKNuuu was studied by Smola and Bartlett [2001]. The simultaneous

optimisation of the quadratic forms also provides a stopping criterion by combining the values of the

two quadratic forms.

The Bayesian committee machine [Tresp 2000] provides a different approach to avoid the inversion

of large matrices. The assumptions made in this case is that the data is clustered into subsets D =

{D1, . . . ,Dp}. In probabilistic terms this means that for any two subsets the conditional probabilities

of the outputs factorise, i.e. p(fffq|Di,Di+1) ≈ p(fffq)p(Di|fffq)p(Di+1|fffq), or practically that CCC has

a block-diagonal structure. This leads to p subproblems of smaller size and the combination of the

subproblems into predicting a unique value is done using Bayes’ rule. This approximation however

might not perform well, since in large system there could be the case that, although the off-diagonal

elements are not individually significant, the overall or cumulated effect cannot be neglected without

a significant loss.

In addition to the constraint imposed by large matrices for the regression case, a full Bayesian

treatment of GPs using other likelihoods requires approximations to the models, presented next.

2.2.2 Approximations for general models

An approximation to the intractable posterior distribution is via sampling. Markov-chain Monte-Carlo

methods have been used to sample from GP posteriors for regression and classification [Neal 1997].

Sampling was employed in the application of GPs for classification in “Bayes Point Machines” by

Herbrich et al. [2001]: the resulting solution is the centre of mass of the version space, i.e. the space

of all acceptable solutions for the classification. Sampling methods from a posterior obtained from a

model inversion problem using Gaussian processes as priors has been considered [Nabney et al. 2000b]

with the aim of finding the wind-fields underlying the scatterometer measurement (see Section 5.4 for

details). The different sampling techniques are applicable to a large class of methods, however they

are extremely time-demanding: the dimension of the space from which we are sampling is high, and

in addition, it is hard to establish the convergence of algorithms. In what follows we will focus on

analytic approximations.
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For classification, the logistic function is one possibility to be used in the likelihood

P(y = 1|xxx, fxxx) = σ(fxxx) =
1

1+ exp(−fxxx)
(2.14)

and this makes the GP posterior from eq. (2.10) analytically intractable. Several approximations

have been thoroughly studied. A Laplace approximation around the MAP solution was suggested

in [Williams and Barber 1998] where the Hessian and the approximation of the data likelihood led

to the possibility of modifying the kernel function for the GP. A Laplace approximation and multiple

iterations when predicting for an unknown value are also needed.

A different approach is to use variational approximations to the logistic function to perform the

required averages [Jaakkola and Haussler 1999; Gibbs and MacKay 1999]. The logistic function is

approximated with exponentials having free variational parameters ξi for each input as

σ(fi) ≥ σ(ξi) exp
[
(fi − ξi)/2+ λ(ξi)(f

2
i − ξ2i )

]

with λ(ξ) a known function. Since the GP marginals are different for different inputs, the variational

parameter ξi needs to be computed for each input. The approximation involves the optimisation with

respect to the set of variational parameters ξi, a computationally demanding task, requiring iterative

optimisation. For prediction, an additional optimisation with respect to a variational parameter ξxxx is

required.

Based on the variational methods, approximations can also be found via the minimisation of the

KL divergence [Cover and Thomas 1991]. Having two distributions p(θθθ) and q(θθθ) of the random

variable θθθ, the KL divergence is defined as

KL(p‖q) =

∫

dθθθ p(θθθ) ln
p(θθθ)

q(θθθ)
(2.15)

The KL divergence is used to approximate the posterior distribution arising from Bayes rule with a

distribution belonging to a tractable class.

The KL measure is not symmetric in its arguments, thus we have two possibilities to use it.

Let p̂ denote the approximating distribution and ppost be the intractable posterior. Minimising

KL(p̂‖ppost) with respect to p̂ requires expectations to be carried only over the tractable distri-

bution p̂; this variational method in the context of Bayesian neural networks was called ensemble

learning [Hinton and van Camp 1993; Barber and Bishop 1998]. The KL distance is written as

KL(p̂‖ppost) =

∫

dθθθ p̂(θθθ) ln p̂(θθθ) −

∫

dθ p̂(θθθ) lnppost(θθθ) (2.16)

where the first term is the negative entropy term of the approximating distribution. The approxima-

tions usually belong to the exponential family, thus an exact integration is often possible. For mixture

models the integration over the log-posterior is also intractable, a common substitution is made via

the log-sum inequality, leading to an upper bound for the log-posterior [Singer and Warmuth 1998].

A variational approximation to the full posterior process was proposed by Seeger [2000] where the

intractable posterior from eq (2.10) is approximated using a Gaussian with mean µµµ and a covariance

matrix Σ = DDD +
∑

i ccciccc
T
i with DDD a diagonal matrix and ccci additional parameters of the covari-

ance [Bishop 1995]. This joint Gaussian distribution is for the parameters ααα of the MAP solutions

the to posterior [Kimeldorf and Wahba 1971; Vapnik 1995]

f(xxx)MAP =
∑

i

αiK0(xxxi, xxx) (2.17)
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This equation is the posterior mean if GP priors are used (see [Opper andWinther 1999] and Section 2.3

for details), and efficient approximations within the mean-field framework were given [Csató et al.

2000]. The approximating distribution there was a factorising one
∏

i q(fi) and the parameters for the

individuals were obtained by computing the KL divergence between the posterior and the factorised

distributions, leading to approximations for the coefficients ααα from eq. (2.17). Additionally to the

solution for the prediction problem, the variational framework provided bounds and approximations

to the model likelihood, opening the possibility to optimise the hyper-parameters of the model.

We can interchange the terms in the non-symmetric KL measure and try to optimise the “reversed”

(compared to ensemble learning eq. (2.16)) KL divergence

KL(ppost‖p̂) =

∫

dθθθ ppost(θθθ) lnppost(θθθ) −

∫

dθθθ ppost(θθθ) ln p̂(θθθ) (2.18)

The important difference compared to the measure in eq. (2.16) is that the approximating distribution

appears only once and, more important, the averaging is done with respect to the exact posterior

distribution. Analytic expression for the posterior is not available, generally this choice leads to

equally difficult approximation problems.

If one interprets the KL divergence as the expectation of the relative log loss of two distributions,

this choice of divergence weights the losses with the correct distribution rather than with the ap-

proximated one. A second observation is that the variation of eq. (2.18) with respect to p̂ involves

only the second term, the entropy of the posterior distribution (first term) being independent of the

parameters used for approximation, whilst in the other case the entropy of the approximation needed

to be considered.

We will use this latter distance measure to approximate the intractable posterior. Since we are

dealing with Gaussian processes, hence normal distributions, the “tractable” p̂(θθθ) will be Gaussian.

Denoting the mean and covariance of p̂ with µ̂µµ and Σ̂ΣΣ respectively, the KL divergence is

KL(ppost‖p̂) = B+
1

2

∫

dθθθ ppost(θθθ)
[
ln |Σ̂ΣΣ| + (θθθ− µ̂µµ)

T
Σ̂ΣΣ

−1
(θθθ− µ̂µµ)

T
]

(2.19)

where B is a constant that does not depend on the unknown parameters of p̂. Differentiating eq. (2.19)

with respect to the parameters µ̂µµ and Σ̂ΣΣ gives us the mean and covariance of the intractable poste-

rior [Opper 1998], then setting the differentials to zero leads to

µ̂µµ =

∫

dθθθ θθθ ppost(θθθ)

Σ̂ΣΣ =

∫

dθθθ (θθθ− µ̂µµ)(θθθ− µ̂µµ)T ppost(θθθ)

(2.20)

Thus, if the distance measure is chosen to be eq. (2.18), then the resulting approximation is the

matching of the moments of the posterior process. However, the posterior distribution eq. (2.10) used

for expressing posterior expectations in eq. (2.20) requires the evaluation of typically high dimensional

integrals. This is also true for prediction, when we are interested in expectations of functions of the

process at inputs which are not contained in the training set. Even if we had good methods for

approximate integration, this would make predictions a rather tedious task. For a single data or if

we can reduce our problem to one-dimensional integrals, there are several applicable approximations,

both analytic and look-up table based. This has lead to the idea of online learning that iteratively

approximates the posterior distribution by using a single data at every processing step [Opper 1996].

This iterative approximation to the posterior, also called projection to a tractable family, will be

discussed in Section 2.4 later in this chapter.
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In the following the parametric model is replaced by the non-parametric GPs and the parameter

vector θθθ by a random function f(xxx). The non-parametric case can be treated similarly to the parametric

one, we will refer to the non-parametric case as consisting of “any finite collection” of parameters. To

apply the online learning for the non-parametric GPs, we need to find a convenient representation for

the posterior moments. We will establish a “parametrisation” to the posterior moments that uses a

number of parameters growing with the size of the data – this being the definition of non-parametric

methods – presented next.

2.3 Parametrisation of the posterior moments

The predictive distribution of eq. (2.11), as it is presented, might require the computation of a new

integral each time a prediction on a novel input is required. The following lemma shows that simple

but important predictive quantities like the posterior mean and the posterior covariance of the process

at arbitrary inputs can be expressed as a combination of a finite set of parameters which depend on

the process at the training data only. Knowing these parameters eliminates the high-dimensional

integrations when we are doing predictions.

Based on the rules for partial integration we provide a representation for the moments of the

posterior process obtained using GP priors and a given data set D. The property used in this chapter

is that of Gaussian averages: for a differentiable scalar function g(xxx) with xxx ∈ Rd, based on the partial

integration rule [Gradshteyn and Ryzhik 1994], we have the following relation (Th. 1 on page 97):

∫

dxxxp0(xxx) xxxg(xxx) = µµµ

∫

dxxxp0(xxx) g(xxx) +ΣΣΣ

∫

dxxxp0(xxx) ∇g(xxx) (2.21)

where the function g(xxx) and its derivatives grow slower than an exponential to guarantee the existence

of the integrals involved. We use the vector integral to have a more compact and more intuitive

formulation and ∇g(xxx) is the vector of derivatives. The vector µµµ is the mean and matrix ΣΣΣ is the

covariance of the normal distribution p0. To keep the text more clear, the proof is postponed to

Appendix B.

The context in which eq. (2.21) is useful is when p0(xxx) is a Gaussian and g(xxx) is a likelihood. We

want to compute the moments of the posterior [Opper and Winther 1999; Csató et al. 2000]. For

arbitrary likelihoods we can show that

Lemma 2.3.1 (Parametrisation[Csató and Opper 2002]). The result of the Bayesian update

eq. (2.10) using a GP prior with mean function 〈fxxx〉0 and kernel K0(xxx,xxx ′) and data D = {(xxxn, yn)| n =

1, . . . ,N} is a process with mean and kernel functions given by

〈fxxx〉post = 〈fxxx〉0 +

N∑

i=1

K0(xxx,xxxi)q(i)

Kpost(xxx,xxx
′) = K0(xxx,xxx

′) +

N∑

i,j=1

K0(xxx,xxxi)R(ij)K0(xxxj, xxx
′).

(2.22)

The parameters q(i) and R(ij) are given by

q(i) =
1

Z

∫

dfff p0(fff)
∂P(D|fffD)

∂f(xxxi)
=

∂

∂〈fi〉0
ln

∫

dfffD p0(fffD)P(D|fffD) and

R(ij) =
1

Z

∫

dfff p0(fff)
∂2P(D|fffD)

∂f(xxxi)∂f(xxxj)
− q(i)q(j) =

∂2

∂〈fi〉0∂〈fj〉0
ln

∫

dfffD p0(fffD)P(D|fffD)

(2.23)
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where fffD = [f(xxx1), . . . , f(xxxN)]T and Z =
∫
dfff p0(fff)P(D|fffD) is a normalising constant and the partial

differentiations are with respect to the prior mean at xxxi.

Proof. Using Bayes’ rule (eq. 2.10), the posterior process is

p̂(fff) =
p0(fff) P(D|fffD)
∫
dfff p0(fff) P(D|fffD)

where fff is a set of realisations for the random process indexed by arbitrary points from Rm, the inputs

for the GPs.

We compute first the mean function of the posterior process:

〈fxxx〉post =

∫

dfff p̂(fff) fxxx =

∫
dfffp0(fff) fxxx P(D|fffD)
∫
dfff p0(fff) P(D|fffD)

=
1

Z

∫

dfxxxdfffD p0(fxxx, f1, . . . , fN) fxxx P(D|f1, . . . , fN)

(2.24)

where the denominator was denoted by Z, we used the vectorial notation fffD = [f1, . . . , fN]T , and we

also used the short notation f(xxx) = fxxx and f(xxxi) = fi. Observe that, irrespectively of the number

of the random variables of the process considered, the dimension of the integral we need to consider

is only N + 1, all other random variables will be marginalised. We thus have an N + 1-dimensional

integral in the numerator and Z is an N-dimensional integral. If we group the variables related to the

data as fffD = [f1, . . . , fN]T , and apply the property of Gaussian averages from eq. (2.21) (also eq. (B.1)

from Appendix B) replacing xxx by fxxx and g(xxx) by P(D|fffD), we have

〈fxxx〉post =
1

Z

(
〈fxxx〉0

∫

dfxxxdfffD p0(fxxx, fffD) P(D|fffD)

+

N∑

i=1

K0(xxx,xxxi)

∫

dfxxxdfffD p0(fxxx, fffD) ∂iP(D|fffD)

) (2.25)

where K0 is the kernel function generating the covariance matrix (ΣΣΣ in Theorem. 1). The variable fxxx

in the integrals disappears since it is only contained in p0. Substituting back the normalising factor

Z leads to the expression of the posterior mean as

〈fxxx〉post = 〈fxxx〉0 +

N∑

i=1

K0(xxx,xxxi)qi (2.26)

where qi is read off from eq. (2.25)

qi =

∫
dfffD p0(fffD) ∂iP(D|fffD)
∫
dfffD p0(fffD) P(D|fffD)

(2.27)

It is clear that the coefficients qi depend only on the data, and are independent of the point xxx at

which the posterior mean is evaluated.

We will simplify the expression for qi by performing a change of variables in the numerator: f ′i =

fi − 〈fi〉0 where 〈fi〉0 is the prior mean at xxxi and keeping all other variables unchanged f ′j = fj, j 6= i,

leading to the numerator
∫

dfffDp0(fff
′
D)∂iP(D|f ′1, . . . , f ′i + 〈fi〉0, . . . , f ′N)

and ∂i is the differentiation with respect to the new variables f ′i. Since they are related additively, we

can replace the partial differentiation with respect to f ′i with the partial differentiation with respect
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to the mean 〈fi〉0. Since the differentiation and integral operators apply for a distinct set of variables,

we can swap their order to have

∂

∂〈fi〉0

∫

dfff
′
D p0(fff

′
D)P(D|f ′1, . . . , f ′i + 〈fi〉0, . . . , f ′N)

where ∂/∂〈fi〉0 is the differentiation with respect to the mean of the prior GP at xxxi. We then perform

the inverse change of variables inside the integral and substitute back into the expression for qi

qi =

∂
∂〈fi〉0

∫

dfffD p0(fffD)P(D|fffD)
∫
dfffD p0(fffD)P(D|fffD)

=
∂

∂〈fi〉0
ln

∫

dfffD p0(fffD)P(D|fffD) . (2.28)

For the posterior covariance we follow a similar way. Using posterior averages, the kernel is expressed

as:

Kpost(xxx,xxx
′) = 〈fxxxfxxx ′〉post − 〈fxxx〉post〈fxxx ′〉post (2.29)

and we can use the results from eq. (2.26) for the last term in the above equation. For the first average

we apply the property of the Gaussian averages with g(fff, fxxx ′) = fxxx ′P(D|fffD) and using the posterior

process from eq. (2.10), we have

〈fxxxfxxx ′〉post =

∫
dfffD p0(fffD, fxxx, fxxx ′)fxxx fxxx ′P(D|fffD)

∫
dfffD p0(fffD)P(D|fffD)

= 〈fxxx〉0〈fxxx ′〉post +
∑

i∈D,i=xxx ′

K0(xxx,xxxi)

∫
dfffD p0(fffDfxxx ′) ∂i (fxxx ′P(D|fffD))
∫
dfffD p0(fffD)P(D|fffD)

(2.30)

The summation in the second term is over the data set D and the second input index xxx ′. The notation

∂i stands for the differentials with respect to fxxxi and fxxx ′ , the random variable fxxx ′ can be viewed as an

additional data point at this stage. We split the sum in two parts, making explicit the term including

xxx ′, the derivative of g(fff, fxxx ′) with respect to fxxx ′ being P(D|fffD) and cancelling the denominator, this

leads to

〈fxxxfxxx ′〉post = 〈fxxx〉0〈fxxx ′〉post + K0(xxx,xxx
′) +
∑

i∈D

K0(xxx,xxxi)

∫
dfffD p0(fffDfxxx ′) fxxx ′∂iP(D|fffD)
∫
dfffD p0(fffD)P(D|fffD)

(2.31)

and we apply again Theorem 1 (eq. (2.21)) to each term of the sum where function g(fffD) = ∂iP(D|fffD);

the last term is transformed as

∑

i∈D

K0(xxx,xxxi)


〈fxxx ′〉0

∫
dfffD p0(fffD)∂iP(D|fffD)
∫
dfffD p0(fffD)P(D|fffD)

+
∑

j∈D

K0(xxx
′, xxxj)

∫
dfffD p0(fffD)∂j∂iP(D|fffD)
∫
dfffD p0(fffD)P(D|fffD)


 =

〈fxxx ′〉0
∑

i∈D

K0(xxx,xxxi)

∫
dfffD p0(fffD)∂iP(D|fffD)
∫
dfffD p0(fffD)P(D|fffD)

+
∑

i,j∈D

K0(xxx,xxxi)K0(xxxj, xxx
′)

∫
dfffD p0(fffD)∂j∂iP(D|fffD)
∫
dfffD p0(fffD)P(D|fffD)

(2.32)

where the second line is just a rearrangement of the first one. All we have to do now is to substitute

back the resulting formulae in the equation for the posterior moment (2.29). Using qi from eq. (2.26)

leads to the expression for the posterior kernel to

Kpost(xxx,xxx
′) = K0(xxx,xxx

′) +

N∑

i=1

N∑

j=1

K0(xxx,xxxi) (Dij − qiqj)K0(xxxj, xxx
′) (2.33)

where Dij is

Dij =
1

Z

∫

dfffD p0(fffD)
∂2

∂fj∂fi
P(D|fD) (2.34)

27



Chapter 2. Gaussian Process Representation and Online Learning

and we can use the replacement in the differentiation where the random variable fxxxi is replaced with

the prior mean 〈fxxxi〉0, using a similar procedure to that used for the first moment from eq. (2.27) to

eq. (2.28). Identifying Rij = Dij − qiqj leads to the required parametrisation in equation (2.23) from

Lemma 2.3.1. Simplification of Rij = Dij − qiqj is made by changing the arguments of the partial

derivative and using the logarithm of the expectation (repeating steps (2.27)–(2.28) made to obtain

qi), leading to

Rij =
∂2

∂〈fi〉0∂〈fj〉0
ln

∫

dfffD p0(fffD)P(D|fffD) (2.35)

and this concludes the proof.

The parametric form of the posterior mean, eq. (2.22), resembles the representation eq. (1.6) for

other kernel approaches like the Support Vector Machines, that are obtained by minimising certain

cost functions such as the negative log-posterior or the regularised linear models. These results are

attractive, and they provide a representation for the solution of an optimisation problem that can be

regarded as a maximum-likelihood solution (MAP) to the full Bayesian representation.

While the latter representations are derived from the representer theorem of Kimeldorf and Wahba

[1971] (generalised in [Schölkopf et al. 2001]) our result from eq. (2.22) does, to our best knowledge

not follow from this, but is derived from simple properties of Gaussian distributions. To have a

probabilistic treatment for the problem, we need a representation for the full posterior distribution,

and this has not been provided in the representer theorem.

The representation lemma plays an important role in providing basis for the online learning,

presented in Section 2.4. It also serves as a basis for the reduced representation (sparsity in Chapter 3)

and, in addition to the non-probabilistic Support Vector Machines, in the applications we are able to

compute the Bayesian error bars for the prediction.

We also stress that the parameters q(i) and R(ij) have to be computed only once, in the training

phase: they are fixed when we make predictions. The bad news is that the analytic computation of

the parameters however is in most cases impossible. Apart from the lack of analytic tractability, the

equations for the posterior moments require the computation of an integral having the dimension of

the data. A solution to overcome the large computational difficulty is to build a sequential method

for approximating the parameters, called online learning [Opper 1996; Opper 1998].

Before presenting the online learning for the GPs, let us describe a different perspective to the

parametrisation lemma.

2.3.1 Parametrisation in the feature space

The parametrisation lemma provides us the first two moments of the posterior process. Apart from

the Gaussian regression, where the results are exact, we can consider the moments of the posterior

process as approximations. This approximation is written in a data-dependent coordinate system. We

are using the feature space FFF and the projection φxxx of the input xxx into FFF . With the scalar product

from eq. (2.8) replacing the kernel function K0, we have the mean and covariance functions for the
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posterior process as

〈fxxx〉post =

N∑

i=1

qiφ
T
xxxφi = φTxxx

(
N∑

i=1

qiφi

)
= φTxxxµµµFFF

〈fxxxf ′xxx〉post = φTxxxφxxx ′ +

N∑

i,j=1

φTxxxφiRijφ
T
j φxxx ′ = φTxxx


IIIFFF +

N∑

i,j=1

φiRijφ
T
j


φxxx ′ = φTxxxΣΣΣFFFφxxx ′

(2.36)

This shows that the mean function is expressed in the feature space as a scalar product between two

quantities: the feature space image of xxx and a “mean vector” µµµFFF , also a feature-space entity. A similar

identification for the posterior covariance leads to a covariance matrix in the feature space that fully

characterises the covariance function of the posterior process.

The conclusion is the following: there is a correspondence of the approximating posterior GP with

a Gaussian distribution in the feature space FFF where the mean and the covariance are expressed as

µµµFFF =ΦΦΦqqq

ΣΣΣFFF = IIIFFF +ΦΦΦRRRΦΦΦT
(2.37)

with the concatenation of the feature vectors for all data.

This result provides us with the interpretation of the Bayesian GP inference as a family of Bayesian

algorithms performed in a feature space and the result projected back into the input space by express-

ing it in terms of scalar products. Notice two important additions to the kernel method framework

given by the parametrisation lemma:

• Bayesian learning algorithms for the GP imply the “estimation” of a Gaussian distribution in

the feature space (we will present one in the next Section).

• The parametrisation from eq. (2.22) provides a structure for the covariance of the posterior

process.

The main difference between the Bayesian GP learning and the non-Bayesian kernel method framework

is that, in contrast to the approaches based on the representer theorem for SVMs which result in a sin-

gle function, the parametrisation lemma gives a full probabilistic approximation: we are “projecting”

back the posterior covariance in the input space.

Also an important observation is that the parametrisation is data-dependent: both the mean and

the covariance are expressed in a coordinate system where the axes are the input vectors φi and qqq and

RRR are coordinates for the mean and covariance respectively. Using once more the equivalence to the

generalised linear models from Section 2.2, the GP approximation to the posterior GP is a Gaussian

approximation to θθθ ∼ N (µµµFFF ,ΣΣΣFFF ).

A probabilistic treatment for the regression case has been recently proposed [Tipping 2001b] where

the probabilistic PCAmethod [Tipping and Bishop 1999; Roweis 1998] is extended to the feature space.

The PPCA in the kernel space uses a simpler approximation to the covariance which has the form

ΣΣΣ = σ2III+ΦΦΦWWWΦΦΦT (2.38)

where the σ2 takes arbitrary values and WWW is a diagonal matrix of the size of the data. This is a

special case of the parametrisation lemma of the posterior GP eq. (2.37). This simplification leads to

a sparseness. This is the result of an EM-like algorithm that minimises the KL distance between the

empirical covariance in the feature space
∑N

i=1φiφ
T
i and the parametrised covariance of eq. (2.38), a
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more detailed discussion is delayed to Section 3.7. The minimisation of the KL distance can also seen

as a special case of the online learning, that will be presented in the next section.

In the following the joint normal distribution in the feature space with the data-dependent parametri-

sation from eq. (2.37) will be used to deduce the sparsity in the GPs.

2.4 Online learning for Gaussian processes

The representation lemma shows that the posterior moments are expressed as linear and bilinear

combinations of the kernel functions at the data points. On the other hand, the high-dimensional

integrals needed for the coefficients qqq = [q1, . . . , qN]T and RRR = {Rij} of the posterior moments are

rarely computable analytically, the parametrisation lemma thus is not applicable in practise and more

approximations are needed.

The method used here is the online approximation to the posterior distribution using a sequential

algorithm [Opper 1998]. For this we assume that the data is conditionally independent, thus factorising

P(D|fffD) =

N∏

n=1

P(yn|fn, xxxn) (2.39)

and at each step of the algorithm we combine the likelihood of a single new data point and the (GP)

prior from the result of the previous approximation step [Csató et al. 2000; Opper and Winther 2000].

If p̂t denotes the Gaussian approximation after processing t examples, by using Bayes rule we have

the new posterior process ppost given by

ppost(fff) =
P(yt+1|fff)p̂t(fff)

〈P(yt+1|fffD)〉t
(2.40)

Since ppost is no longer Gaussian, we approximate it with the closest GP, p̂t+1 (see Fig. 2.2). Unlike

the variational method, in this case the “reversed” KL divergence KL(ppost‖p̂) from eq. (2.18) is

minimised. This is possible, because in our on-line method, the posterior (2.40) only contains the

likelihood for a single data and the corresponding non-Gaussian integral is one-dimensional. For

many relevant cases these integrals can be performed analytically or we can use existing numerical

approximations.

In order to compute the on-line approximations of the mean and covariance kernel Kt we apply

Lemma 2.3.1 sequentially with a single likelihood term P(yt|ft, xxxt) at each step. Proceeding recursively,

we arrive at

〈fxxx〉t+1 = 〈fxxx〉t + q(t+1) Kt(xxx,xxxt+1)

Kt+1(xxx,xxx
′) = Kt(xxx,xxx

′) + r(t+1) Kt(xxx,xxxt+1)Kt(xxxt+1, xxx
′)

(2.41)

where the scalars q(t+1) and r(t+1) follow directly from applying Lemma 2.3.1 with a single data

likelihood P(yt+1|xxxt+1, fxxxt+1
) and the process from time t:

q(t+1) =
∂

∂〈ft+1〉t
ln〈P(yt+1|ft+1)〉t

r(t+1) =
∂2

∂〈ft+1〉t
ln〈P(yt+1|ft+1)〉t.

(2.42)

where “time” is referring to the order in which the individual likelihood terms are included in the

approximation. The averages in (2.42) are with respect to the Gaussian process at time t and the
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Figure 2.2: Visualisation of the online approximation of the intractable posterior process. The result-
ing approximated process the from previous iteration is used as prior for the next one.

derivatives taken with respect to 〈ft+1〉t = 〈f(xxxt+1)〉t. Note again, that these averages only require a

one dimensional integration over the process at the input xt+1.

The online learning eqs. (2.41) in the feature space have the simple from Opper [1998]:

〈fxxx〉t+1 = 〈fxxx〉t + q(t+1) ΣΣΣtφt+1

ΣΣΣt+1 = ΣΣΣt + r(t+1) ΣΣΣtφt+1φ
T
t+1ΣΣΣt

(2.43)

and this form of the online updates will be used in Chapter 4 to extend the online learning to an

iterative fixed-point algorithm.

Unfolding the recursion steps in the update rules (2.41) we arrive at the parametrisation for the

approximate posterior GP at time t as a function of the initial kernel and the likelihoods:

〈fxxx〉t =

t∑

i=1

K0(xxx,xxxi)αt(i) = αααTtkkkxxx (2.44)

Kt(xxx,xxx
′) = K0(xxx,xxx

′) +

t∑

i,j=1

K0(xxx,xxxi)Ct(ij)K0(xxxj, xxx
′) = K0(xxx,xxx

′) + kkkTxxxCCCtkkkxxx ′ (2.45)

with coefficients αt(i) and Ct(ij) defining the approximation to the posterior process, more precisely

to its coefficients qqq and RRR from eq. (2.22) and equivalently in eq. (2.37) using the feature space. The

coefficients given by the parametrisation lemma and those provided by the online iteration eqs. (2.44)

and (2.45) are equal in the Gaussian regression case only. The approximations are given recursively

as

αααt+1 = αααt + q(t+1)ssst+1

CCCt+1 = CCCt + r(t+1)ssst+1sss
T
t+1

ssst+1 = CCCtkkkt+1 + eeet+1

(2.46)

where kkkt+1 = kkkxxxt+1
= [K0(xxxt+1, xxx1), . . . , K0(xxxt+1, xxxt)]

T and eeet+1 = [0, 0, . . . , 1]T is the t + 1-th unit

vector.

We prove eqs. (2.44) and (2.45) by induction: we will show that for every time-step we can express

the mean and kernel functions with coefficients ααα and CCC,which are functions only of the data points
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xxxi and kernel function K0 and do not depend on the values xxx and xxx ′ at which the mean and kernel

functions are computed.

Proceeding by induction and using the induction hypothesis ααα0 = CCC0 = 0 for time t = 1, we have

α1(1) = q(1) and C1(1, 1) = r(1). The mean function at time t = 1 is 〈fxxx〉 = α1(1)K0(xxx1, xxx) (from

lemma 2.3.1 for a single data, eq. (2.41)). Similarly the modified kernel is K1(xxx,xxx
′) = K0(xxx,xxx

′) +

K(xxx,xxx1)C1(1, 1)K0(xxx1, xxx
′) with ααα and CCC independent of xxx and xxx ′, thus proving the induction hypoth-

esis.

We assume that at time t we have the parameters αααt and CCCt independent of the points xxx and

xxx ′ and the mean and kernel functions expressed according to eq. (2.44) and (2.45) respectively. The

update for the mean can then be written as

〈fxxx〉t+1 =

t∑

i=1

K0(xxxi, xxx)αt(i) + q(t+1)
t∑

i,j=1

K0(xxx,xxxi)Ct(i, j)K0(xxxj, xxxt+1)

+q(t+1)K0(xxx,xxxt+1)

=

t∑

i=1

K0(xxx,xxxi)


αt(i) + q(t+1)

t∑

j=1

Ct(i, j)K0(xxxj, xxxt+1)


+ q(t+1)K0(xxx,xxxt+1)

=

t+1∑

i=1

K0(xxx,xxxi)αt+1(i) (2.47)

where αααt+1 does not involve the input xxx and the update is as in eq. (2.46). Writing down the update

equation for the kernels

Kt+1(xxx,xxx
′) = K0(xxx,xxx

′) +

t∑

i,j=1

K0(xxx,xxxi)Ct(ij)K0(xxxj, xxx
′) +

r(t+1)

[
K0(xxx,xxxt+1) +

t∑

i,k=1

K0(xxx,xxxi)Ct(ik)K0(xxxk, xxxt+1)

]


K0(xxxt+1, xxx ′) +

t∑

j,l=1

K0(xxx,xxxl)Ct(lj)K0(xxxj, xxx
′)




= K0(xxx,xxx
′) +

t+1∑

i,j=1

K0(xxx,xxxi)

[
Ct(ij) + r(t+1)

(
t∑

k=1

Ct(ik)K0(xxxk, xxxt+1) + δi,t+1

)

(
t∑

k=l

Ct(lj)K0(xxxl, xxxt+1) + δj,t+1

)
K0(xxxj, xxx ′)

= K0(xxx,xxx
′) +

t+1∑

i,j=1

K0(xxx,xxxi)Ct+1(ij)K0(xxxj, xxx
′) (2.48)

where in the elements of CCCt+1 are independent of xxx and xxx ′ and we can read off the updates for the

elements of the matrix CCCt+1 easily. In summary, we have the recursions for the GP parameters in

vectorial notation from eqs. (2.47) and (2.48). Replacing δi,t+1 with the t+ 1-th unit vector eeet+1 we

obtain the recursion equations eq (2.46).

To illustrate the online learning we consider the case of regression with Gaussian noise (vari-

ance σ20), presented in Section 1.1. At time t + 1 we need the one-dimensional marginal of the GP
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parametrised with (αααt,CCCt), the marginal being taken at the new data point xxxt+1. This marginal is a

normal distribution with mean mt+1 = kkk
T
t+1αααt and covariance σ2t+1 = k∗ + kkkTt+1CCCtkkkt+1. The next

step is to compute the logarithm of the average likelihood

ln〈P(yt+1|fxxxt+1
, xxxt+1)〉t = −

1

2
ln
[
2π
(
σ20 + σ2t+1

)]
−

(yt+1 −mt+1)
2

2
(
σ20 + σ2t+1

)

and the first and second derivatives with respect to the mean mt+1 give the scalars q(t+1) and r(t+1):

q(t+1) =
yt+1 −mt+1

σ20 + σ2t+1

r(t+1) = −
1

σ20 + σ2t+1

Comparing the update equations with the exact results for regression, we have αααt = −CCCtyyyt and

CCCt = −(σ20III +KKKt)
−1, this is identical to the case of generalised linear models (section 2.1, eq. (2.4)).

The iterative update gives an efficient approach for computing the inverse of the kernel matrix. This

has been used in previous applications to GP regression [Williams 1996; Gibbs and MacKay 1997],

the inductive proof uses the matrix inversion lemma and it is very similar to the iterative inversion of

the Gram matrix, presented in detail in Appendix C. The online algorithm however, is applicable to

a much larger class of algorithms, as detailed next.

2.5 The online learning algorithm

For the algorithm we assume that we can to compute or approximate the average likelihood required

for the update coefficients q(t+1) and r(t+1).

The online algorithm is initialised with an “empty” set of parameters: all values of ααα and CCC are

zero. Nonzero values for the parameters ααα and CCC at t + 1-th position will appear only at time t + 1,

before that all coefficients from ααα and CCC at the t + 1-th position are zero. In implementations we

can ignore the zero elements, and increase the parameters sequentially. The sequential increase of the

parameters has also been proposed by [Jaakkola and Haussler 1999] for implementing regression and

classification with Bayesian kernel methods. It is clear from the parameter update equations (2.46)

that the t+ 1-th unit vector eeet+1 is responsible for extending the nonzero parameters.

In the proposed online learning algorithm we initialise the GP parameters and the inverse Gram

matrix to empty values, and set the “time” counter to zero. Then for all data (xxxt+1, yt+1) the following

steps are iterated:

1. Compute the scalars q(t+1), r(t+1), and vectors kkkt+1 and ssst+1.

2. Update the values of the GP parameters (αααt+1,CCCt+1).

The problem with this simple algorithm is the quadratic increase of the number of parameters

with the size of the processed data. In any real application we assume that the data lives on a low-

dimensional manifold. The ever-increasing size of parameters is then clearly redundant, especially if

the feature space defined by the kernel is finite-dimensional as is the polynomial kernel. In this case

there would be no need to have a basis for any GP larger than the dimension of the feature space,

this being addressed in Chapter 3.
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2.6 Discussion

In this chapter we provided a general parametrisation for the moments of the posterior process using

general likelihoods. The parametrisation lemma extends the representer theorem of Kimeldorf and

Wahba [1971] to a Bayesian probabilistic framework. We provided a feature space view of the approx-

imate posterior and showed that we can view it as a normal distribution for the model parameters in

the feature space. Using the parametrisation lemma we deduced an online algorithm for the Gaussian

processes. We use a complete Bayesian framework, to produce a sequential second order algorithm

that is applicable to a wide class of likelihoods. Due to averaging with respect to a Gaussian mea-

sure, we are able to use even non-differentiable or non-continuous likelihoods like the step function

for classification problems (will be discussed in details in Chapter 5).

An important drawback of the online learning algorithm presented when applied for small datasets

is the restriction of a single sweep through the data. This prevents us from getting improvements in

the approximation by multiple processing the whole dataset, the benefit of the batch methods. This

shortcoming of the algorithm will be addressed in Chapter 4, where we will discuss an extension to

the basic online learning to allow multiple processing of each data point, proposed by Minka [2000].

If the data size increases indefinitely – in the case of real-time monitoring processes for example –

the GPs presented are also not applicable in their present form: we are required to store all previously

seen inputs. This quadratic scaling makes the machines on which the GP is implemented to run out

of resources.

With our aim the efficient representation, in Chapter 3 we give a framework for a flexible treatment

of the GP. A subset of the inputs will be retained and we will develop updates that keep the size of

the this set constant. We derive a rule to decide which input should be added or be left out from

the GP, together with the possibility of removing data from the GP. All modifications are based on

minimising the KL divergence in the family of GPs.
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Sparsity in Gaussian Processes

Summary: Further approximations to GPs are considered. We deduce and minimise the
KL-divergence between the original GP and a second, constrained GP. The constraints
lead to sparsity. The quality of the approximation is examined using the KL-distance
and a decision rule for deleting the data points is proposed. We then combine online
learning, input removal, and computation of the error term to produce an algorithm that
controls the size of the GP irrespective of the processed data size, this being the main
contribution of the thesis.

The representer theorem of Kimeldorf and Wahba [1971] provides an analytic form to the MAP

solution for a large class of likelihoods within the kernel framework, and in Chapter 2 a similar

representation for the posterior process in the Bayesian framework was provided. However, when

making predictions, these parametrisations require all data. The aim of this chapter is to propose a

solution in which the prediction is given in terms of a subset of the data, which will be referred to as

the set of Basis Vectors and the solution as sparse solution.

Sparsity in non-parametric families is important since the typical data set size for real applications

can be very large. Although theoretically attractive, due to their “non-parametric nature” the kernel

methods are of restricted usage; they cannot be easily applied for extracting information from large

datasets. This is illustrated for example by the quadratic scaling of the number of parameters with

the size of the data set for the GP.

Predictions involving a small subset of the original data were given originally for classification us-

ing the Support Vector Machines (SVM) [Vapnik 1995] and then extended to treat regression. These

results are batch solutions that require an optimisation with respect to the full dataset. Usually there

are efficient solutions to the problem when the data is small, but these solutions are not feasible for

large datasets. In recent years iterative methods were developed that break down the optimisation

problem into subproblems such as chunking [Osuna and Girosi 1999], or the sequential minimal opti-

misation [Platt 1999a]. These methods were developed to the SVMs with an ε-insensitive loss function

for the regression and the classification case.

The sparse representation in SVMs is a result of the non-differentiable nature of the cost functions,

if we replace it for example with a quadratic loss function, the solution is not sparse any more. In this

chapter we develop sparse solutions to arbitrary likelihoods in the Bayesian GP framework. To do

this, we first consider the image φ(xxx) of an input xxx in the feature space FFF . The projection of all data

points into FFF defines a data-manifold with a usually much smaller dimension than the dimension of

the embedding space FFF . Nevertheless, since the data is more dispersed across the dimensions than

in the input space, the feature space projection gives more freedom for the linear algorithms to find

35



Chapter 3. Sparsity in Gaussian Processes

a solution for the regression or classification case. This can be seen clearly when we perform linear

regression in a feature space corresponding to an infinite-dimensional RBF kernel: we have an exact

fit for arbitrary large data. Here we exploit the assumption that the data-manifold is of a much lower

dimensionality than the data itself.1

A first constraint to the problem was the prior on the parameters or the prior GP in the Bayesian

framework from Chapter 2. Here the Bayesian solution will further constrained: we impose the

resulting GP to be expressed solely based on a small subset of the data, using the parametrisation

given in eq. (2.22).

The small subset is selected by sequentially building up the set of basis points for the GP repre-

sentation. This set, which is of a fixed size, is called the set of “basis vectors” or BV set, is introduced

in the next section. This section also details previous attempts and an intuitive picture for the sparse

approximation. We address the question of removing a basis vector that is already in the GP by

computing the KL-distance between two GPs in Section 3.2. The KL-distance is computed using the

equivalence of the GPs with the normal distribution in the feature space induced by the kernel.

The KL-distance is then used in a constrained optimisation framework to find a process ĜP that is

the closest possible to the original one but has zero coefficients whenever the last BV is encountered.

The GP solution is independent of the order of the BV , meaning that any of the inputs can be put

in the last position. We thus implement pivoting in the GP family parametrised in a data-dependent

coordinate system.

Sparsity using the KL-divergence and a constrained optimisation is presented in Section 3.3 with

an estimation of the error in Section 3.4.

A combination of the online GP updates from the previous chapter and the constrained optimi-

sation results in the sparse online updates (Section 3.5). The theory is coalesced into a sparse online

algorithm in Section 3.6. The subject of efficient low-dimensional representations in the framework of

the non-parametric kernel method is under an intense study and we give an overview of the different

approaches to sparsity in Section 3.7. We conclude the chapter with discussions and a list of possible

future research directions.

3.1 Redundancy in the representation

We start the discussion about sparsity by having a closer look at the online learning algorithm intro-

duced in Chapter 2. The algorithm adds a single input to the GP at each step, this addition implies

the extension of the basis in which we expressed the GP, given in eq. (2.22). If the new input was in

the linear span of all previous inputs, then the addition of a new vector in the basis is not necessary.

Indeed, if we write φt+1 as

φt+1 =

t∑

i=1

êiφi (3.1)

and we substitute it in the update eq. (2.43) for the last feature vector, then an equivalent representa-

tion of the GP can be made that uses only the first t feature vectors. Unfortunately eq. (3.1) does not

hold for most of the cases. Again, using as an example the popular RBF kernels, any set of distinct

points maps to a linearly independent set of feature vectors. The feature space is a linear Hilbert

space, and we use the linear algebra to decompose the new feature vector into (1) a component that

1This is a reasonable assumption if we want to extract information from the data, or equivalently we want to have
predictions based on the dataset. A uniform distribution of the data would be completely non-informative.
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Figure 3.1: Visualisation of the projection. The new feature vector φt+1 is projected to the subspace
spanned by {φ1, . . . , φt} resulting in the projection φ̂t+1 and its orthogonal residual φres. It is
important that φres has t+ 1 components, i.e. it needs the extended basis including φt+1.

is included in the subspace of the first t features and (2) one that is orthogonal to it and write

φt+1 =

t∑

i=1

êt+1(i)φi + γt+1φres = êeet+1ΦΦΦt + γt+1φres (3.2)

where the first term is the orthogonal projection expressed in a vectorial form with the coordinates

of the projection êeet+1 = [êt+1(1), . . . , êt+1(t)]
T . All previous feature vectors have been grouped into

the vector ΦΦΦt = [φ1, . . . , φt] and φres is the residual, the unit vector orthogonal to the first t feature

vectors. The squared length of the residual is γt+1 = ‖φt+1 − φ̂t+1‖2 with the norm in the feature

space given by 〈aaa,aaa〉 = ‖aaa‖2; the scalar product is defined using the kernel 〈φxxx, φyyy〉 = K0(xxx,yyy) and

φ̂t+1 denotes the approximation to φt+1 in the subspace of all previous inputs. The squared length

of the residual γt+1 > 0 appears also in the recursive computation of the determinant of the kernel

Gram matrix: |KKKt+1| = |KKKt|γt+1 (see Appendix C or [Mardia et al. 1979] for details). If we proceed

sequentially, then a way of keeping the kernel matrix nonsingular is to avoid the inclusion of those

elements for which γi = 0. This is a direct consequence of the linearity of the feature space and in

applications helps to keep the algorithm stable, will avoid singular or almost singular kernel Gram

matrices.

Fig. 3.1 provides a visualisation of the inputs and the projection in the feature space. We plotted

the residual vector φres that is orthogonal to the span of the previous feature vectors with squared

length γt+1.

An intuitive modification of the online algorithm is to project the feature space representation of

the new input when the error caused by this projection is not too large. As a heuristic we can define

the errors as being the length of the residual γt+1. We might justify this choice by the assumption

that the inputs are not random, i.e. they lie on a lower-dimensional manifold in the feature space.

The geometric consideration from Fig. 3.1 builds a linear subspace onto which the inputs are projected

using eq. (3.2). This subspace however does not consider the noise on the outputs, thus might be

suboptimal, i.e. include into the representation inputs that are coming from a noisy region of the

data, wasting resources.

To implement this sparse algorithm, we need to compute the projection coordinates êeet+1 and the

squared distance γt+1 from eq. (3.2). These values are obtained from minimising the squared distance

‖φt+1 − φ̂t+1‖2. Expanding φ̂t+1 using eq. (3.2) and replacing the scalar products in the feature
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space with the corresponding kernel functions, we have the following equation to minimise:

êeeTt+1KKKtêeet+1 − 2êeeTt+1kkkt+1 + k∗

where KKKt is the kernel matrix and kkkt+1 = [K0(xxx1, xxxt+1), . . . , K0(xxxt, xxxt+1)]
T and k∗ = K0(xxxt+1, xxxt+1),

kernel functions obtained using K0(xxxi, xxxj) = 〈φi, φj〉. The differentiating it with respect to the

unknowns êeet+1 we obtain a linear system with solution

êeet+1 = KKK−1
t kkkt+1. (3.3)

The changes in the online updates from Chapter 2 as a result of this projection are minimal: the

new parameters (αααt+1,CCCt+1) are computed using

ŝsst+1 = CCCtkkkt+1 + êeet+1 (3.4)

instead of ssst+1 in eq. (2.46), thus the projected parameters replace the true inputs. The result of

this substitution is important: although the new example has been processed, the size of the model

parameters is not increased. The computation of ŝsst+1 however requires the inverse of the Gram

matrix, a costly operation. The following formula gives an online update to the inverse Gram matrix

QQQt+1 = KKK−1
t+1 which is based on the matrix inversion lemma (see Appendix C for details):

QQQt+1 =QQQt + γ−1
t+1(êeet+1 − eeet+1)(êeet+1 − eeet+1)

T . (3.5)

where eeet+1 is the t+ 1-th unit vector and êeet+1 =QQQtkkkt+1 is the projection from eq. (3.3). The length

of the residual is also expressed recursively: γt+1 = k∗ − kkkTt+1QQQtkkkt+1 = k∗ − kkkTt+1êeet+1.

Observe that, in order to match the dimensions of the elements, we have to add an empty last

row and column to QQQt and a zero last element to êeet+1 before performing the update. The addition

of the zero element can formally be written using functions that do this operation. This simpler form

of writing the equations without the extra function for some components has been chosen to preserve

clarity.

The idea of projecting the inputs to a linear subspace specified by a subset has been proposed by

Wahba [1990, Chapter 7] (or more recently by Wahba et al. [1999] and Schölkopf et al. [1999]) using

a batch framework and maximum a-posteriori solutions.

Writing the MAP solutions as a linear combination of the input features φMAP =
∑

i αiφxxxi ,

the projection to the subset is obtained using the approximation φxxxi ≈
∑

j êxxxi(j)φ̂j for each input,

{φj}j=1,k being the subset onto which the inputs are projected.

If we perform the iterative computation of the inverse kernel matrix from eq. (3.5) together with

the GP update rules, we can modify the online learning rules in the following manner: we keep only

those inputs whose squared distance from the linear subspace spanned by the previous elements is

higher then a predefined positive threshold γt+1 > εtol. This way we arrive at a sparse online GP

algorithm. This modification of the online learning algorithm for the GP family has been proposed

by us in [Csató and Opper 2002; Csató and Opper 2001]. Performing this modified GP update

sequentially for a dataset, there will be some vectors for which the projection is used and others that

will be kept by the GP algorithm. In the following we will call the set of inputs the set of Basis

Vectors for the GP and we will use the notation BV for an element of the set and BV set for the whole

set Basis Vectors.

The online algorithm sketched above is based on “measuring” the novelty in the new example with

respect to the set of all previous data. It may or may not add the new input to the BV set. on the
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other hand, there might be cases when there is a new input which is regarded “important” but due

to the limitations of the machines we cannot include it into the BV set. There might not be enough

resources available, thus it would be necessary to remove an existent BV to allow the inclusion of the

new data.

However by looking at the new data only, there are no obvious ways to remove an element from the

BV set. A heuristic was proposed in [Csató and Opper 2002] by assuming that the GP is approximately

independent of the order of the presentation of the data. This independence lead to the permutability

of the order of presentation and thus when removing a BV element we assumed that it was the last

added to the BV set. The approximation of the feature vector φt+1 with its projection φ̂t+1 from

eq. (3.2) was made, effectively removing the input φt+1 from the BV set. The error due to the

approximation has also been estimated by measuring the change in the mean function of the GP due

to the substitution. The change was measured at the inputs present in the BV set and the location of

the new example. Since the projection into the subspace spanned by the previous data was orthogonal,

the mean function of the GP was changed only at the new input with the change induced being

εt+1 = |αt+1(t+ 1)|γt+1 =
αt+1(t+ 1)

Qt+1(t+ 1, t+ 1)
(3.6)

where the substitution Qt+1(t + 1, t + 1) = γ−1
t+1 is based on the iterative inversion of the inverse

Gram matrix from eq. (3.5). The score εt+1 can be computed not only for the last element, but,

by assuming permutability of the GP parameters, for all elements in the BV set. Its computation

is simple if we have the inverse Gram matrix and in the online algorithm this was the criterion for

removing an element from the BV set. This score is lacking the probabilistic characteristic of the

Gaussian processes in the sense that in computing it we ignore the changes in the kernel functions.

Later in this chapter the heuristics discussed so far is replaced with a different approach to ob-

tain sparsity: we compute the KL-divergence between the Gaussian posterior and a new GP that is

constrained to have zero coefficients corresponding to one of the inputs. That input is then removed

from the GP.

We are mentioning that removing the last element is a choice to keep the computations clear, all

the previously mentioned operations are extended in a straightforward manner to any of the basis

vectors in the BV set by permuting the order of the parameters. Section 3.2 presents the basis of the

sparse online algorithms: the analytic expression of the KL-divergence in the GP family.

3.2 Computing the KL-distances

In online learning we are building approximations based on minimising a KL-divergence. The learn-

ing algorithm from Chapter 2 was based on minimising the KL-distance between an analytically

intractable posterior and a simple, tractable one. The distance measures thus play an important

role in designing approximating algorithms. Noting the similarity between the GP and the finite-

dimensional normal distributions, we are interested in obtaining some distance measures in the family

of Gaussian processes.

In this section we will compute the “distance” between two GPs based on the representation lemma

in Chapter 2 (also [Csató and Opper 2002]) using the observation that GPs can be viewed as normal

distributions with the mean µµµFFF and the covariance ΣΣΣFFF given as functions of the input data, shown in

eq. (2.36).
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If we consider two GPs using their feature space notation, then we have an analytical form for the

KL-divergence [Kullback 1959] by integrating out eq. (2.15):

2KL(GP1‖GP2) = (µµµ2 −µµµ1)
TΣΣΣ

−1
2 (µµµ2 −µµµ1) + tr

(
ΣΣΣ1ΣΣΣ

−1
2 − IIIFFF

)
− ln

∣∣∣ΣΣΣ1ΣΣΣ−1
2

∣∣∣ (3.7)

where the means and the covariances are expressed in the high-dimensional and unknown feature

space. The trace term on the RHS includes the identity matrix in the feature space, this was obtained

by the substitution dFFF = tr(IIIFFF ) where dFFF is the “dimension” of the feature space. We will express

this measure in terms of the GP parameters and the kernel matrix at the basis points.

The two GPs might have different BV sets. Without loosing generality, we unite the two BV
sets and express each GP using this union by adding zeroes to the inputs that were not present in

the respective set. Therefore in the following we assume the same support set for both processes.

The means and covariances are parametrised as in eq. (2.36) with (ααα1,CCC1) and (ααα2,CCC2) and the

corresponding elements have the same dimensions.

We will use the expressions for the mean and the covariance functions in the feature space: µµµ =ΦΦΦααα

and ΣΣΣ = IIIFFF +ΦΦΦCCCΦΦΦT from eq. (2.37) with ΦΦΦ =ΦΦΦB the concatenation of all BV elements expressed in

the feature space. The KL-divergence is transformed so that it will involve only the GP parameters

and the inner product kernel matrix KKKB =ΦΦΦ
T
ΦΦΦ. This eliminates the matrix ΦΦΦ in which the number

of columns equals the dimension of the feature space. For this we transform the inverse covariance

using the matrix inversion lemma as

(
IIIFFF +ΦΦΦCCCΦΦΦT

)−1

= IFFF −ΦΦΦ
(
CCC

−1 +ΦΦΦT
IFFFΦΦΦ

)−1

ΦΦΦ
T = IFFF −ΦΦΦ(CCC−1 +KKKB)−1ΦΦΦ

T (3.8)

and using this result we obtain the term involving the means as

(ααα2 −ααα1)
TΦΦΦ

T
[
IFFF −ΦΦΦ(CCC−1

2 +KKKB)−1ΦΦΦ
T
]
ΦΦΦ(ααα2 −ααα1) (3.9)

= (ααα2 −ααα1)
T

[
KKKB −KKKB

(
CCC

−1
2 +KKKB

)−1

KKKB

]
(ααα2 −ααα1)

= (ααα2 −ααα1)
T
(
CCC2 +KKK−1

B

)−1

(ααα2 −ααα1) (3.10)

where we assumed that the kernel matrix including all data points KKKB is invertible. The matrix

inversion lemma eq. (A.1) has been used in the opposite direction to obtain eq. (3.10). The condition

of KKKB being invertible is not restrictive since a singular kernel matrix implies we can find an alternative

representation of the process that involves a non-singular kernel matrix (i.e. linearly independent basis

points, see the observation at eq. (3.2)). For the second term of eq. (3.7) we use the property of traces

tr(AAABBBCCC) = tr(BBBCCCAAA). Using eq. (3.8) again we obtain

tr

[
(IIIFFF +ΦΦΦCCC1ΦΦΦ

T )

(
IIIFFF −ΦΦΦ

(
CCC

−1
2 +KKKB

)−1

ΦΦΦ
T

)
− IIIFFF

]

tr

[
ΦΦΦ

(
CCC1KKKB

(
CCC

−1
2 +KKKB

)−1

−
(
CCC

−1
2 +KKKB

)−1

+CCC1

)
ΦΦΦ
T

]
= tr

[
(CCC1 −CCC2)(CCC2 +KKK−1

B )−1
]. (3.11)

This provides a representation of the trace using the kernel matrix and the parameters of the two

GPs. For the third term in eq. (3.7) we are using the property of the log-determinant

ln(|III+AAA|) = tr ln(III+AAA) = −

∞∑

n=1

(−1)n

n
trAAAn (3.12)
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Figure 3.2: The evolution of the KL-divergences for the case of online regression using the Fried-
man dataset #1. The training set size is 150 and we plot the average KL-distances taken over 50
experiments (we used RBF kernels with σ2K = 2).

together with the permutability of the components in traces and obtain

ln
∣∣∣ΣΣΣ1ΣΣΣ−1

2

∣∣∣ = ln
∣∣∣IIIFFF +ΣΣΣ1ΣΣΣ

−1
2 − IIIFFF

∣∣∣ = −

∞∑

n=1

(−1)n

n
tr
[
ΣΣΣ1ΣΣΣ

−1
2 − IIIFFF

]n

= −

∞∑

n=1

(−1)n

n
tr
[
(CCC1 −CCC2)(CCC2 +KKK−1

B )−1
]n

(3.13)

= ln
∣∣∣III+ (CCC1 −CCC2)(CCC2 +KKK−1

B )−1
∣∣∣ = ln

∣∣∣∣
(
CCC1 +KKK−1

B

)(
CCC2 +KKK−1

B

)−1
∣∣∣∣ (3.14)

In deriving the smaller dimensional representation from eq. (3.13) the permutability of the matrices

inside the trace function has been used as in eq. (3.11). This leads to the equation for the KL-distance

between two GPs

2KL(GP1‖GP2) = (ααα2 −ααα1)
(
CCC2 +KKK−1

B

)−1

(ααα2 −ααα1)

+ tr
[
(CCC1 −CCC2)(CCC2 +KKK−1

B )−1
]

− ln

∣∣∣∣
(
CCC1 +KKK−1

B

)(
CCC2 +KKK−1

B

)−1
∣∣∣∣
. (3.15)

We see that the first term in the KL-divergence is the distance between the means using the metric

provided by GP2. Setting CCC2 = 0 we would have the matrix KKKB as metric matrix for the parameters

of the mean. This problem was solved for the zero mean functions and a diagonal restriction for

CCC1, the posterior kernel, to obtain the “Sparse kernel PCA” [Tipping 2001b], discussed in details in

Section 3.7.1.

We stress that the computation of the KL-distance is based on the parameters of the two GPs and

the kernel matrix. It is important that the GPs share the same prior kernels so that the same feature

space is used when expressing the means and covariances in eq. (2.37) for the Gaussians in the feature

space.

As an example, let us consider the GPs at times t and t+ 1 from the online learning scheme and

compute the KL-divergences between them. Since the updates are sequential and include a single term

each step, we expect that the KL-divergence between the old and new GP to be expressible using

scalars. This is indeed the case as we can write the two KL-divergences in terms of scalar quantities:

2KL(GPt+1‖GPt) =
(
(q(t+1))2 + r(t+1)

)
σ2t+1 − ln(1+ r(t+1)σ2t+1)

2KL(GPt‖GPt+1) =
(
(q(t+1))2 − r(t+1)

) σ2t+1

1+ r(t+1)σ2t+1
+ ln(1+ r(t+1)σ2t+1)

(3.16)
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where the parameters are taken from the online update rule eq. (2.46) and σ2t+1 = k∗ + kkkTt+1CCCtkkkt+1

is the variance of the marginalisation of GPt at xxxt+1. We plotted the evolution of the pair of KL-

divergences in Fig. 3.2 for a toy regression example, the Friedman dataset #1 [Friedman 1991]. The

inputs are 10-dimensional and sampled independently from a uniform distribution in [0, 1]. The output

uses only the first 5 components f(xxx) = sin(πx1)x2 + 20(x3 − 0.5)2 + 10x4 + 5x5 + η with the last

component a zero-mean unit variance random noise. The noise variance in the likelihood model was

σ20 = 0.02. We see that in the beginning the two KL-divergences are different, but as more data

are included in the GP, their difference gets smaller. This suggests that the two distances coincide

if we are converging to the “correct model”, i.e. the Bayesian posterior. It can be checked that the

dominating factor in both divergences is σ2t+1, this factor will be of second order (i.e. of the fourth

power of σt+1) if we subtract the two divergences (and expand the logarithm up to the second order).

Furthermore, since we are in the Bayesian framework, the predictive variance σ2t+1 tends to zero as

the learning progresses, thus we have that the two KL-divergences converge.

It would be an interesting question to identify the exact differences between the two KL-divergences

and try to interpret the distances accordingly. A straightforward exploration would be to relate the

KL-divergence to the Fisher information matrix [Mardia et al. 1979; Cover and Thomas 1991], which

is well studied for the case of multivariate Gaussians2, hopefully a future research direction toward

refining the online learning algorithm (see Section. 3.8.1).

Fixing the process GP2, and imposing a constrained form to GP1 will lead to the sparsity in the

family of GPs, presented next.

3.3 KL-optimal projection

We next introduce sparsity by assuming that the GP is a result of some arbitrary learning algorithm,

not necessarily online learning. This implies that at time t + 1 we have a set of basis vectors for

the GP and the parameters αααt+1 and CCCt+1. For simplicity we will also assume that there are t + 1

elements in the BV set (its size is not important). We are looking for the “closest” GP with parameters

(α̂ααt+1, ĈCCt+1) and with a reduced BV set where the last element xxxt+1 has been removed. Removing

the last BV means imposing the constraints α̂t+1(t + 1) = 0 for the parameters of the mean and

Ĉt+1(t + 1, j) = 0 for all j = 1, . . . ,N for the kernel. Due to symmetry, the constraints imposed on

the last column involve the zeroing of the last row, thus the feature vector φt+1 will not be used in

the representation.

We solve a constrained optimisation problem, where the function to optimise is the KL-divergence

between the original and the constrained GP (3.15):

2KL(ĜPt+1‖GPt+1) = (αααt+1 − α̂ααt+1)
(
CCCt+1 +KKK−1

t+1

)−1

(αααt+1 − α̂ααt+1)

+ tr
[
(ĈCCt+1 −CCCt+1)(CCCt+1 +KKK−1

t+1)
−1
]

− ln

∣∣∣∣
(
ĈCCt+1 +KKK−1

t+1

)(
CCCt+1 +KKK−1

t+1

)−1
∣∣∣∣

(3.17)

The choice for the KL-divergence here is a pragmatic one: using the KL-measure and differentiating

with respect to the parameters of ĜP, we want to obtain an analytically tractable model. Using

KL(GPt+1‖ĜPt+1) does not lead to a simple solution.

2I acknowledge D. Saad for pointing it out. It turns out however, by studying the KL-distance between the original
and a slightly perturbed density function, that the KL-distance only relates to the diagonal elements of the Fisher
information matrix, this in fact is an exercise[Cover and Thomas 1991, page 334].
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Figure 3.3: Grouping of the GP parameters for the KL-pruning in eqs. (3.19) and (3.21)

In the following we will use the notation QQQ = KKK
−1 for the inverse Gram matrix. Differentiating

eq. (3.17) with respect to all nonzero values α̂i, i = 1, . . . , t and writing the resulting equations in a

vectorial form leads to

[
IIIt 000t

] (
KKK

−1
t+1 +CCCt+1

)−1
([
IIIt 000t

]T
α̂ααt+1 −αααt+1

)
= 000t (3.18)

where IIIt is the identity matrix and 000t is the column vector of length t with zero elements and [IIIt000t]

denotes a projection that keeps only the first t rows of the t + 1-dimensional vector to which it is

applied. Solving eq. (3.18) leads to updates for the mean parameters as

α̂ααt+1 = ααα(r) −
α∗

c∗ + q∗
(QQQ∗ +CCC∗) (3.19)

where the elements of the updates are shown in Fig 3.3. Differentiation with respect to the matrix

ĈCCt+1 leads to the equation

(
ĈCCt+1 +QQQt

)−1

−
[
IIIt 000

]
(QQQt+1 +CCCt+1)

−1
[
IIIt 000

]T
= 000t (3.20)

where ĈCCt+1 has only t rows and columns and the matrix [IIIt000t] used twice trims the matrix to the

first t rows and columns. The result is again expressed as a function of the decomposed parameters

from Fig 3.3 as

ĈCCt+1 = CCC(r) +
QQQ

∗
QQQ

∗T

q∗
−

(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)
T

q∗ + c∗
(3.21)

A reduction of the kernel Gram matrix is also possible using the quantities from Fig 3.3:

Q̂QQt+1 =QQQ(r) −
QQQ

∗
QQQ

∗T

q∗
(3.22)

This follows immediately from the analysis of the iterative update of the inverse kernel Gram matrix

QQQt+1 in eq. (3.5). The deductions use the matrix inversion lemma eq. (A.2) for QQQt+1 = KKK
−1
t+1 and

(CCC+QQQ)−1, the details are deferred to Appendix D.

An important observation regarding the updates for the mean and the covariance parameters is

that we can remove any of the elements of the set by permuting the order of the BV set and then

removing the last element from the BV set. For this we only need to read off the scalar, vector, and

matrix quantities from the GP parameters.

Notice also the benefit of adding the inverse Gram matrix as a “parameter” and updating it when

adding (eq. 3.5) or removing (eq. 3.22) an input from the BV set: the updates have a simpler form

43



Chapter 3. Sparsity in Gaussian Processes

and the computation of scores is computationally cheap. The propagation of the inverse kernel Gram

matrix makes the computations less expensive; there is no need to perform matrix inversions. In

experiments one could also use instead of the inverse Gram matrix QQQ its Cholesky decomposition,

discussed in Appendix C.2. This reduces the size of the algorithm and keeps the inverse Gram matrix

positive definite.

Being able to remove any of the basis vectors, independently of the order or the particular training

algorithm used, the next logical step is to measure the effect of the removal, as presented next.

3.4 Measuring the error

A natural choice for measuring the error is the KL-distance between the two GPs, GP(αααt+1,CCCt+1)

and ĜP(α̂ααt+1, ĈCCt+1). This loss is related to the last element, but the remarks from the previous

section regarding the permutability imply that we can compute this quantity for any element of the

BV set. This is thus a measure of “importance” of a single element in the context of the GP, it will

be called score, and denoted by εt+1(t+ 1) where the subscript refers to the time.

Computing the score is rather laborious and the deductions have been moved into Appendix D.

Using the decomposition of the parameters as given in Fig. 3.3, the KL-distance between GP t+1 and

its projection ĜPt+1 using (α̂ααt+1, ĈCCt+1) is expressed as

εt+1(t+ 1) = 2KL(ĜPt+1‖GPt+1) =
α∗2

q∗ + c∗
−
s∗

q∗
+ ln

(
1+

c∗

q∗

)
(3.23)

where s∗, similarly to c∗ and q∗, is the last diagonal element of the matrix

SSSt+1 = (CCC−1
t+1 +KKKt+1)

−1.

A first observation we make is that, by replacing q∗ with γ−1
t+1, we have the expected zero score if

γt+1 = 0, agreeing with the geometric picture from Fig. 3.1 and showing that the GPs before and

after removing the respective elements are the same.

A second important remark is that the KL-distance between the original and the constrained GP

is expressed solely using scalar quantities. The exact KL-distance is computable at the expense of

an additional matrix that scales with the BV set, and the computation of this matrix requires an

inversion. Given SSSt+1 we can compute the score for any element of the BV set and for the i-th BV
we have the score as

εt+1(i) =
α2(i)

q(i) + c(i)
−
s(i)

q(i)
+ ln

(
1+

c(i)

q(i)

)
(3.24)

where q(i), c(i), and s(i) are the i-th diagonal elements of the respective matrices. Thus, with an

additional inversion of a matrix with the size of the the BV set we can compute the exact scores

εt+1(i) for all elements, i.e. the loss it would cause to remove the respective input from the GP

representation.

The scores in eq. (3.24) contain two distinct terms. A first term containing the parameters αt+1(i)

of the posterior mean comes from the first term of the KL-divergence eq. (3.15). The subsequent two

terms incorporate the changes in the variance. Computing the mean term does not involve any matrix

computation, meaning that in the implementations the computation is linear with respect to the BV
set size.

In contrast, when computing the second component, we need to store the matrix SSSt+1, and although

we have a sequential update for SSSt+1, which is quadratic in computational time (given in Section D.2),
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it adds further complexity and computational time if we want to remove an existing BV from the set.

Particularly simple is the update of SSSt+1 if we add a new element:

SSSt+1 =

[
SSSt 000t

000
T
t a−1

]
(3.25)

where a = (r(t+1))−1+σ2t+1 and σ2t+1 = K0(xxxt+1, xxxt+1)+kkkTt+1CCCtkkkt+1 is the variance of the marginal

of GPt+1 at xxxt+1. This expression is further simplified if we consider the regression task without

the sparsity where we know the resulting GP: by substituting CCCt+1 = −(σ20IIIt+1 + KKKt+1)
−1 we have

SSSt+1 = IIIt+1/σ
2
0 and as a result st+1(i) = 1/σ20. The simple form for the regression is only if the

sparsity is not used, otherwise the projections result into non-diagonal terms. In this case, using

again the fact that, as learning progresses, σ2i → 0 and accordingly ci ≈ 1σ20. This means that the

second and third terms in eq. (3.23) cancel if we use a Taylor expansion for the logarithm. This

justifies the approximation introduced next.

In what follows we will use the approximation to the true KL-distance made by ignoring the

covariance-term, leading to

εt+1(i) =
α2(i)

q(i) + c(i)
(3.26)

Observe that this is similar to the heuristic scores for the BV s from eq. (3.6) proposed in Section 3.1,

the main difference being that in this case the uncertainty is also taken into account by including c(i).

If we further simplify eq. (3.26) by ignoring c(i) then the score of the i-th BV is the quadratic

error made when optimising the distance

‖αiφi −
∑

j6=i

βjφj‖2 (3.27)

with respect to βj. Ignoring ci is equivalent to assuming that CCC1 = CCC2 = 000, i.e. the posterior

covariance is the same as the prior. In that case, since there are no additional terms in the KL-

distance, the distance is exact.

The projection minimising eq. (3.27) was also studied by Schölkopf et al. [1999]. Instead of

computing the inverse Gram matrix QQQt+1, they proposed an approximation to the score of the BV
using the eigen-decomposition of the Gram matrix. The score eq. (3.26) is the exact minimum with

the same overall computing requirement: in this case we need the inverse of the Gram matrix with

cubic computation time. The same scaling is necessary for computing the eigenvectors in [Schölkopf

et al. 1999].

The score in eq. (3.26) is used in the sparse algorithm to decide upon the removal of a specific BV .

This might lead to a the removal of a BV that is not minimal. To see how frequent this omission of the

“least important BV ” occurs, we compare the true KL-error from eq. (3.24) with the approximated

one from eq. (3.26).

We consider the case of GPs for Gaussian regression applied to the Friedman data set #1 [Friedman

1991]. We are interested in typical omission frequencies using different scenarios for online GP training,

results summarised in Fig. 3.4. For each case we plotted the omission percentages based on 500

independent repetitions and for different training set sizes, represented on the X-axis.

First we obtained the omission rate when no sparsity was used for training: all inputs were included

in the BV set, and we measure the scores only at the end of the training, thus we have the same number

of trials independent of the size of the training. The average omission rate is plotted in Fig. 3.4.a. It

shows that the rate increases with the size of the data set, i.e. with the size of the BV set.
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Figure 3.4: Omission rates caused by the simplified BV score, eq. (3.26) when applied to the Friedman
#1 data. Subfigure (a) shows the omission at the end of a sequence of full training, while in subfigure
(b) we plotted the errors made when the BV set size was set to 90% of the training set (full bars)
and to 50, irrespective of the size of the training set (empty bars). Note that the range of the Y-axis
differs in the two sub-plots.

In a second experiment we set the maximal BV set size to 90% of the training data, meaning that

10% of the inputs were deleted by the algorithm before we are testing the omission rate. This is done,

again, only once for each independent trial. The result is plotted with full bars in Fig 3.4.b and it

shows a trend increasing with the size of the training data, but eventually stabilising for training sets

over 120. The empty bars on the same plot show the case when the BV set size is kept fixed at 50

for all training set sizes. In this case the omission rate decreases dramatically with the size of the

training data, on the right extremity of Fig. 3.4 this percentage being practically zero. This last result

justifies again the simplification we made by choosing eq. (3.26) to measure the “importance” of BV
set elements. The experiments from Chapter 5 have used the approximation to the KL-distance from

eq. (3.26).

We again emphasise that in the sparse GP framework, although the starting point was the online

learning algorithm, we did not assume anything about the way the solution is obtained. Thus, it

is applicable in conjunction with arbitrary learning algorithm, we will present an application to the

batch case in Chapter 4.

An interesting application is that of a sparse online update: assuming that the new data is neglected

from the BV set, how should we update the GP such that we not to change the BV set and at the

same time include the maximal information about the input. In the next section we deduce the online

update rule that does not keep the input data and Section 3.6 will present the proposed algorithm for

sparse GP learning.

3.5 Sparse online updates

In this section we combine the online learning rules from Chapter 2 with the sparsity based on the

KL-optimal projection. This leads to a learning rule that keeps the size of the GP parameters fixed

and at the same time includes a maximal amount of information contained in the example. We are

doing this by concatenating two steps: the online update that increases the BV set size and the
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back-projection of the resulting GP to one that uses only the first t inputs.

Having the new input, the online updates add one more element to the BV set and the correspond-

ing variables are updated as

αααt+1 = αααt + q(t+1)ssst+1

CCCt+1 = CCCt + r(t+1)ssst+1sss
T
t+1

ssst+1 = CCCtkkkt+1 + eeet+1

QQQt+1 =QQQt + γ−1
t+1 (eeet+1 − êeet+1) (eeet+1 − êeet+1)

T

where we included the updates for the inverse Gram matrix. It was mentioned in Chapter 2 that the

nonzero values at the t+ 1-th elements of the mean and covariance parameters are due to the t+ 1-th

unit vector eeet+1. Using this observation, and comparing the updates with the decomposition of the

updated GP elements from Fig. 3.3, we have α∗ = q(t+1), c∗ = r(t+1), and q∗ = γ−1
t+1. Similarly we

identify the other elements of Fig. 3.3:

ααα(r) = αααt + q(t+1)CCCtkkkt+1

CCC
(r) = CCCt + r(t+1)CCCtkkkT+1kkkt+1CCCt

CCC
∗ = r(t+1)CCCtkkkt+1

QQQ
(r) =QQQt + q∗QQQtkkkt+1kkk

T
t+1QQQt

QQQ
∗ = −q∗QQQtkkkt+1

and substituting back into the pruning equations (3.19) and (3.21) we have

α̂ααt+1 = αααt + q(t+1) q∗

q∗ + r(t+1)
ssst+1

ĈCCt+1 = CCCt + r(t+1) q∗

q∗ + r(t+1)
ssst+1sss

T
t+1

ssst+1 = CCCtkkkt+1 +QQQtkkkt+1

(3.28)

where q∗ is the last diagonal element of the inverse Gram matrix QQQt+1, q
∗ = γ−1

t+1 = (k∗ −

kkk
T
t+1QQQtkkkt+1)

−1. If we use ηt+1 = q∗/(q∗ + r(t+1)) = (1+ γt+1r
(t+1))−1 and observe that QQQtkkkt+1 =

êeet+1 is the projection of the new data into the subspace spanned by the first t basis vectors, then we

rewrite eq. (3.28) as

α̂ααt+1 = αααt + q(t+1)ηt+1ŝsst+1

ĈCCt+1 = CCCt + r(t+1)ηt+1ŝsst+1ŝss
T
t+1

ŝsst+1 = CCCtkkkt+1 + êeet+1

(3.29)

The scalar ηt+1 can be interpreted as a (re)scaling of the term ŝsst+1 to compensate for the removal

of the last input. This term again disappears if γt+1 = 0, ie. there is nothing to compensate for, and

the learning rule is the same with the one described in Section 3.1.

3.6 A sparse GP algorithm

The proposed online GP algorithm is an iterative improvement of the online learning that assumes an

upper limit for the BV set. We start with an empty set and zero values for the parameters ααα and CCC.
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We set the maximal size of the BV set to d and the prior kernel to K0. A tolerance parameter εtol is

also used to prevent the Gram matrix from becoming singular (used in step 2).

For each element (yt+1, xxxt+1) the algorithm iterates the following steps:

1. Compute q(t+1), r(t+1), the update coefficients for the new data; the scalar products k∗t+1 and

kkkt+1; the projection coordinates êeet+1 and the length of the residual γt+1.

2. If γt+1 < εtol then perform the sparse update using eq. (3.29) without extending the size of the

parameter set, i.e. the dimension of ααα and CCC. (we choose to threshold γt+1 to ensure a good

numerical conditioning of the Gram matrix, this way increasing its robustness).

Advance to the next data.

3. (else) Perform the update eq. (2.46) using the unit vector eeet+1. Add the current example point

to the BV set and compute the inverse of the extended Gram matrix using eq. (3.5).

4. If the size of the BV set is larger than d, then compute the scores εi for all BV s from

eq. (3.24), find the basis vector with the minimum score and delete it from the BV set using

eqs. (3.19), (3.21) and (3.22).

The computational time for a single step is quadratic in d, the upper limit for the BV set. Having

an iteration for each data, the computational time is O(Nd2). This is a significant improvement from

the O(N3) scaling of the non-sparse GP algorithms.

A computational speedup is to measure the score of the BV set elements and the new data before

performing the actual parameter updates. Since we add a single element, the operations required to

compute the scores are not as costly as the GP updates themselves. If the smallest score belongs to

the new input then we can perform the sparse update eqs. (3.29), saving a significant amount of time.

A further numerical improvement can be made by storing the Cholesky decomposition of the inverse

Gram matrix and performing the update and removal operations on the Cholesky decomposition

instead of the inverse Gram matrix itself (details can be found in Appendix C.2).

3.6.1 Using a predefined BV set

A speedup of the algorithm is possible if we know the BV set in advance: there might be situations

where the BV set is given, e.g rectangular grid. To implement this we rewrite the prior GP using

the given BV set and a set of GP parameters with all zero elements: αααBV = 000 and CCCBV = 000. We

then compute the inverse Gram matrix in advance and if it is not invertible than we reduce its size

by removing the elements having zero distance γ, an argument discussed at the beginning of this

chapter. At each training step we only need to perform the sparse learning update rule: to compute

the required parameters for the sparse update of eq. (3.29) and then to update the parameters.

Testing this simplified algorithm was not done. Since fixing the BV set means fixing the dimension

of the data manifold into which we project our data, an interesting question is the resemblance to

Kalman Filtering (KF) [Bottou 1998]. The KF techniques, originally from [Kalman 1960; Kalman

and Bucy 1961], are characterised by approximating the Hessian (i.e. the inverse covariance if using

Gaussian pdfs), together with the values of the parameters. The approximate Hessian provides a faster

convergence of the algorithm possibility to estimate the posterior uncertainty. The online algorithm

for GPs is within the family of Kalman algorithms, it is an extension to the linear filtering by exploiting

the convenient GP parametrisation from Chapter 2. For Gaussian regression the two approaches are
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the same. However, the extension to the non-standard noise- and likelihood models is different from

the Extended Kalman filtering (EKF) [Gelb et al. 1974; de Freitas et al. 1998]. In EKF the nonlinear

model is linearised using a Taylor expansion around the current parameter estimates. In applying

the online learning we also compute derivatives, however, the derivative is from the logarithm of

the averaged likelihood [Opper 1998] instead of the log-likelihood (EKF case). The averaging makes

the general online learning more robust, we can treat non-differentiable and non-smooth models, an

example is the noiseless classification, presented in Chapter 5.

3.7 Comparison with other sparse kernel techniques

In this section we compare the sparse approximation from Section 3.3 with other existing methods

of dimensionality reduction developed for kernel methods. Most approaches to sparse solutions were

developed for the non-probabilistic (and non-Bayesian) case. The aim of these methods is to have an

efficient representation of the MAP solution, reducing the number of terms in the representer theorem

of Kimeldorf and Wahba [1971]. In contrast, the approach in this chapter is a probabilistic treatment

of the approximate GP inference, ie. we consider the efficient representability not only of the MAP

solution but also of the propagated covariance function.

A first successful algorithm that lead to sparsity within the family of the kernel methods was the

Support Vector Machine (SVM) for the classification task [Vapnik 1995]. This algorithm has gained

since a large popularity and we are not going to discuss it in detail, instead the reader is referred

to available tutorials, eg. Burges [1998] or in Schölkopf et al. [1999].3 The SVM algorithm finds the

separating hyperplane in the feature space FFF . Due to the Kimeldorf-Wahba representer theorem

we can express the separating hyperplane using the inputs to the algorithm. Since generally the

separating hyperplane is not unique, in the SVM case further constraints are imposed: the hyperplane

should be such that the separation is done with the largest possible margin.

Furthermore, the cost function for the SVM classification is non-differentiable, it is the L1 norm

of yi −wwwTxxxi for the noiseless case [Vapnik 1995]. This non-differentiable energy function translates

into a inequality constraints over the parameters ααα and these inequalities lead in turn to sparsity in

the vector ααα. The sparsity appears thus only as an indirect consequence of the formulation of the

problem, there is no control over the “degree of sparseness” we want to achieve.

An other drawback missing from the SVM formulation is the lack of the probabilities: given a

prediction can anything be said about the degree of uncertainty associated with it. There were several

attempts to obtain probabilistic SVMs, eg. Platt [1999b] associated the magnitude of output (in SVM

only the sign is taken for prediction) with the certainty level. A probabilistic interpretation of the SVM

is presented by Sollich [1999]: it is shown that, by introducing an extra hyperparameter interpreted

as the prior variance of the bias term b in SVM, there exist a Bayesian formulation whose maximum

a-posteriori solution leads us back to the “classical” support vector machines.

A Bayesian probabilistic treatment in the framework of kernels is also considered by Tipping [2000].

The starting point of its “Relevance Vector Machine” is the extension of the latent function y(xxx) in

terms of the kernel

y(xxx) =
∑

i

αiK0(xxxi, xxx)

3A dedicated internet page is at: www.kernel-machines.org containing tutorials for the SVM.
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but in this case the coefficients αi are random quantities: each has a normal distribution with a given

mean and covariance. The estimation of the parameters αi is transformed thus to the estimation of

the model hyper-parameters consisting of the mean and variance if the distributions. This is done

with an ML-II parameter estimation and the outcome of this iterative procedure is that many of the

distributions have a diverging variance, effectively eliminating the corresponding coefficient from the

model. The solution is expressible thus in terms of a small subset of the training data, as in the SVM

case.

We see thus that for the SVM and RVM case one arrives to sparsity from the definition of the

cost function or the model itself. The sparseness in this chapter is of a different nature: we impose

constraints on the models themselves and treat arbitrary likelihoods. Three related methods are

presented next: the first is the reduction of dimensions using the eigen-decomposition of covariances.

The second is the family of the pursuit algorithms that consider the iterative approximation of the

model based on a pre-defined dictionary of functions. The last method is related with the original

SVM, the Relevance Vector Machines of Tipping [2000].

Before going into details of specified methods, we mention an other interesting approach to dimen-

sionality reduction: using sampling from mixtures [Rasmussen and Ghahramani 2002]. An infinite

mixture of GPs is considered, each GP having an gating network associated. The gating network

selects the active GP by which the data will be learnt. It serves as a “distributor” of resources when

making inference. Although there are possibly an infinite number of GPs that might contribute to

the output, in practise the data is allocated to the few different GP experts, easing the problem of

inverting a large kernel matrix, technique similar to the block-diagonalisation method of Tresp [2000].

3.7.1 Dimensionality reduction using eigen-decompositions

An established method for reducing the dimension of the data is principal components analysis

(PCA) [Jolliffe 1986]. Since the PCA is also extended to the kernel framework, it is sketched here. It

considers the covariance of the data and decomposes it into orthogonal components. If the covariance

matrix is CCC and uuui is the set of orthonormal eigenvectors then the covariance matrix is written as

CCC =

d∑

i=1

uuuiλiuuu
T
i (3.30)

where d is the dimension of the data and furthermore λi is the eigenvalue corresponding to the

eigenvector uuui. The eigenvalues λi of the positive (semi)definite covariance matrix are positive and

we can sort them in descending order. The dimensionality reduction is the projection of the data into

the subspace spanned by the first k eigenvectors. The motivation behind the projection is that the

small eigenvalues and their corresponding directions are treated as noise. Consequently, projecting

the data to the span of the eigenvectors corresponding to the largest k eigenvalues will reduce the

noise in the inputs.

The kernel extension of the idea of reducing the noise via PCA was studied by Zhu et al. [1997]

(see also [Trecate et al. 1999]). They studied the eigenfunction-eigenvalue equation for the kernel

operator: ∫

dxxxp(xxx) K0(xxx,xxx
′)ui(xxx) = λiui(xxx

′) (3.31)

Since the kernel is positive definite, there are a countable number of eigenfunctions and associated

positive eigenvalues. To find the solutions, Zhu et al. [1997] needed to know the densities of the
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input in advance. The kernel operator can then be written as a finite or infinite sum of weighted

eigenfunctions similarly to eq. (3.30) (eq. (2.6) from Section 1.2):

K0(xxx,xxx
′) =
∑

i

λiui(xxx)ui(xxx
′) (3.32)

and the solution is specific to the assumed input density, the reason why we did not use the notation

φ(xxx) from Section 1.2. Arranging the eigenvalues in a descending order and trimming the sum in

eq. (3.32) leads to an optimal finite-dimensional feature space. The new kernel can then be used in any

kernel method where the input density has the given form. The “projection” using the eigenfunctions

in this case does not lead directly to a sparse representation in the input space. The resulting kernel

however is finite-dimensional. We have from the parametrisation lemma that the size of the BV set

never has to be larger than the dimension of the feature space induced by the kernel. As a consequence,

if we are using the modified kernel with the sparsity criterion developed, the upper limit for the number

of BV s set to the truncation of the eq. (3.32). The input density is seldom known in advance thus

building the optimal finite-dimensional kernel is generally not possible. A solution was to replace the

input distribution by the empirical distribution of the data, discussed next.

The argument of noise reduction was used in kernel PCA (KPCA) [Schölkopf et al. 1998] to obtain

the nonlinear principal components of the data. Instead of the analytical form of the input distribution,

the empirical distribution pemp(xxx) ∝∑j δ(xxxj) was used in the eigenfunction equation (3.31) leading

to

1

N

N∑

j=1

K0(xxxj, xxx
′)ui(xxxj) = λiui(xxx

′). (3.33)

The eigenfunctions corresponding to nonzero eigenvalues can be extended using the bi-variate kernel

functions at the locations of the data points ui(xxx) =
∑

j βijK0(xxxj, xxx). We can again use the feature

space notation K0(xxx,xxx
′) = 〈φxxx, φxxx ′〉. Further we can use ui(xxx) = 〈φxxx,uuui〉 where uuui is an element

from the feature space FFF , having the form from eq. (3.34). The replacement of the input distribution

with the empirical one is equivalent to computing the empirical covariance of the data in the feature

space CCCemp = 1
N

∑
iφxxxiφ

T
xxxi
.4 Equivalently to the problem of eigenfunctions using the empirical

density function, the principal components of the feature space matrix CCC corresponding to nonzero

eigenvalues are all in the linear span of {φ1, . . . , φN} and can be expressed as

uuui =

N∑

j=1

βijφj (3.34)

with βββi = [βi1, . . . , βiN]T the coordinates of the i-th principal component. The projection of the

feature space images of the data into the subspace spanned by the first k eigenvectors lead to a

“nonlinear noise reduction”.

The dimensionality reduction arising from considering the first k eigenvalues from the KPCA is

applied to the kernelised solution provided by the representer theorem. The inputs xxx are projected to

the subspace of the first k principal components

φ(xxx) ≈
k∑

i=1

(φ(xxx)Tuuui)uuui

4The data in the feature space are considered as having zero mean. Subtracting the mean would not lead to conceptual
difference, it has been ignored for clarity.
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where φ(xxx)Tuuui is the coefficient corresponding to the i-th eigenvector. The method, when applied to a

subset of size 3000 of the USPS handwritten digit classification problem, showed no performance loss

after removing about 40% of the support vectors [Schölkopf et al. 1999]. A drawback of this method

is that although the first k eigenvectors define a subspace of a smaller dimension than the subspace

spanned by all data, to describe the components the whole dataset is still needed in the representation

of the eigenvectors in the feature space.

A similar approach to KPCA is the Nyström approximation for kernel matrices applied to kernel

methods by Williams and Seeger [2001]. In the Nyström method a set of reference points is assumed,

similarly to the subspace algorithm from [Wahba 1990]. The true density function of the inputs in

the eigenvalue equation for the kernel, eq. (3.31), is approximated with the empirical density based on

the subset Sm = {xxx1, . . . , xxxm}: pemp ∝
∑m

j=1 δ(xxxi), similarly to the empirical eigen-system eq. (3.33),

except that Sm is a subset of the inputs. This leads to the system

1

m

m∑

j=1

K0(xxxj, xxx
′)φi(xxxj) = λiφi(xxx

′) (3.35)

and the resulting equations are the same as ones from the kernel PCA [Schölkopf et al. 1998].

The authors then use the first p eigenfunctions obtained by solving eq. (3.35) to approximate the

eigenvalues of the full empirical eigen-system from eq. (3.33). If we consider all eigenvectors of the

reduced eqs. (3.35), then the approximated kernel matrix is:5

K̃KKN = KKKNmKKK
−1
mmKKKmN (3.36)

and this identity used in conjunction with the matrix inversion lemma eq. (A.1) leads to a reduction

of the time required to perform the inversion of the kernel Gram matrix KKKN to a linear scale with the

size of the data. An efficient approximation to the full Bayesian posterior for the regression case is

straightforward. For classification more approximations are needed, and the Laplace approximation

for GPs [Williams and Barber 1998] was implemented leading to iterative solutions to the MAP

approximation to the posterior.

Lastly we mention the recent sparse extension of the probabilistic PCA (PPCA) [Tipping and

Bishop 1999] to the kernel framework by Tipping [2001b]. It extends the usual PPCA using the

observation that the principal components are expressed using the input data. He considers the

parametrisation for the feature-space covariance as

ΣΣΣ = σ2III+ΦΦΦWWWΦΦΦT (3.37)

with ΦΦΦ the concatenation of the feature vectors for all data andWWW a diagonal matrix with the size of

the data, this is a simplification of the representation of the covariance matrix in the feature space from

Section 2.3.1, eq. (2.37) using a diagonal matrix instead of the full parametrisation with respect to

the input points. The multiplicative σ2 from eq. (3.37) can be viewed as compensation for the ignored

elements. In the framework of [Tipping 2001b] the value for σ2 is fixed and the sparseness is obtained

as a consequence of optimising the KL-divergence between two zero-mean Gaussians in the feature

space. One of them with the empirical covariance
∑N

i=1φiφ
T
i and the other having the parametrised

form of eq. (3.37). The Gaussian distributions are considered in the feature space, meaning that the

matrices are of possibly infinite dimensionality. As usual, the KL-distance can still be expressed with

5There might be no exact inverse for KKKmm, this is solved by adding a “jitter” factor to the diagonal elements in the
original kernel matrix making sure it is positive definite.

52



Chapter 3. Sparsity in Gaussian Processes

the kernel function and the parametersWWW. The computation of the KL-divergence for the zero-mean

Gaussian distributions is derived in Section 3.2 and the result for zero-means is in eq.(3.14).

Choosing different values for σ2 will lead to different levels of sparsity. On the top of sparsity, the

diagonal matrix is a significant reduction in the number of parameters. The drawback of this method

is that it requires an iterative solution for finding the diagonal matrix WWW. The iterations require the

kernel matrix with respect to all data.

The efficient representation is an important issue in the family of kernel methods, thus the di-

agonalisation of the covariance parameter might lead to significant increase in the speed of the GP

algorithms. We discussed the diagonalisation of matrix CCC in conjunction with the online learning rule

in Appendix E. It leads to a system that, unlike the simple update rules from eq. (2.46) using a

full matrix to parametrise the covariance in the feature space, cannot be solved exactly, instead we

are required to develop an iterative procedure to find the new diagonal matrix CCCt+1 given the GP

parameters from time t and the new data. In addition to the possible iterations each time a new data

is included, the system requires the manipulation of a full matrix to obtain CCCt+1. It turns out that

there are no exact updates and we have to use a second, embedded loop for getting the solution which

renders the approach extremely difficult computationally. The conclusion is that the diagonalisation

is not feasible if used within the framework of the online learning. Additionally, it would be interesting

to test the loss caused by diagonalising the sparse GP solution find by the sparse online algorithm

presented in this chapter.

3.7.2 Subspace methods

Based on the kernel-PCA decomposition of the kernel matrix, first we mention the “reduced set”

method was developed by [Schölkopf et al. 1999]. The full SVM solution is sparsified by removing a

single element or a group of elements. The updates and the loss are computed when removing a single

element or a group (the loss is similar to the simplified KL-divergence of eq. (3.26), more discussions

there).

A generic “subspace” algorithm for the family of kernel methods was proposed by Wahba [1990,

Chapter 7]. The projection into the subset is implemented with the set of basis elements fixed in ad-

vance, the projection is made exploiting the linearity of the feature space (as presented in Section 3.1)

and it is applied to the MAP solution of the problem.

The reduced approximation for the kernel matrix as shown in eq. (3.36) has also been used for

regression [Smola and Schölkopf 2000; Smola and Schölkopf 2001]. They also address the question

of choosing the m-dimensional subset of the data in detail. The selection criterion is based on the

examination of each input contributing to the kernel matrix and an approximation of the error made

by not including the specific column. In a sequential algorithm the most important columns (and rows)

are included into the basis set. Our sparse GP approximation uses the same philosophy of examining

the “score” of the individual inputs iterative addition (section 3.4). Instead of concentrating to the

MAP solutions, as it is done in the methods sketched, a full probabilistic treatment is considered in

this thesis.

3.7.3 Pursuit algorithms

The sparse greedy Gaussian process regression, as shown in [Smola and Schölkopf 2000], is similar

to a family of established pursuit methods: projection pursuit [Huber 1985] and basis pursuit [Chen
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1995; Chen et al. 1995]. The pursuit algorithms consider a set of functions, this set is usually called

a dictionary. The assumption is that using all elements from the dictionary is not feasible: there

might be infinitely many elements in the dictionary. An other situation is when the dictionary is

over-complete, i.e. a function has more then one representation using this dictionary. The task is then

to choose a subset of functions that give good solutions to the problem. The solution is given in the

form of a linear combination of elements from the dictionary, and the optimal parameters given the

selected functions are found similarly to the generalised linear models, presented in Chapter 1.

Considering problem of choosing the optimal subset from a dictionary, in the kernel methods we

use the data both as the training examples to the algorithm (data in a conventional sense) but at the

same time, due to the representer theorem, the dictionary of the available functions is also specified

by the same data set. This is the case both for the non-probabilistic solution, given by the representer

theorem and for the representation of the GPs, result given in Chapter 2. The efficient construction

of a subset in the kernel methods is thus equivalent with the sparse representation, the topic of this

chapter. The pursuit literature deals with the selection of basis from a non-probabilistic viewpoint,

here we consider a fully probabilistic treatment of selecting the dictionary.

In [Vincent and Bengio 2000] the pursuit algorithms is combined with the kernel methods in their

work: “Kernel matching pursuit”. They address the selection of the inputs – this time viewed as

elements from a dictionary – and the optimal updates of the coefficients of the kernelised solutions to

the problem.

In the basic matching pursuit the individual elements from the dictionary are added one by one.

Once a dictionary element is taken into the set representing the solutions, in the basic version of the

pursuit algorithms, its weighting coefficient is not changed. This is suboptimal solution if we want

to keep the size of the elements from the dictionary as small as possible. A proposed solution is

the “orthogonal matching pursuit”, or “back-fitting” algorithm where the next dictionary elements is

chosen by optimising in the whole subspace of the functions chosen so far. This implies recomputing

the weights for each function already chosen in the previous steps. This can be derived using linear

algebra [Vincent and Bengio 2000].

Looking at the online update eqs. (2.46) we see that the updates implemented correspond to the

back-fitting approach. This optimal update in our case uses the second order information stored in the

covariance matrix, or equivalently, the parameters CCC of the covariance. The scores (Section 3.4) when

removing an element also chooses a subspace – thus is a restrictive solution – into which to project

the solutions. The choice of the subspace is based on varying all parameters to find the projection.

The parameter updates are optimal in the KL-sense and update all coefficients, similarly to the case

of back-fitting for the kernel matching pursuit or the orthogonal matching pursuit [Pati et al. 1993].

The difference between the matching pursuit algorithms and the sparsity in GPs is the use of

KL-based measures for the kernel family, implying a full probabilistic treatment. At the same time,

using the online learning in conjunction with the sparsity presented here leads to a greedier algorithm

than the pursuit algorithms, this is because in the iterative process of obtaining the solution only

those inputs are considered that are in the sparse BV set, i.e. the dictionary. This leads to a removal

of some inputs that might be relevant if all data would be considered when removing a BV .
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3.8 Discussion

This chapter considered the optimal removal of a data point from the representation of a Gaussian

process, where the optimality is measured using the KL-divergence.

The KL-optimal projection that leads to sparseness, as it is defined in Section 3.3 does not depend

on the algorithm used for obtaining the non-sparse solution. This is important, saying that the idea

of “sparsifying solutions” is not restricted to the online learning alone. However, we found that the

combination of sparsity with the online learning results in a robust algorithm with a non-increasing

size of the parameter set.

An important feature of the algorithm is that the basis vectors for representing the GP are selected

during runtime from the data. This was possible due to the computationally cheap evaluation of the

error made if current input was not included into, or a previous input was removed from the BV set.

It is important that the error, i.e. the score of an element from the BV set from eq. (3.24) and (3.26),

did not require the effective computation of the pruned GP, rather we were able to express it based

solely on the already available elements. This is similar to the leave-one-out error [Wahba et al. 1999]

within the probabilistic framework of Gaussian processes.

For real applications the sparsity combined with the online method has an additional benefit: the

iterative computation of the inverse Gram prevents the set of basis vectors from being redundant:

when the new input is in the linear span of the BV set, this vector is replaced by its representation

using the previous vectors.

The benefit of the sparse GP algorithm is its inherent Bayesian probabilistic treatment of the

inference. This allows an efficient approximation to the posterior kernel of the process which in turn

leads to estimating the predictive variance. Thus we can quantify the quality of the prediction.

The memory requirement of the reduced GP is quadratic in the size of the BV set. The possibility

for further reduction might be important. A further reduction of the parameters where the full matrix

CCC was replaced with a diagonal one has been also examined (see Appendix E), similarly to the kernel

extension of the probabilistic PCA algorithm (PPCA) [Tipping 2001b]. We found however that, as

in the case of PPCA, there was no exact solution to the KL-optimal projection, instead of it, we are

required to perform iterative EM-like optimisation. This severely affects the speed of the algorithm

and was not pursued further.

The algorithm also has a few shortcomings. First, it is a greedy algorithm: at a certain moment

the pruning of the GPs only considers the inputs that were selected at previous times. The GP will

thus possibly be biased toward the last elements: they may be over-represented. Another problem is

that the solution depends on the ordering of the data that is arbitrary, a possible solution to this will

be considered in the next chapter.

The sparse online algorithm from Section 3.6 cannot do batch-like processing of the data by

processing it multiple times. For large datasets this is not a problem, but for smaller data set sizes we

might want to have a second sweep through the data. A solution to this is proposed in the next chapter

by combining the sparse algorithm with the “expectation-propagation” algorithm, an extension of the

online iterations from Chapter 2 to allow multiple iterations [Minka 2000].

We also did not consider the problem of outliers. These types of data seriously damage the

performance of the algorithms. The Bayesian framework is less sensitive to the outliers in general.

However, the removal of a BV implies that the resulting algorithm is just an approximation to the

true Bayesian solution. More important, in the sparse GP case the scores for the inputs are largest for
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outliers. To ensure a good performance for the sparse algorithm, we will probably need to pre-process

the data by first removing the outliers.

3.8.1 Further research directions

It would be interesting to test the performance of the online learning algorithm if we allow an ordering

of the data according to the possible gain of information from learning the specific data instance. For

this we can use the KL-distance from eq. (3.16):

2KL(GPt+1‖GPt) =
(
(q(t+1))2 + r(t+1)

)
σ2t+1 − ln(1+ r(t+1)σ2t+1)

and we see that for the computation of the KL-distance we do not need to do the update of the GP

parameters. We can compute this quantity in O(Np2) time for all untrained data and let the “most

informative” data be processed first.

We could also extend the sparse GP learning algorithm to query learning. In query learning only

a fraction of the total data is labelled and the labelling of the examples is costly. This might be the

case in the chemical industry or pharmaceutics where there are high costs for each experiment to label

the data.

We want to improve thus our algorithm by learning the data which is the most informative given our

assumptions about the model and the already labelled examples. This is an intensely researched area,

called active- or query learning. Using tools from statistical physics and making specific assumptions,

results for both classification [Seung et al. 1992] and regression [Sollich 1996], and extending it to

non-parametric family is an interesting research topic.

For classification, the symmetry of the cost or likelihood function is exploited. It is thus possible

to compute the KL-divergence between the current GP and the one that would be obtained if a

data (xxxl, yl) were processed with only the knowledge that yl is binary. For this we see that the

KL-distance from eq. (3.16) for the classification case does not depend on the output label. Recent

study for the Support Vector classification was made by Campbell et al. [2000] and they showed

increased performance when applied to real dare. Testing this idea for the GPs and comparing with

other methods of query learning is an interesting future project. It would be interesting to propose

methods that do not rely (solely) on the KL-distance, but rather on increases in the generalisation

ability of the system (as it was proposed in [Sollich 1996]).
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Chapter 4

Sparsity and the Expectation-Propagation

Algorithm

Summary: Sparsity is applied to an iterative algorithm: the expectation-propagation
(EP) algorithm. This allows multiple, batch-like processing of the data. We investigate
the changes induced by the sparsity and build a fixed-point algorithm for sparse GP
learning.

The sparse online GPs of the previous chapter (presented in Section 3.6) can process arbitrarily

large datasets. This is possible by avoiding the increase of the GP parameter set using KL-projections

to a constrained family of GPs. The drawback of the algorithm stems from its online nature: each

example can be processed only once. Indeed, when using the same example in a second iteration there

are artifacts caused by treating the already seen data point as independent from the model. This single

iteration also means that the solution is dependent on the order of the presentation of the inputs, an

unwanted result. If the size of the data is large, then it can be argued that the resulting GP becomes

independent of the ordering, but the single processing is disadvantageous if we want to improve the

GP when we have smaller datasets and enough computational power for multiple processing.

Recently, an extension to the online learning was proposed by Minka [2000], named the expectation-

propagation (EP) algorithm. This algorithm improves the result of the Bayes online learning by

making possible additional processing of the examples. The algorithm stores the contribution of

each example to the approximated posterior. At each online learning step, before processing a data

likelihood, the contribution of that specific example is first “subtracted” from the approximated

posterior. The result is a fixed-point iterative algorithm that repeatedly processes each single data

likelihood and converges to a solution that is independent of the order the data is processed. The EP

algorithm stops when there are no changes in the individual contributing terms for a full cycle through

the data. It has been shown in Minka [2000] that the fixed point of the algorithm coincides with the

fixed point of the TAP approximation, a statistical physics method that was applied to approximate

the posteriors [Opper and Winther 2001], more details in Section 4.2.

The EP algorithm was applied to GPs and it showed improvements over the single-sweep online

learning Minka [2000]. The EP algorithm in its original form also suffers from the bad scaling of GPs,

being of restricted use. In this chapter we combine the EP and the sparse online algorithm for the

GPs.

The EP algorithm is discussed in Section 4.1 and then applied to GPs in Section 4.2. The EP

algorithm induces an alternative parametrisation to the posterior GP: it is written as the prior and a
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product of conjugates of the posterior family, the contribution of the individual examples. The con-

nection between the EP-parametrisation and the one based on the parametrisation lemma is presented

in Section 4.3. The equivalence of the parametrisations provides the ground for extending the sparse

projection method to the EP algorithm (Section 4.4). The algorithm is sketched in Section 4.6 and

the chapter finishes with conclusions and discussions.

4.1 Expectation-Propagation

Expectation-propagation (EP) [Minka 2000] is based on the Bayesian online learning presented in

Chapter 2 (also in [Gelman et al. 1995]). Since EP exploits and extends the iterations in the online

learning, we first sketch online learning and then present the EP algorithm. Let us denote with θθθ ∈ Rm

the set of model parameters. We want to infer their distribution q(θθθ). The prior over the parameters

is q0(θθθ) and, as previously, we assume a factorising likelihood:

P(D|θθθ) =

N∏

k=1

τk(yyyk, xxxk|θθθ) (4.1)

where {(xxx1,yyy1), . . . , (xxxN,yyyN)} is the data set and τi(yyyi, xxxi|θθθ) is the likelihood function. To simplify

the notation, in the following the inputs (xxxk,yyyk) will be suppressed from the likelihood function, being

encoded in its index.

We denote by q(n)(θθθ) the Bayesian posterior obtained from including all data points up to, and

including index n:

q
(n)
post(θθθ) =

q0(θθθ)
∏n

k=1 τk(θθθ)∫
dθθθ q0(θθθ)

∏n
k=1 τk(θθθ)

(4.2)

and observe that we have a recursive relation:

q
(n)
post(θθθ) =

τn(θθθ)q
(n−1)
post (θθθ)

∫
dθθθ τn(θθθ)q

(n−1)
post (θθθ)

. (4.3)

In Chapter 2 different approximation techniques to the intractable posterior have been presented

(section 2.2.2) with the focus on online learning: eq. (2.41) [Opper 1998]. In Bayesian online learning

the approximation to the true posterior q
(N)
post(θθθ) including all examples is obtained by a succession

of approximating steps to compute q̂(n)(θθθ), an approximation to q
(n)
post(θθθ).

This is an iterative procedure where we use q̂(n−1)(θθθ), the result from the previous online approxi-

mation. The posterior is found by applying eq. (4.3) with q̂(n−1)(θθθ) instead of q(n−1)(θθθ). Since q
(n)
post

is also intractable, a second approximation step is used to obtain q̂(n). This is formally written as

q̂n(θθθ)←−
τn(θθθ)q̂n−1(θθθ)∫
dθθθ τn(θθθ)q̂n−1(θθθ)

(4.4)

where the arrow specifies a projection of the intractable posterior to a tractable family of distributions.

Performing the iterations for all data gives q̂N which depends on the order of presentation. Unless

new data arrives it is impossible to improve on the online result.

The goal of expectation propagation is to apply further iterations of the updates for the posterior

distribution, thus producing a better approximation than the result from online algorithm alone. To

achieve this, we “unfold” q̂(N), the end-result of the online iterations, as

q̂N(θθθ) = q0(θθθ)

N∏

n=1

q̂n(θθθ)

q̂n−1(θθθ)
. (4.5)
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The observation made by Minka [2000] is that each factor in the product corresponds to an approx-

imation of the corresponding likelihood term, since that has been the basis of the update for q̂(n)

from eq. (4.4). In the following τ̂n(θθθ) = q̂n(θθθ)/q̂n−1(θθθ) will be used and we will call this ratio as

approximating likelihood.

Using these notations, the Bayesian update is rewritten as a problem of estimating the individual

factors τ̂n(θθθ) which give the approximate posterior distribution:

q̂N(θθθ) = q0(θθθ)

N∏

n=1

τ̂n(θθθ). (4.6)

The above relation is usable only if the prior distribution and the approximated posterior belong to

the family of the exponential distributions [Bernardo and Smith 1994]. Then, since it is the ratio of

two exponentials, the approximating likelihood is also in the exponential family: τ̂i(θθθ) is conjugate

to the prior. The approximating likelihoods used with the prior distribution lead to a tractable

posterior, without the need for any approximation. Further we see the possible benefits of using the

approximating likelihoods: the approximations to τi(θθθ) are made locally, weighted by q̂(n−1)(θθθ).

To improve on each term τ̂k(θθθ) using online learning, we first have to find the distribution q̂(k−1) =

q̂\k(θθθ) independent of the likelihood τk(θθθ). This is done by removing τ̂k(θθθ) from the posterior eq. (4.6).

This implies that we have to keep the approximated likelihoods for all data. The online learning used

here was presented in Chapter 2. It minimises a KL-distance [Cover and Thomas 1991] by matching

the moments of the true and the approximated posterior (see Section 2.2.2).

If an input τk(θθθ) has already been seen, we need to remove its contribution τ̂k(θθθ) from the current

parameter estimate before using the online step from Section 2.4. This is done by “subtracting” it

from the posterior and the online learning rule is performed with the adjusted prior:

q̂\k(θθθ) =
q0(θθθ)

∏\k
n τ̂n(θθθ)

∫
dθθθ q0(θθθ)

∏\k
n τ̂n(θθθ)

(4.7)

where the second term on the right does not depend on θθθ, the parameter being integrated out. Using

the modified prior q̂
\k

k and the likelihood-term τk(θθθ), the posterior q̂k(θθθ) is:

q̂newk (θθθ)←−
uk(θθθ) q̂(θθθ)

∫
dθθθ uk(θθθ) q̂(θθθ)

with uk(θθθ) =
τk(θθθ)

τ̂k(θθθ)
(4.8)

Since τ̂i(θθθ) appears both in the numerator and the denominator, its normalising constants are irrele-

vant. This means that in the numerical implementation of the algorithm it will be enough to store the

terms of the exponentials of θθθ. On the other hand, an exact computation of each normalising constant

would be required if we want to approximate the evidence of the model, considered by [Minka 2000].

In this thesis the model selection issue is not addressed, however, it is a very important area of future

research. The new τ̂k is computed as

τ̂newk (θθθ) =
q̂newk (θθθ)

q̂
\k

k

∝ q̂newk (θθθ)

q̂k(θθθ)
τ̂k(θθθ) (4.9)

In the EP iterations we choose – randomly or by using different heuristics – an index k and apply

online learning for that example. The cycle terminates if there are no changes in the approximated

likelihoods t̂i(θθθ). We do not have a guaranteed global convergence but the system usually finds a fixed

point and this minimum point is independent of the order of inclusion of the individual likelihoods.

The visualisation of the EP algorithm with the approximate likelihoods τ̂i(θθθ) is shown in Fig. 4.1.

Whilst in the usual online learning at the end of the N-th iterations q̂N(θθθ) is the approximated
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Figure 4.1: Visualisation of the expectation propagation algorithm. The likelihoods are “projected” to
the parametric family P, they can be interpreted as one-dimensional vectors. The final approximation
is the result of combining the prior with the projection terms: graphically this is done by adding the
line segments τ̂i to the prior process p0.

posterior, in this case the online steps are used to improve on the approximation of the individual

“segments” τ̂n that build up q̂N(θθθ). The similarity of Fig. 4.1 with online learning as presented in

Fig. 2.2 illustrates that the EP algorithm is built on the online method. The underlying dynamics is

different in the two cases: for online learning we have only the “path” toward the final approximation.

In contrast, for the EP algorithm the emphasis is on building up the chain that links the prior with

the posterior. If we take logarithms in eq. (4.6), then τ̂i is the difference between two log-probabilities.

Further, if we consider q̂t+1 and q̂t as points in the space of distributions, then τ̂i is a one-dimensional

line connecting the two distributions, as shown in Fig. 4.1. A first online sweep is used to initialise

the individual terms τ̂k. Alternatively the terms can be initialised with a constant value 1, having

p0 = p̂N in the beginning.

To sum up, the EP extension of the online learning algorithm from Chapter 2 implies:

• iterations over the individual data points until convergence,

• the storage of the projected individual likelihood terms t̂k for each data, and

• “subtracting” the approximated likelihood τ̂k(θθθ) from the posterior before applying the online

learning.

• terminating when the equilibrium is reached, that is when none of the approximated likelihoods

changes.

The benefit of the EP algorithm is that it allows data processing beyond online learning, the extra

cost, apart from the increased computational time, is the additional storage of the projected likelihood

terms. The EP algorithm will be applied to GPs in the next section.

4.2 EP for Gaussian Processes

In the following the feature-space notation and the GP parametrisation from the parametrisation

lemma 2.3.1 is used. Similarly to the intuition behind deducing the KL-divergences, the feature space

formalism provides us with a more intuitive picture of the algorithm. The EP algorithm applied to
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GP classification was presented in [Minka 2000, Chapter 5]. In this chapter we will leave the likelihood

unspecified, the EP procedure being identical for other likelihoods also.

We assume that we are given the kernel K0(xxx,xxx
′) and we consider the feature space FFF and the

scalar product generated by the kernel: if φxxx is the projection of the xxx into the unknown F , then we

have K0(xxx,xxx
′) = φTxxxφxxx ′ [Wahba 1990; Vapnik 1995]. Using the feature space, the GP is equivalent to

normal distribution for the parameter vector fff in FFF : fff ∼ N (µµµ,ΣΣΣ), as shown in Chapter. 2, eq. (2.37).

N (µµµ,ΣΣΣ) is a normal distribution with mean and covariance given by:

µµµ = µµµ0 +

N∑

i=1

αiφi =ΦΦΦααα

ΣΣΣ = IIIFFF +

N∑

i,j=1

φiCijφj = IIIFFF +ΦΦΦCCCΦΦΦT

(4.10)

with ααα = [α1, . . . , αN]T , CCC = {Cij}i,j=1,N the parameters of the GP and ΦΦΦ = [φ1, . . . ,ΦN]T is the

concatenation of all feature vectors from the BV set and IIIFFF is the identity matrix in the feature space.

In the following we assume µµµ = 000. At this point we also assume that the learning rules do not include

sparsity and the set of basis vectors coincides with the input data, the sparse case being discussed

later in Section 4.4.

We use the “time” index t, and assume that τt+1(fff) is a likelihood chosen from the data set. The

online updates, assuming that τt+1(fff) was not previously processed, are (eq. 2.43):

µµµt+1 = µµµt + q(t+1)ΣΣΣtφt+1

ΣΣΣt+1 = ΣΣΣt + r(t+1)ΣΣΣtφt+1φ
T
t+1ΣΣΣt

(4.11)

with φt+1
.
= φxxxt+1

and the scalars q(t+1) and r(t+1) given in eq. (2.42). We have to find the

approximate likelihood t̂t+1(fff), the ratio of the approximated posterior GPs at time t + 1 and t

respectively. From the definition of t̂t+1 in eq. (4.6) we have:

t̂t+1 =
N (fff|µµµt+1,ΣΣΣt+1)

N (fff|µµµt,ΣΣΣt)

=

∣∣∣∣
ΣΣΣt+1

ΣΣΣt

∣∣∣∣
−1/2

exp

{

−
1

2

[
(µµµt+1 − fff)TΣΣΣ−1

t+1(µµµt+1 − fff) − (µµµt − fff)TΣΣΣ−1
t (µµµt − fff)

]}
(4.12)

To simplify the expression for t̂t+1, we first express the update rule for the inverse covariances in the

feature space using the matrix inversion lemma (eq. (A.1) and [Mardia et al. 1979]):

ΣΣΣ
−1
t+1 = ΣΣΣ−1

t + λt+1φt+1φ
T
t+1

with λt+1 =
−r(t+1)

1+ r(t+1)σ2t+1

(4.13)

where σ2t+1 = φTt+1ΣΣΣφt+1 = k∗ + kkkTt+1CCCkkkt+1 is the predictive variance of the GP at time t and at

location xxxt+1. We define

ut+1
.
= φTt+1fff

mt+1
.
= φTt+1µµµt

(4.14)

the projection of the random variable fff and the mean where the projection vector is φt+1. The

exponential term in (4.12) is rewritten as

−
λt+1

2

(
ut+1 −mt+1 +

q(t+1)

r(t+1)

)2
−
r(t+1)

2

(
q(t+1)

r(t+1)

)2
(4.15)
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and the ratio of the determinants becomes

∣∣∣∣
ΣΣΣt+1

ΣΣΣt

∣∣∣∣
−1/2

=
(
1+ r(t+1)σ2t+1

)− 1
2

(4.16)

leading to a scalar quadratic expression for the approximated likelihood

t̂t+1 =
(
1+ r(t+1)σ2t+1

)− 1
2

exp

[
−
λt+1

2
(ut+1 − at+1)

2

]
. (4.17)

The parameters at+1 and λt+1 depend on the likelihood and the prior GP:

at+1 = mt+1 −
q(t+1)

r(t+1)

λt+1 = −
(
(r(t+1))−1 + σ2t+1

)−1
. (4.18)

For a single likelihood this approximation is a one-dimensional Gaussian in the random variable ut+1.

Since model selection is not treated here, we do not have to store the normalising constants for the

posterior either. We have to keep only the parameters of the distribution of ut+1, that is the pair

(λt+1, at+1). The cost is small, requiring 2N scalars. Using again Fig. 4.1 we identify the segment

from any p̂k to p̂k+1 as pointing to the direction of φk+1 and parametrised using (λt+1, at+1).

The prior GP and the approximated likelihood identify the approximated posterior GP; this in-

volves another data-dependent parametrisation. In the following we assume that both the GP pa-

rameters (ααα,CCC) and the scalars (ai, λi) are updated, the relation between the two parametrisations is

discussed in Section 4.3.

To perform the online update eqs. (4.11), first we need to subtract the contribution of the current

likelihood from the model. We assume that an example (xxxi,yyyi) has been picked for processing and

the approximated likelihood has the parameters (ai, λi). We compute the new GP with (µ̃µµ, C̃CC) given

by the parametrisation lemma 2.3.1:

N (fff|µµµ,ΣΣΣ)

t̂i(φTfff|ai, λi)
∝ N (fff|µ̃µµ, Σ̃ΣΣ)

Matching the linear and quadratic terms in fff leads to

µ̃µµ = µµµ− vihhhi
(
µµµTφi − ai

)

Σ̃ΣΣ = ΣΣΣ− vihhhihhh
T
i

with
hhhi = ΣΣΣφi

v−1
i = φTi ΣΣΣφi − λ−1

i

(4.19)

giving us the parameters of the Gaussian with which we can perform the online updates. The next step

is to find the changed parameters (α̃αα, C̃CC) of the new GP according to the parametrisation lemma 2.3.1.

By substituting the general parametrisation from eq. (4.10) into eq. (4.19) we find:

α̃αα = ααα− vihhhi
(
αααTkkki − ai

)

C̃CC = CCC− vihhhihhh
T
i

with
hhhi = CCCkkki + eeei

v−1
i = σ2i − λ−1

i

(4.20)

where kkki = [K0(xxx1, xxxi), . . . , K0(xxxN, xxxi)]
T and σ2i = K0(xxxi, xxxi) +kkkTiCCCkkki is the variance of the marginal-

isation of the GP at xxxi.

The EP algorithm for the Gaussian processes can now be established. We select the prior kernel

and set ααα = 000 and CCC = 0. Similarly, the additional parameters ai and λi that parametrise the

likelihood approximations at the data points are also set to zero. We mention that the zero value for

λi simply means vi = 0 in eqs. (4.19) and (4.20).
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After selecting an example (xxxt+1,yyyt+1), the approximated likelihood is subtracted from the GP,

using eq (4.20). Then we compute the scalar update coefficients q(t+1) and r(t+1) using the “cor-

rected” GP and the likelihood t(xxxt+1|fff) applying the standard online learning procedure, eq. (2.42).

Simultaneously to the online update for the GP parameters (ααα,CCC) from eq. (2.46), we also update

the coefficients of the projected likelihoods t̂(xxxt+1) using eqs. (4.18). The algorithm then processes a

subsequent example and stops if none of the parameters (ai, λi) are changed.

The EP algorithm encodes the approximated posterior in the one-dimensional normal distributions

and we have to store the mean and the variance. In the statistical physics framework, mean field theory

is an approximation technique that uses a simpler parametric form for the posterior distributions to

obtain a tractable approximation. Recently mean field methods have been gaining popularity in the

machine learning community; the techniques developed originally for statistical physics are applied to

machine learning problems in Opper and Saad [2001]. The ADATAP approach [Opper and Winther

2001] aims at finding the approximate posteriors for models using factorising likelihoods and prior

distributions with quadratic terms, as is eq. (4.2) using Gaussian for p0(fff). The random variables

ui are termed cavity fields and a batch approximation for its distribution is provided using advanced

statistical physics methods. The ADATAP method is not discussed here, we only mention that the

fixed-point solution of the EP algorithm is the same as this approximation.

The EP learning, as presented in this section, applies to GPs that are fully parametrised, i.e..

they include all data points in their representation. To apply the EP for the sparse GP algorithm, we

need the updates for (ai, λi) if an element from the BV set is removed. Before deriving the sparse EP

algorithm, the relation between the two representations for the same GP is established. The sparse

extension will follow from the relations between these two parametrisations. The sparse extension of

the EP algorithm will follow from this equivalence, presented in Section 4.4

4.3 Relation between GP parametrisations

The posterior GP in the EP-framework is proportional to the prior GP and the product of approxi-

mating likelihoods, providing an alternative parametrisation to the GP. The EP representation in this

case is via N one-dimensional quadratic exponentials, the approximated likelihood terms. The ap-

proximated likelihoods are defined in terms of scalar random variables ui = φTi fff which are projections

of fff, the random variable in FFF . The resulting GP is written as:

GPpost(fff|aaa,ΛΛΛ) ∝ GP0(fff)
N∏

i=1

N (φTi fff|ai, λi)

∝ exp

{

−
1

2

[
fff
T
fff+ (ΦΦΦT

fff−aaa)TΛΛΛ(ΦΦΦT
fff−aaa)

]} (4.21)

where ΛΛΛ is a diagonal matrix having λi on the diagonals and aaa is the vector of the means. The feature

vectors are grouped into ΦΦΦ = [φ1, . . . , φN]T . We will call this the “EP-parametrisation”.

The second parametrisation of the same GP is given by the parametrisation lemma and uses (ααα,CCC)

as parameters of the mean and the covariance as shown in eq. (4.10):

GPpost(fff|ααα,CCC) ∝ exp

{

−
1

2
(fff−ΦΦΦααα)

T
(
IIIFFF +ΦΦΦCCCΦΦΦT

)−1

(fff−ΦΦΦααα)

}

(4.22)

we term the “natural parametrisation”. Since we have the same GP in both cases, we can identify
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the coefficients of fff and ffffffT in eqs. (4.21) and (4.22):

ΣΣΣ
−1
µµµ = (IIIFFF +ΦΦΦCCCΦΦΦT )−1ΦΦΦααα =ΦΦΦΛΛΛaaa (4.23)

ΣΣΣ
−1 = (IIIFFF +ΦΦΦCCCΦΦΦT )−1 = IIIFFF +ΦΦΦΛΛΛΦΦΦT

. (4.24)

The matrix inversion lemma will transform the identities into a form where we can identify the

components. From the EP-parameters (aaa,ΛΛΛ) we obtain the GP-ones (ααα,CCC) by

ααα = (III+ΛΛΛKKKN)
−1
ΛΛΛaaa =

(
ΛΛΛ

−1 +KKKN

)−1

aaa

CCC = −(III+ΛΛΛKKKN)
−1
ΛΛΛ = −

(
ΛΛΛ

−1 +KKKN

)−1
(4.25)

where KKKN is the kernel matrix with respect to all data. Notice that the diagonal form of ΛΛΛ results

from the factorising likelihood. The corresponding inverse relation is:

aaa = −CCC−1
ααα

ΛΛΛ = −(III+CCCKKK)
−1
CCC = −

(
CCC

−1 +KKK
)−1 (4.26)

Inspecting the above equations we see that the matrix CCC is fully specified by a diagonal matrix of the

same size. This implies that we can represent it by the diagonals of ΛΛΛ and use eq. (4.23) whenever

CCC is needed. Apart from the computational cost of this operation, in case of sparse updates this

simplification does not hold any more: ΛΛΛ is not diagonal after removing some of the basis vectors, as

will be shown in the next section.

4.4 Sparsity and Expectation Propagation

Sparsity is defined using the “natural parametrisation” of Chapter 2 with the parameters (ααα,CCC). The

sparse solution is obtained by eliminating some data points from the representation while retaining as

much information about the data itself as possible. Using again the equivalence of GPs with Gaussians

in the feature space, we want the mean and covariance from eq. (4.21) to be expressed, instead of the

full data vector ΦΦΦ = [φ1, . . . , φN]T , by using only a subset of it. We follow the deduction of sparsity

from Chapter 3: the last element is removed from the BV set, leaving Φ̂ΦΦ =ΦΦΦ \ {φN}. The derivation

for the case of eliminating more then a single element is very similar.

We assume that we have the EP-parameters (aaa,ΛΛΛ) with respect to the full input data ΦΦΦ and we

want to obtain the KL-optimal parameters (âaa, Λ̂ΛΛ) using the restricted set Φ̂ΦΦ of input features. We

want to represent the resulting GP using the EP-representation:

ĜP(fff|âaa, Λ̂ΛΛ) ∝ exp

{

−
1

2

[
fff
T
fff+ (Φ̂ΦΦ

T
fff− âaa)TΛ̂ΛΛ(Φ̂ΦΦ

T
fff− âaa)

]}
. (4.27)

We start with deducing Λ̂ΛΛ. For this we use the relation between the EP-parameters and the natural

parameters for the covariance of the reduced system from eq. (4.26):

Λ̂ΛΛ = −
(
ĈCC

−1
+ K̂KK

)−1

= −K̂KK
−1

+ K̂KK
−1
(
ĈCC+ K̂KK

−1
)−1

K̂KK
−1

(4.28)

where we used the matrix inversion lemma eq. (A.1). We can now use the KL-optimal reduction of

the matrix CCC from eq. (3.20)

(
ĈCC+ K̂KK

−1
)−1

=
[
ÎII 000

] (
CCC+KKK−1

)−1 [
ÎII 000

]T
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to replace (Ĉ+K̂KK
−1

)−1. The matrix [̂III 000] is the concatenation of the identity matrix of size N−1 with

a column of N− 1 zeroes. The replacement leads to

Λ̂ΛΛ = −K̂KK
−1

+ K̂KK
−1
[
ÎII 000

] (
CCC+KKK−1

)−1 [
ÎII 000

]T
K̂KK

−1
(4.29)

= −K̂KK
−1

+ K̂KK
−1
[
ÎII 000

] [
KKK−KKK

(
CCC

−1 +KKK
)−1

KKK

] [
ÎII 000

]T
K̂KK

−1

= −K̂KK
−1
[
ÎII 000

]
KKK
(
CCC

−1 +KKK
)−1

KKK
[
ÎII 000

]T
K̂KK

−1

= PPP
T
N ΛΛΛ PPPN (4.30)

The product KKK [̂III 000] K̂KK
−1

= PPPN is an orthogonal projection in the feature space FFF . The projection

eliminates the last component by orthogonally projecting it to the span of the first N− 1 examples.

Next we consider the linear term in the EP-parametrisation of the GP from eq. (4.21) with respect

to Φ̂ΦΦ
T
fff: ΛΛΛaaa. The sparse learning rules change it to Λ̂ΛΛâaa and the new value is obtained from changes in

the natural parametrisation via eqs. (4.25) and (4.26). We use, similarly to the case for the quadratic

term, the result from eq. (3.20) to relate the reduced and the full EP-parameters of the GP:

Λ̂ΛΛâaa =
(
ĈCC

−1
+ K̂KK

)−1

ĈCC
−1
α̂αα

= K̂KK
−1
(
ĈCC+ K̂KK

−1
)−1

α̂αα

= K̂KK
−1
[
ÎII 000

] (
CCC+KKK−1

)−1 [
ÎII 000

]T
α̂αα

(4.31)

where from line two to line three of the equation we replaced (ĈCC + K̂KK
−1

) with the corresponding

expression from eq. (3.20) using the old quantities. Similarly to the case of the update of Λ̂ΛΛ we

eliminate the pruned α̂αα using eq. (3.18):

Λ̂ΛΛâaa = PPPTNΛΛΛaaa (4.32)

where PPPN is again the projection matrix from eq. (4.30). Substituting back the pruned coefficients

and using Φ̂ΦΦ as the basis set, the projection matrix PPPN is grouped with Φ̂ΦΦ and we have the EP-

parametrisation of the sparse GP from eq. (4.27) as

ĜPpost(fff|aaa,ΛΛΛ,PPP) ∝ exp

{

−
1

2

[
fff
T
fff+ (PPPΦ̂ΦΦ

T
fff−aaa)TΛΛΛ(PPPΦ̂ΦΦ

T
fff−aaa)

]}

∝ GP0(fff)
N∏

i=1

N (φ̂Ti fff|ai, λi). (4.33)

This result says that by changing the feature vectors associated with the likelihoods, we can keep the

diagonal structure of the second term. The index from the projection matrix PPPN has been ignored

since it is straightforward that if successive projection steps are used, the corresponding matrices

multiply and we have, for each input example, the approximation of the feature space image using

only the elements from Φ̂ΦΦ: φ̂i = Φ̂ΦΦpppi =
∑

jφjpij with φi being the i-th column of PPP. Similarly to the

basic EP algorithm, the approximation φ̂i is used for the projection in obtaining the one-dimensional

random variable from eq. (4.14): ui = φ̂Ti fff.

The important result in eq. (4.33) is that the sparse EP algorithm preserves the structure of

the EP parametrisation, the KL-optimal pruning changes “only” the directions of projecting the

approximating likelihoods, there are no modifications in ααα or ΛΛΛ. This means that when iterating
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the pruning procedure we have to store the successive projections of all data: assuming a projection

matrix, the “update” for it is PPPnew = PPPPPPold.

The multiplication of the orthogonal projections might suggest that there is no need for memorising

a large PPP. Indeed, removing the last element is done with PPPN = KKK[̂III000]K̂KK
−1

. If we remove one more

element we use the matrix PPPN−1 = K̂KKN [̃III000]K̃KK
−1

with K̃KK the Gram matrix containing N − 2 elements,

then their multiplication gives PPP = KKK[̂III000][̃III000]K̃KK
−1

and if we know the N−2 elements of Φ̃ΦΦ then it might

be enough to store K̃KK
−1

as in the previous chapter. This is indeed the case if we do not add elements

to BV set in between the removals. Otherwise we must know the content of the BV set when removing

an element and keep track of the changes to this particular subset.

A first observation is that the storage of the projection matrix PPP is needed, increasing the memory

requirements from O(d2) to O(Nd+ d2) where d is the size of the BV set.

Secondly, we see that the KL-optimal pruning of a BV does not mean that the approximated

likelihood for that data is constant: the direction of the projection is changed. In practise the successive

projections might mean the effective removal of a likelihood term, but this is often not the case. The

presence of the approximated likelihood even for data which have been removed might justify the

good experimental results for the sparse online learning [Csató and Opper 2002].

A third useful remark is the relation of the two GP-parametrisations in the sparse case. This is

an obvious generalisation of the correspondence given in Section 4.3, eqns. (4.25) and (4.26) deduced

for the non-sparse case:

ααα = PPPT
(
ΛΛΛ

−1 + PPPKKKPPPT
)−1

aaa

CCC = −PPPT
(
ΛΛΛ

−1 + PPPKKKPPPT
)−1

PPP = −

((
PPP
T
ΛΛΛPPP
)−1

+KKK

)−1 (4.34)

The difference from the non-sparse case is that, due to the sparsity, the lemma-based representation

alone cannot provide the EP-representation, the system is under-determined. In practise, eqns. (4.34)

were used to check the correctness of the implemented code.1.

To summarise, the expectation-propagation for the sparse GP implies the projection on a different

direction of the random variable fff in the feature space. The change of the term ui from eq. (4.14)

implies that the result of the subtraction of the approximated likelihood is different from eq. (4.20).

If an example (xxxi,yyyi) is chosen, then first we have to subtract the approximated likelihood from the

GP. The new parameters (µ̃µµ, Σ̃ΣΣ) are:

µ̃µµ = µµµ+ vihhhi
(
µµµT φ̂i − ai

)

Σ̃ΣΣ = ΣΣΣ+ vihhhihhh
T
i

with
hhhi = ΣΣΣφ̂i

v−1
i = λ−1

i − φ̂Ti ΣΣΣφ̂i
(4.35)

and translated into the parameters (ααα,CCC), we have the corrections to these parameters required before

applying the online updates as:

α̃αα = ααα+hhhivi
(
αααTKKKpppi − ai

)

C̃CC = CCC+ vihhhihhh
T
i

with
hhhi = CCCKKKpppi + pppi

v−1
i = λ−1

i − pppTiKKKpppi − pppTiKKKCCCKKKpppi

(4.36)

where KKK is the Gram matrix of the BV elements and pppi is i-th column of the projection matrix PPP.
1The operations in eq. (4.34) might involve inversions of almost singular matrices. A possible way to deal with the

singular matrices to introduce the auxiliary matrix UUU = PPPTΛΛΛPPP and to rewrite eq. (4.34) as:

ααα =KKK−1
(
UUU +KKK−1

)−1
PPPTΛΛΛaaa

CCC = −KKK−1
(
UUU +KKK−1

)−1
UUU
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4.5 Comparisons for regression

The sparse EP is a refinement of the sparse online algorithm, thus it is related to the kernel PCA meth-

ods [Schölkopf et al. 1999] and the Nyström method proposed to speed up kernel machines [Williams

and Seeger 2001]. In the following we compare the Nyström method applied for the regression case

with the sparse EP algorithm.

The Nyström method uses the feature space FFF and a subset from the training set to construct an

approximation to the eigenvalues of the kernel function, presented in details in Section 3.7. Using a

subset of size m, there will be only m nonzero approximated eigenfunctions. Assuming a data set of

size N, the N×N kernel matrix KKKN is approximated with the smaller-rank

K̃KKN = kkkNmKKK
−1
m KKKmN = PPPKKKmPPP

T (4.37)

where we used the projection matrix PPP = kkkNmKKK
−1
m from the previous section and we assumed that

the subset of size m for the Nyström method is the BV set.

In applications the inversion of the large KKKN is replaced with the inversion of the smaller matrix

KKKm and the matrix inversion lemma from eq. (A.1) is exploited to reduce the cost of computations.

For regression, where we know the analytical result, the Nyström method applied to computing the

predictive mean at xxx is

〈fxxx〉NY = kkkTxxx

(
σ20IIIN + K̃KKN

)−1

tttN = kkkTN

(
σ20IIIN + PPPKKKBVPPP

T
)−1

tttN (4.38)

where kkkN = [K0(xxx1, xxx), . . . , K0(xxxN, xxx)]
T , σ20 is the noise variance, and tttN is the vector of outputs.

To compare it with the sparse EP algorithm, we assume a specific order for the presentation of the

data: the elements of the BV set are presented first and there is no removal. This is equivalent with

applying the KL-projection to the full posterior process. For the full process we have ΛΛΛN = IIIN/σ
2
0

and aaaN = tttN. We apply the KL-projection to the BV set, leading to the GP with parameters in the

EP representation:

ΛΛΛ = PPPTΛΛΛNPPP =
1

σ20
PPP
T
PPP

aaa = PPPTaaaN = PPPTtttN

(4.39)

and similarly we compute the predictive mean for the sparse EP algorithm:

〈fxxx〉EP = kkkTBV

(
KKKBV +ΛΛΛ−1

)−1

aaa

= kkkTBV

[
ΛΛΛ−ΛΛΛ

(
ΛΛΛ+KKK−1

BV

)−1

ΛΛΛ

]
aaa

= kkkTBV

[
1

σ20
PPP
T
PPP −

1

σ40
PPP
T
PPP

(
1

σ20
PPP
T
PPP +KKK−1

BV

)−1

PPP
T
PPP

]
PPP
T
tttN

= kkkTBVPPP
T

[
1

σ20
IIIN −

1

σ40
PPP

(
1

σ20
PPP
T
PPP +KKK−1

BV

)−1

PPP
T

]
PPPPPP

T
tttN

= (PPPkkkBV)
T
[
σ20IIIN + PPPKKKBVPPP

T
]−1

PPPPPP
T
tttN

(4.40)

where kkkBV = [K0(xxx1, xxx), . . . , K0(xxxm, xxx)]
T . We interpret PPPkkkBV as the reconstruction of kkkN from

eq. (4.38), and similarly PPPPPPTtttN is an approximation to tttN using them available basis vectors. We write

the expression corresponding to the predictive variance for the EP regression (using k∗ = K0(xxx,xxx)).

σ2EP = k∗ − (PPPkkkBV)
T
(
σ20IIIN + PPPKKKBVPPP

T
)−1

PPPkkkBV . (4.41)
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We see again that the predictive variance is also expressed using the reconstructions of the inputs

from the BV set. A similar construction for the predictive variance in the Nyström method does not

exist: we do not get positives variance at all input points xxx, the Nyström method is probabilistically

inconsistent, this is because it only considers the GP marginals at the data locations.

Compared with the Nyström method, we see that the sparse EP algorithm provides a less accurate

posterior mean then the Nyström method method, but it has the advantage of a fully probabilistic

treatment.

4.6 The proposed algorithm

The algorithm proposed here has an increased complexity compared with the sparse online algorithm

and the same structure as the original expectation-propagation [Minka 2000]. Additional cost, com-

pared with the sparse online algorithm arises from the need to update the PPP, the matrix of projections,

that requires O(Nd) operations.

Similarly to the sparse online algorithm from Section 3.6, we set the maximal BV set size in advance

to MBV . Whenever the size of the BV set gets larger then MBV we delete the BV with the smallest

score. For algorithmic stability we also use the tolerance value εtol to prevent the Gram matrix from

being singular.

It starts with initialising the GP parameters (ααα,CCC) and BV set with empty values, and also

initialising the EP parameters (ai, λi) for all inputs with zero values. Since BV set is empty, the

projection matrix is also empty.

For a selected example (xxxi,yyyi) the algorithm iterates the following steps:

1. If λi > 0 then compute the correction for the GP using eqs. (4.20), i.e. subtract the contribution

from the previous iterations.

2. Compute the online GP update coefficients r(i), q(i) using eq. (2.42), and γi using eq. (3.2) and

perform the updates for the

• GP parameters (ααα,CCC) using eq. (2.46),

• inverse Gram matrix QQQ, using eq. (3.5),

• local EP parameters (ai, λi), based on eq. (4.18),

• projection vector PPP by adding a new column containing eeei.

If γi < εtol then perform the sparse updates.

3. If the size of the BV set is larger than MBV then

• compute the score for all elements of the BV set,

• remove the minimal element from the

– GP parameters (ααα,CCC) using eqs. (3.19) and (3.21),

– projection vector PPPnew.

– inverse Gram matrix QQQ using eq. (3.22).
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The algorithm is iterated until some convergence criterion is met or for a fixed number of sweeps

through the whole data. In the experiments we employed the later choice. This seemed reasonable

since a steady performance was reached in most cases after the second sweep through the data. A

more detailed sketch of the algorithm is given in Appendix G, with related equations written explicitly.

4.7 Discussion and Further Research

This chapter developed an iterative approach to improve on the sparse online solution such that the

sparseness, i.e. the possibility of a flexible treatment of the BV set size, is preserved.

The improvement is based on the expectation-propagation algorithm for the GPs, presented

by Minka [2000]. Its extension to sparse GPs increases the computational demand by requiring,

beyond the parameters (ai, λi), the storage of a projection matrix PPP of size N × d with d being the

size of the BV set.

We believe that the EP algorithm for the sparse GPs fills in a gap in the applicability of GPs: if

we have a small data set, then the EP algorithm proposed originally by Minka [2000] suffices. For

the case of large datasets, we believe (as supported by experiments), that the sparse GP algorithm

presented in Chapter 3 is the only available method if we want to use GPs. Additionally, there is a

class of problems with data size that makes the EP algorithm inapplicable or inefficient, but for which

the sparse online GP algorithm does not provide a sufficiently good solution. For these algorithms

the EP extension of the sparse GPs can be used.

Further work needs to consider model selection for this class of algorithms. We have the ability

to approximate the data likelihood, and this could provide us with an appropriate tuning of the

hyper-parameters.

An interesting problem is the extensibility of the sparse framework to non-Gaussian families.

This is suggested by the observation that if we use the EP-representation, then minimising the KL-

divergence translates into simple projections of the examples to the set of basis vectors. Pruning is

then performed by writing the solution of the problem into the EP-form of eq. (4.21), performing the

removal of inputs in this framework and transforming back into a more convenient representation.
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Applications

Summary: The sparse online algorithm for GPs and its extension using the expectation-
propagation are tested for various problems.

In the previous chapters learning algorithms for Gaussian processes were derived. The presented

algorithms had gradually increasing complexity with the more complex algorithms embellished upon

the simpler ones. Specifically, if we include all training examples into the BV set within the sparse

online algorithm, then we obtain back the online algorithm of Chapter 2. Similarly, using a single

sweep through the data for the sparse EP-algorithm of Chapter 4 is equivalent to the sparse online

algorithm described in Chapter 3. Furthermore, when the algorithms were defined, the likelihoods

were left unspecified, it has only been assumed that it is possible to evaluate – exactly or using

approximations – the averaged likelihood with respect to a one-dimensional Gaussian measure which

is needed to compute the update coefficients for the online learning from Chapter 2.

For these reasons the experiments are grouped into a single chapter. This way more emphasis is

given to the fact that sparse GP learning is applicable to a wide range of problems and at the same

time the repetitions caused by presenting the same problem repeatedly for each algorithm are avoided.

The aim of the experiments is to show the applicability of the sparse algorithms for various problems

and the benefit of the approximation provided by sparsity. Thus, where it is possible, we present the

results for the following cases:

• the single sweep online algorithm from Chapter 2 is shown as the result at the end of the first

iteration at BV set size equalling the size of the training data if the size of the data set is not

large.

• the sparse online algorithm discussed in Chapter 3 – the results for BV set sizes smaller than

the size of the training data at the end of the first iteration.

• the expectation-propagation algorithm with all inputs included (as proposed by Minka [2000])

– the results of subsequent iterations when the BV set is maximal.

• the sparse extension of the EP algorithm from Chapter 4 – the second and third iterations at

BV set sizes smaller than the size of the training data.

Throughout the experiments two kernels are used: the polynomial (eq. 5.1) and the radial basis
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Figure 5.1: Results of applying GPs to the noisy sinc function. The inputs were 1000 uniformly
sampled points and the outputs were corrupted by white noise with variance σ2n = 0.01. The figures
show the true function (continuous line), the predictive mean of the GP (dash-dotted line), the variance
of the GP at the inputs (dashed lines) for the fifth order polynomial (left) and the RBF kernel (right).
The diamonds on both plots show the BV set with the original noisy output.

function or RBF (eq. 5.2) kernels:

KPOL(xxx,xxx
′) =

(
1+

xxxTyyy ′

dlK

)k
(5.1)

KRBF(xxx,xxx
′) = exp

(
−
‖xxx− xxx ′‖2
2dσ2K

)
(5.2)

where the d is the dimension of the inputs and we used it just for an approximate normalisation

when using datasets of different dimensions. The kernel parameters are the order of the polynomial

k and the length-scale lK for the first case and the width of the radial basis functions in the second

case. The denominators in both cases include the normalisation constant d that makes the scaling of

the kernels less dependent on the input dimensionality – independent if we assume that the data are

normalised to unit variance. Both kernels are often used in practise. The polynomial kernels have a

finite-dimensional feature space (discussed in Section 2.2) and are used for visualisation. The RBF

kernels, having their origin in the area of radial basis function networks [Broomhead and Lowe 1988],

have infinite-dimensional feature space; they are favourites in the kernel learning community.

The following sections detail the results of applying the sparse GP learning to different problems.

Section 5.1 presents the results for regression, Section 5.2 for the classification. A non-parametric

density estimation using the sparse GPs is sketched in Section 5.3. The final application considered

is a data assimilation problem. In this case the problem is to infer a global model of wind fields using

satellite observations. The GP approach to this problem and the possible benefits of sparsity are

detailed in section 5.4.

5.1 Regression

Quadratic regression using Gaussian noise is analytically tractable [Williams 1996] as has been detailed

in previous chapters. The likelihood for a given example (xxx,yyy) in this case is

P(yyy|xxx,fffxxx) ∝ exp

(
−
‖yyy− fffxxx‖
2σ20

)
(5.3)
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with fffxxx the GP marginal at the input location xxx and σ20 the variance of the Gaussian noise (here

supposed to be known). It has been shown in Chapter 2 that online learning applied to the Gaussian

likelihood in eq. (5.3) leads to an exact iterative computation of the posterior process, expressed by

its parameters (ααα,CCC). Using the kernel matrix KKKN for all training data, the posterior GP parameters

are:

ααα =
(
KKKN + σ20III

)−1
yyy

CCC = −
(
KKKN + σ20III

)−1

with yyy the concatenation of all output values. The parameters for the online recursions are

q(t+1) =
yyyt+1 −αααTkkkt+1

σ20 + σ2t+1
and r(t+1) = −

1

σ20 + σ2t+1

where kkkt+1 = [K0(xxx1, xxxt+1), . . . , K0(xxxt, xxxt+1)]
T and σ2t+1 = k∗ +kkkTt+1CCCkkkt+1 is the variance of the GP

marginal at xxxt+1.

The online algorithm from Chapter 2 uses (ααα,CCC) of the size of the training data. In Chapter 3 it

has been shown that this representation is redundant: the dimensions of the GP parameters should not

exceed the dimension of the feature space. Introducing sparsity for the case of regression keeps the GP

representation non-redundant. To illustrate this, first we consider the learning of the one-dimensional

noisy sinc function

y = sinc(x) =
sin(x)

x
+ ν (5.4)

using the polynomial and the RBF kernels. In the experiments we considered independent Gaussian

noise with variance σ2n = 0.01. First we considered the polynomial kernels from eq. (5.1). These

kernels, if the input space is one-dimensional, are particularly simple: the dimension of the feature

space associated with them is k + 1. This means that the number of inputs in the BV set can never

be larger than k + 1. The KL-projection method from the sparse online algorithm ensures this. The

results from Fig. 5.1 show that there are 6 examples in the BV set, yet the GP contains information

about all data. When the RBF kernel is used, we see that it provides a better approximation in this

case, but the cost is that there are twice as many elements in the BV set. The size of the BV set has

been set to 10 manually. For the sinc function and RBF kernels with σ2K = 1, BV set sizes larger than

12 were not accepted: the score of each new input has been smaller than the threshold for addition,

which was set to 10−6 for numerical stability.

The next example considered was the Friedman #1 dataset [Friedman 1991]. In this case the

inputs are sampled uniformly from the 10-dimensional hypercube. The scalar output is obtained as

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 (5.5)

and the variables x6, . . . , x10 do not affect the output, they act as noise. Fig. 5.2 shows the test errors

for this dataset. From the clearly visible plateau as the BV set size increases we conclude that the

sparse online GP learning procedure from Chapter 3, plotted with continuous lines, gives as good

solutions as the online learning that includes all examples to the BV set. This suggests that the

effective dimension of the data in the feature space defined by the kernel is approximately 120 − 130

and there is no need to use more BV s than this effective dimensionality.

The results of the GP learning were compared to those obtained by the Support Vector regression

(SVM) and the Relevance Vector machine (RVM) as provided by Tipping [2001a]. The test error in
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Figure 5.2: Results for the Friedman dataset using 250 training and 500 test data. The two lines show
the average test errors after a single sweep (continuous line) and after four iterations (dashed line)
through the data. The line show average test errors over 50 iterations with error bars displaying the
standard deviation of the 50 experiments. The horizontal dotted line shows the performance of the
SVM and RVM algorithms, see text for details.

the steady region (i.e. BV set size > 120) for our algorithm was ≈ 2.4 which is smaller than those of

the SVM (2.92) and RVM (2.80) respectively. The number of parameters for GP algorithm, however,

is larger: it is quadratic in the size of the BV set whilst both the SVM and the RVM algorithms have

a linear scaling with respect to the size of their “support vectors” (116 were used in the experiments)

and “relevance vectors” (59 used) respectively.

On the other hand, as discussed in Section 3.7, in their standard form both algorithms use the

kernel matrix with respect to all data, this is not the case of the sparse EP/GP algorithm.

The sparse EP algorithm is applied in the second sweep through the data. For cases when the size

of the BV set is close enough to the effective dimension of the data in the feature space, this second

sweep does not give any improvement. This is expected since for this problem the posterior process

is also a GP, no approximations are involved in the online learning. As a result, in the region where

the BV set sizes exceed this effective dimension, the KL-projection in the sparse online algorithm is

just a rewriting of the feature space image of the new input as a combination of inputs from the BV
set, and the length of the residual is practically zero. If we are not close to the limit region, then the

EP corrections improve on the performance of the algorithm, as it is the case for the small BV set

sizes in Fig. 5.2. This improvement is not significant for regression, the improvements are within the

empirical error bars, as it is also shown for the next application: the Boston housing dataset.

The Boston housing dataset is a real dataset with 506 data, each having 13 dimensions and a

single output. The 13 inputs describe different characteristics of houses and the task is to predict

their price.1 In the experiments the dataset has been split into training and test sets of sizes 481/25

and we used 100 random splits for all BV set sizes and the results are shown in Fig. 5.3. If different

BV set sizes are compared, we see that there is no improvement after a certain BV set size.

Two series of experiments were considered by using the same dataset without pre-processing (sub-

figure a), or normalising it to zero mean and unit variance (subfigure b). The results have been

compared with the SVM and RVM methods, which had squared errors approximately 8 [Tipping

2001a], we conclude that the performance of the sparse GP algorithm is comparable to these other

1Available from http://lib.stat.cmu.edu/boston.
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Figure 5.3: Results for the Boston dataset with normalised (left) and unnormalised (right) inputs.
The results are obtained using RBF kernels with σ2K = 2 and σ2K = 2500 for the normalised and the
unnormalised cases.

kernel algorithms. We need to mention however that, the setting of the hyper-parameters σ20 and

σ2k was made on a trial-and error, we did not use cross-validation or other hyper-parameter selection

method, the aim of the thesis is to show the applicability of the sparse GP framework to real-world

problems.

We see that if the size of the BV set is large enough, the expectation-propagation algorithm does

not improve on the performance of the sparse online algorithm. Improvements when the data is

re-used are visible only if the BV set is small. This improvement is not visible when learning the

unnormalised Boston dataset.

The main message from this section is that using sparsity in the GPs does not lead to significant

decays in the performance of the algorithm. However, the differences between the sub-plots in Fig. 5.3

emphasises the necessity of developing methods to adjust the hyper-parameters. In the next section

we present examples where the EP-algorithm improves on the results of the sparse online learning:

classification using GPs.

5.2 Classification

A nontrivial application of the online GPs is the classification problem: the posterior process is

non-Gaussian and we need to perform approximations to obtain a GP from it. We use the probit

model [Neal 1997] where a binary value y ∈ {−1, 1} is assigned to an input xxx ∈ Rm with the data

likelihood

P (y|fffxxx) = Erf

(
y fffxxx

σ0

)
, (5.6)

where σ0 is the noise variance and Erf(z) is the cumulative Gaussian distribution:

Erf(z) =
1√
2π

∫z

−∞

dt exp

(
−
t2

2

)
(5.7)

The shape of this likelihood resembles a sigmoidal, the main benefit of this choice is that its average

with respect to a Gaussian measure is computable. We can compute the predictive distribution at a
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Figure 5.4: Results of the sparse algorithm for the Crab dataset: (a) the average test errors vs. different
BV set sizes averaged over 50 experiments for each BV set size. The error bars show the standard
deviation of the test errors for the 50 experiments. (b) Cross-section of the experiments for BV set
size 50: the upper subplot shows the evolution of test and training errors during the EP-iterations
and on the lower subplot the average replacements of elements in the BV set are displayed.

new example xxx:

p(y|xxx,ααα,CCC) = 〈P(y|fffxxx)〉t = Erf

(
y 〈fffxxx〉t
σx

)
(5.8)

where 〈fxxx〉t = kkkTxxxααα is the mean of the GP at xxx and σ2xxx = σ20+k
∗
xxx+kkk

T
xxxCCCkkkxxx. It is the predictive distribution

of the new data, that is the Gaussian average of an other Gaussian. The result is obtained by changing

the order of integrands in the Bayesian predictive distribution eq. (5.6) and back-substituting the

definition of the error function.

Based on eq. (2.42), for a given input-output pair (xxx, y) the update coefficients q(t+1) and r(t+1)

are computed by differentiating the logarithm of the averaged likelihood from eq. (5.8) with respect

to the mean at xxxt+1 [Csató et al. 2000]:

q(t+1) =
y

σxxx

Erf ′

Erf
r(t+1) =

1

σ2xxx

{
Erf ′′

Erf
−

(
Erf ′

Erf

)2}
(5.9)

with Erf(z) evaluated at z =
y αααTtkkkx
σx

and Erf ′ and Erf ′′ are the first and second derivatives at z.

The algorithm for classification was first tested with two small datasets. These small-sized data

allowed us to benchmark the sparse EP algorithm against the full EP algorithm presented in Chapter 4.

The first dataset is the Crab dataset [Ripley 1996] 2. This dataset has 6-dimensional inputs, measuring

different characteristics of the Leptograpsus crabs and the task is to predict their gender. There are 200

examples split into 80/120 training/test sets. In the experiments we used the splits given in [Williams

and Barber 1998] and we used the RBF kernels to obtain the results shown Fig 5.4.a (the polynomial

kernels gave slightly larger test errors). As for the regression case, we see the long plateau for the

sparse online algorithm (the thick continuous line labeled “1 sweep”) when the BV set size increases.

We also see that the online and the sparse online learning algorithms have a relatively large variation

in their performance, as shown by the error-bars.

The result of applying the full EP algorithm of Minka [2000] can be seen when all 80 basis vectors

are included into the BV set in Fig. 5.4.a. We see that the average performance of the algorithm
2Available at http://www.stats.ox.ac.uk/pub/PRNN
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Figure 5.5: The results the sparse algorithm for the Sonar dataset. The different lines in the sub-plots
are as of Fig. 5.4.

improved when a second and a third iteration through the data is made. Apart from the decrease in

the test error, by the end of the third iteration the fluctuations caused by the ordering of the data

also vanished.

As the dashed line from Fig. 5.4.a shows, if the size of the BV set is larger than 20, the sparse EP

algorithm has the same behaviour as the full EP, reaching a test error of 2.5%, meaning 3 misclassified

examples from the test set. Interestingly this small test error is reached even if more than 80% of the

inputs were removed,in showing the benefit of combining the EP algorithm with the sparse online GP.

The performance of the algorithm is in the range of the results of other the state-of-the-art methods:

3 errors with the TAP mean field method, 2 using the naive mean field method [Opper and Winther

2000], 3 errors when applying the projection pursuit regression method [Ripley 1996].

Fig. 5.4.b shows a cross-section of the simulations for #BV = 50. The top sub-figure plots the

average test and training errors with the empirical deviations of the errors (the dashed lines). The

additional computational cost of the algorithm, compared with the sparse online method, is the update

of the projection matrix PPP, requiring O(Nd) operations. This update is needed only if we are replacing

an element from the BV set. The bottom part of Fig. 5.4.b shows the average number of changes in

the BV set. Although there are no changes in the test or the training errors after the second iteration,

the costly modification of the BV set is still performed relatively often, suggesting that the changes in

the BV set after this stage are not important. This suggests that for larger datasets we could employ

different strategies for speeding up the algorithm. One simple suggestion is to fix the elements in the

BV set after the second iteration and to perform the sparse EP algorithm by projecting the data to

the subspace of the BV elements in the subsequent iterations. The later stage of the algorithm would

be as fast as the sparse online algorithm since the storage of the matrix PPP is not required. A second

strategy would be to choose the kernel parameters and the size of the BV set such that the number of

replacements is low, the given number of basis vectors representing all training inputs, this is possible

using appropriate pre-processing or adapting the model parameters accordingly.

The selection of the parameters for the RBF kernel is not discussed. When running the different

experiments we observed that the size of the BV set and the optimal kernel parameters are strongly

related, making the model selection issue an important future research topic.
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Figure 5.6: Results for the binary (a) and multi-class (b) classification, the lines showing the average
test errors of 10 experiments with different order of the data. The multi-class case is a combination
of the 10 individual classifiers: the example xxx is assigned to the class with highest P(Ci|xxx). The
error bars show the deviation of the test errors averaged out on the 10 independent orderings. The
smaller number of BV set sizes on the multiclass plot (b) is due to the computational limitations: the
coefficients of the 10 individual classifiers are computed simultaneously.

A second experiment for classification used the sonar data [Gorman and Sejnowski 1988].3. This

dataset has originally been used to test classification performance using neural networks. It consists of

208 measurements of sonar signals bounced back from a cylinder made of metal or rock, each having

60 components. In the experiments we used the same split of the data as has been used by Gorman

and Sejnowski [1988]. The data was preprocessed to unit variance in all components and we used RBF

kernels with variance σK = 0.25, with noise σ20 = 0.0001. The results for different BV set sizes are

presented in Fig. 5.5. We can again see a plateau of almost constant test error performance starting

at 70. Contrary to the case of the Crab dataset, this plateau is not as clear as in Fig. 5.5; a drop in the

test error is visible at the upper limit of the BV set sizes. The difference might be due to the higher

dimensionality of the data: 60 as opposed to 6 whilst the sizes of the training sets are comparable.

For comparison with other algorithms we used the results as reported in [Opper and Winther

2000]. The test errors of the naive mean field algorithm and the TAP mean field algorithm were 7.7,

this being the closest to the result of the EP algorithm which was 6.7. It is also important that the

EP test error at #BV = 100, i.e. when using almost all training data, becomes independent of the

order of the presentation, the error bars vanish.

However, using only a half the training data in the BV set, the performance of the sparse EP

algorithm is 8.9± 0.9%, still as good as the SVM or the best performing two-layered neural network

both of which are reported to have 9.6% as test errors [Ripley 1996; Opper and Winther 2000].

A third dataset which we have used in tests is the USPS dataset of gray-scale handwritten digit

images of size 16 × 16. The dataset consists of 7291 training and 2007 test patterns.4 In the first

experiment we studied the problem of classifying the digit 4 against all other digits. Fig. 5.6.a plots

the test errors of the algorithm for different BV set sizes and fixed values of hyper-parameter σ2K = 0.5.

The USPS dataset has frequently been used to test the performance of kernel-based classification

algorithms. We mention the kernel PCA method of [Schölkopf et al. 1999], the Nyström method of

3Available from http://www.ics.uci.edu/∼mlearn/MLRepository
4Available from http://www.kernel-machines.org/data/
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Figure 5.7: Combining rejection and multiclass classification: by increasing the rejection threshold, the
percentage of the misclassified examples decreases and the total error does not increase significantly.
Subplot (a) uses 150 basis vectors and subplot (b) uses 350.

[Williams and Seeger 2001] and the application of the kernel matching pursuit algorithm [Vincent and

Bengio 2000], all discussed in detail in Section 3.7.

The Nyström approach considers a subset of the training data onto which the inputs are projected,

thus it is similar to the sparse GP algorithm. This approximation proved to provide good results if

the size of the subset was as low as 256. The mean of the test error for this case was ≈ 1.7% [Williams

and Seeger 2001], thus the results from Fig. 5.6.a are in the same range.

The PCA reduced-set method of [Schölkopf et al. 1999] and the kernel matching pursuit algorithms

give very similar results for the USPS dataset, their result sometimes is as low as 1.4%. By performing

additional model selection the results of the sparse GP/EP algorithms could be improved, our aim for

these experiments was to prove that the algorithm produces similar results to other sparse algorithms

in the family of kernel methods.

The sparse EP algorithm was also tested on the more realistic problem of classifying all ten digits

simultaneously. The ability to compute Bayesian predictive probabilities is absolutely essential in this

case. We have trained 10 classifiers on the ten binary classification problems of separating a single

digit from the rest. An unseen input was assigned to the class with the highest predictive probability

given by eq. (5.8). Fig. 5.6.b summarises the results for the multi-class case for different BV set sizes

and RBF kernels (with the external noise variance σ20 = 0).

To reduce the computational cost we used the same set for all individual classifiers (only a single

inverse of the Gram matrix was needed and also the storage cost is smaller). This made the implemen-

tation of deleting a basis vector for the multi-class case less straightforward: for each input and each

basis vector there are 10 individual scores. We implemented a “minimax” deletion rule: whenever

a deletion was needed, the basis vector having the smallest maximum value among the 10 classifier

problems was deleted, i.e. the index l of the deleted input was

l = arg min
i∈BV

max
c∈0,9

εci . (5.10)

The results of the combined classification for 100 and 350 BV s is shown in Fig. 5.6.b The sparse online

algorithm gave us a test error of 5.4% and the sparse EP refinement further improved the results to

5.15%. It is important that in obtaining the test errors we used the same 350 basis vectors for all
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binary classifiers. This is important, especially if we are to make predictions for an unknown digit.

If we use the SVM approach and compute the 10 binary predictions, then we need to evaluate the

kernel 2560 times, opposed to the 350 evaluation for the basis vector case. The results from Fig. 5.6.b

are also close to the batch performance reported in [Schölkopf et al. 1999]. The combination of the

10 independent classifiers obtained using kernel PCA attained a test error of 4.4%.

The benefit of the probabilistic treatment of the classification is that we can reject some of the

data: the ones for which the probability of belonging to any of the classes is smaller then a predefined

threshold. In Fig. 5.7 we plot the test errors and the rejected inputs for different threshold values.

An immediate extension of the sparse classification algorithms would be to extend them for the

case of active learning [Seung et al. 1992; Campbell et al. 2000] described in Section 3.8.1. It is

expected that this extension, at the cost of searching among the training data, would improve the

convergence of the algorithm.

To sum up, in the classification case, contrary to regression, we had a significant improvement

when using the sparse EP algorithm. The improvement was more accentuated in the low-dimensional

case. The important benefit of the EP algorithm for classification was to make the results (almost)

independent of the order of presentation, as seen in the figures showing the performance of the EP

algorithm.

5.3 Density Estimation

Density estimation is an unsupervised learning problem: we have a set of p-dimensional data D =

{xxxi}
N
i=1 and our goal is to approximate the density that generated the data. This is an ill-posed prob-

lem, the weighted sum of delta-peaks being an extreme of the possible solutions [Vapnik 1995]. In one-

dimensional case a common density estimation method is the histogram, and the Parzen-windowing

technique can be thought as an extension of the histogram method to the multi-dimensional case. In

this case the kernel is K0(xxx,xxx) = h(‖xxx−xxx ′‖2) with the function h chosen such that
∫
dxxxK0(xxx,xxx

′) = 1

for all xxx ′. The Parzen density estimate,based on K0, is written [Devroye et al. 1996]:

p̂parzen(xxx) =
1

N

N∑

i=1

K0(xxxi, xxx) (5.11)

where the prefactor 1/N to the sum can be thought of as a coefficient ηi that weights the contribution

of each input to the inferred distribution. The difficulty in using this model, as with other non-

parametric techniques, is that it cannot be used for large data sizes. Even if there is no cost to

compute αi, the storage of each training point and the summation is infeasible, raising the need for

simplifications.

Recent studies addressed this problem using other kernel methods, based on the idea of Support

Vector Machines. Weston et al. [1999] used SVMs for density estimation. Instead of using the fixed

set of coefficients αi = 1/N, they allowed these coefficients to vary. An additional degree of freedom

to the problem was added by allowing kernels with varying shapes to be included in eq. (5.11). The

increase in complexity was compensated with corresponding regularisation penalties. The result was

a sparse representation of the density function with only a few coefficients having nonzero parameters.

This made the computation of the inferred density function faster, but to obtain the sparse set of

solutions, a linear system using all data points had to be solved.
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A different method was the use of orthogonal series expansion of kernels used for Parzen density

estimation in eq. (5.11), proposed by Girolami [2002]. This mapped the problem into a feature space

determined by the orthogonal expansion. The sparsity is achieved by using kernel PCA [Schölkopf

et al. 1998] or the Nyström method for kernel machines [Williams and Seeger 2001]. The study

presented empirical comparisons between the performance of the kernel PCA density estimation and

the original Parzen method, showing that a significant reduction of the components from the sum was

possible without decay in the performance of the estimation.

In this section we apply the sparse GPs and the EP algorithm to obtain a Bayesian approach to

density estimation. We use a random function f to model the distribution and the prior over the

function f regularises the density estimation problem.

The prior over the functions is a GP and next we define the likelihood. A basic requirement for a

density function is to be non-negative and normalised, thus we consider the likelihood model:

h(xxx|f) =
f2xxx∫
dzzz f2zzz

(5.12)

with fxxx a random function drawn from the prior process and h(xxx|f) is the density at the input xxx. An

important difference from the previous cases is that the likelihood for a single output is conditioned on

the whole process. We assume a compact domain for the inputs, this makes the normalising integral

well defined. Another possibility would be to assume a generic prior density for the inputs to replace

the constraint on the input domain, however this is future work.

In contrast to the previous applications of the sequential GP learning presented in this Chapter, this

“likelihood” is not local: the density at a point is dependent on all other values of f, the realisation of

the random process. This density model has been studied in Holy [1997] and Schmidt [1998] and other

likelihoods for density estimation have also been considered like p(xxx|f) ∝ exp(−fxxx) by Nemenmann

and Bialek [2001], but these earlier studies were concerned with finding the maximum a-posteriori

value of the process.

We are using eq. (5.12) to represent the density, making the inference of the unknown probability

distribution equivalent to learning the underlying process. We write the posterior for this process as

ppost(f) =
1

Z
p0(f)

∏N
i=1 f

2
i(∫

dzzz f2zzz
)N with Z =

∫

df p0(f)

∏N
i=1 f

2
i(∫

dzzz f2zzz
)N (5.13)

where again, due to the denominator, we need to take into account all possible realisations of the

function f, i.e. we have a functional integral.

As usual, we are interested in the predictive distribution of the density, which is given by eq. (5.12)

where fxxx is the marginal of the posterior GP at xxx. We obtain a random variable for the density at xxx.

We compute the mean of this random value, and have the prediction for the density function:

h(xxx|D) =
1

Z

∫

dfp0(f)
f2xxx
∏N

i=1 f
2
i(∫

dzzz f2zzz
)N+1

(5.14)

with the normalising constant Z defined in eq (5.13).

The normalisation in the previous equations makes the density model intractable. Essentially, it

prevents the solutions from being expressible using the representer theorem of Kimeldorf and Wahba

[1971] or the representation lemma from Chapter 2. Next we transform the posterior into a form that

makes the representation lemma applicable for the density estimation problem. For this we observe

that the normalising term is independent of the input set and of the location at which the distribution
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is examined. To apply the parametrisation lemma, we include the normalising term into the prior to

obtain a new prior for f. For this we consider the Gamma-distribution

∫∞

0

λNe−λ
2

∫
dzzz f2zzz =

N!2N+1

(∫
dzzz f2zzz

)N+1
(5.15)

where the integral with respect to fzzz is considered fixed. We can rewrite the predicted density by

adding λ to the set of model parameters:

p(xxx|D) =
1

2N+1N! Z

∫∞

0

dλ λN
∫

dfp0(f)e
−λ
2

∫
dzzz f2zzz f2xxx

N∏

i=1

f2i

∝
∫∞

0

dλZλ λ
NEλ

[
f2xxx

N∏

i=1

f2i

]
(5.16)

where an expectation over a new Gaussian prior has been introduced. The new GP is obtained by mul-

tiplying the initial GP with the exponential from eq. (5.15) and Zλ is the normalisation corresponding

to new “effective GP”.

Next we derive the covariance of this “effective GP”. For this we use the decomposition of the

kernels K0 using an orthonormal set of eigen-functions φi(xxx). For this set of functions we have

∫

dxxxφi(xxx)φj(xxx) = δij (5.17)

such that K0(xxx,xxx
′) =

∑
i σ

2
iφi(xxx)φj(xxx

′), the details of the different mappings into the feature space

were presented in Section 2.1. We used σ2i to denote the eigenvalues in order to avoid possible

confusions that would result from double meaning of the parameter λ.

The decomposition of the kernel leads to the projection function from the input into the feature

space:

φ(xxx) = [σ1φ1(xxx), σ2φ2(xxx), . . .]
T

(5.18)

and we can write the random function fxxx = f(xxx) = ξξξ
T
φ(xxx) where ξξξ = [ξ1, ξ2, . . .]

T is the vector of

random variables in the feature space and we used the vector notations.

We want to express the normalisation integral using the feature space. The orthonormality of

φi(xxx) from eq. (5.17) implies that ∫

dzzz f2zzz = ξξξTLLLξξξ (5.19)

where LLL is a diagonal matrix with σ2i on the diagonal. The modified Gaussian distribution of the

feature space variables is be written as:

pλ(ξξξ) ∝ exp

{

−
1

2

[
ξξξ
T
ξξξ+ λξξξTLLLξξξ

]}
∝ exp

{

−
1

2
ξξξ
T (IIIFFF + λLLL)ξξξ

}

(5.20)

and this change implies that the kernel for the “effective GP” is

〈f(xxx)f(xxx ′)〉λ =
∑

i

φ(xxx)φ(xxx ′)
σ2i

1+ λσ2i
(5.21)

where the initial projection into the feature space and the modified distribution of the random variables

in that feature space was used. The final form of the GP kernel is found by observing that KKKλ has the

same eigenfunctions but the eigenvalues are (σ−2
i + λ)−1, thus

ΣΣΣλ =
(
ΣΣΣ

−1
0 + λIII

)−1

= ΣΣΣ0 (III+ λΣΣΣ0)
−1
. (5.22)
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As a result of previous transformations, the normalising term from the likelihood was eliminated by

adding λ to the model parameters.5 This simplifies the likelihood, but for each λ we have different

GP kernel, and to find the most probable density, we have to integrate over λ, this is not feasible in

practise.

Our aim is to approximate the posterior p(xxx|D) from eq. (5.16) with a GP in such a way that we

are able to apply the representation lemma from Chapter 2. For this we first eliminate the integral

with respect to λ and then approximate the kernel in the effective Gaussian from eq. (5.22).

The integral over λ is eliminated using a maximum a-posteriori (MAP)approximation. We compute

λm that maximises the log-integrand in eq. (5.16). Setting its derivative to zero leads to

N

λm
=

∫
dxxx Eλm

[
f2xxx
∏N

i=1 f
2
i

]

Eλm

[∏N
i=1 f

2
i

] . (5.23)

We replace the integral over λ with its value at λm and to simplify the notations, in the following we

ignore the subscript. The predictive density becomes

p(xxx|D) ≈ λ

N

Eλ

[
f2xxx
∏N

i=1 f
2
i

]

Eλ

[∏N
i=1 f

2
i

] . (5.24)

Using this approximation to the predictive density, we can employ the parametrisation lemma and

the sequential algorithms, as in the previous cases, to infer a posterior process. We observe that in

the numerator of eq. (5.24) we have a product of single data likelihoods f2i , this time without the

normalisation as in in eq. (5.12), and the denominator is the normalisation required by the posterior.

The application of the EP algorithm for this modified GP becomes straightforward. For a fixed λ we

use the “effective GP” from eq. (5.22) as the prior process. We iterate the EP learning from Chapter 4

and obtain a posterior process with the data-dependent parameters (ααα,CCC). The parameters also

depend on λ, thus the complete GP will be characterised with the triplet, which we denote GPλ(ααα,CCC).

Changing the GP parameters changes λ, thus at the end of each EP iteration we recompute λ, this

time fixing (ααα,CCC). Using the posterior GP in eq. (5.23), the re-estimation equation for λ is

N

λnew
=

∫

dxxx EGPλ
[
f2xxx
]

(5.25)

and we can iterate the EP algorithm using the new GP.

The problem is finding the kernel that corresponds to the “effective GPλ”. Finding ΣΣΣλ or general

kernels requires the eigenvalues of the kernel, or an inverse operation in the feature space. This is

seldom tractable analytically, we mention different approaches to address this inversion applied to

density estimation. One is to find the inverse operator by numerically solving eq. (5.22), employed by

Nemenmann and Bialek [2001], although this is extremely time-consuming. A different solution is to

use the operator product expansion in [Schmidt 1998]:

ΣΣΣλ = ΣΣΣ0
(
1− λΣΣΣ0 + λ2ΣΣΣ0 ·ΣΣΣ0 − . . .

)
(5.26)

to obtain ΣΣΣλ. Apart from being, again, computationally expensive, this expansion is unstable for large

λ values.

5The introduction of λ, a parameter to be estimated from the data, in the structure of the prior GP makes the
esetimation not consistent with the Bayesian framework. This is not a problem in this section since we are using MAP
approximations to the density function.
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Figure 5.8: The kernel K0(xxx,xxx
′) for xxx = 0 (continuous line) and xxx = 0.4 (dashed line).

A simplification of the inversion problem is to choose the prior kernels in a convenient fashion such

as to provide tractable models. A choice for the operator for one-dimensional inputs was l2∂2x, used

by Holy [1997] to estimate densities. This operator implies the Ornstein-Uhlenbeck kernels for GPλ:

Kλ(x, x
′) =

1

2
√
λl

exp

(
−
l√
λ
|x− x ′|

)
. (5.27)

Since λ increases with the size of the data, the resulting density function, being a weighted sum of

kernel functions, will be very rough.

A different simplification is obtained if we choose the prior operator ΣΣΣ0 such that ΣΣΣ0 · ΣΣΣ0 = ΣΣΣ0.

This means that all eigenvalues are equal σ2i = 1 and the inverse from eq. (5.22) simplifies to

ΣΣΣλ =
1

λ+ 1
ΣΣΣ0.

If we use one-dimensional inputs from the interval [0, 1] and consider a finite-dimensional function

space with elements

f(xxx) = c0 +
√
2

k0∑

n=0

(an sin 2πnxxx+ bn cos 2πnxxx) (5.28)

where an, bn, and c0 are sampled randomly from a Gaussian distribution with zero mean and unit

variance. It is easy to check that the 2k0 + 1 functions from eq. (5.29) are orthonormal. Since we

know that the eigenvalues are all equal to 1, this kernel is idempotent ΣΣΣ ·ΣΣΣ = ΣΣΣ, thus the inversion is

reduced to a division with a constant. We compute the kernel that generates these functions:

K0(xxx,xxx
′) = 〈f(xxx), f(xxx ′)〉0

= 1+ 2

k0∑

n=1

(sin 2πnxxx sin 2πnxxx ′ + cos 2πnxxx cos 2πnxxx ′)

= − cos(2πk0(xxx− xxx ′)) + sin(2πk0(xxx− xxx ′)) cot(π(xxx− xxx ′))

(5.29)

where the average is taken over the set of random variables (an, bn) and c0. Fig. 5.8 shows the kernel

for k0 = 5 and the experiments were performed using this kernel.

Next we have to solve eq. (5.25) to find λm. We assume that we are at the end of the first iteration,

when λ = 0 on the RHS. In this case eq. (5.25) simplifies and we obtain

N

λ
=

∫1

0

dxxx
(
µ2xxx + σ2xxx

)
= 2k0 + 1+

N∑

ij

K0(xxxi, xxxj) (αiαj + Cij) (5.30)
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Figure 5.9: GP approximation to the probability density function. Sub-figure (a) shows the density
function (dashed line), its approximation (continuous line), and the elements of the BV set (the +
signs on the X-axis). Sub-figure (b) gives the evolution of the L2 difference between the original and
the approximating pdf, measured using evenly distributed grid points. The X-axis shows the number
of the EP-iterations made.

where we used the reproducing property of the kernel and expressed the predictive mean and covariance

at xxx using the representation given by the parameters (ααα,CCC):

µxxx =

p∑

i=1

αiK0(xxxi, xxx) = kkkTxxxααα

σ2xxx = K0(xxx,xxx) +

p∑

ij=1

K0(xxx,xxxi)CijK0(xxxj, xxx) = k∗ + kkkTxxxCCCkkkxxx

(5.31)

with p the size of the BV set.

To apply online learning, we have to compute the average over the likelihood. Assuming that we

have an approximation to the GP(ααα,CCC), we need to compute the average with respect toN (kkkTt+1ααα, k
∗+

kkk
T
t+1CCCkkkt+1) = N (µt+1, σ

2
t+1), the marginal GP at xxxt+1. The averaged likelihood is 〈f2t+1〉t+1 =

µ2t+1 + σ2t+1, and the update coefficients are the first and the second derivatives of the log-average

(from eq. 2.42)

q(t+1) =
2µt+1

µ2t+1 + σ2t+1
and r(t+1) =

2
(
σ2t+1 − µ2t+1

)
(
µ2t+1 + σ2t+1

)2 .

We used an artificial dataset generated from a mixture of two Gaussians, plotted with dashed lines

in Fig. 5.9.a. The size of the data set in simulations was 500 and we used k0 = 5 for the kernel

parameter. The learning algorithm was the sparse EP learning as presented in Chapter 4 with the

BV set size not fixed in advance. We allowed the BV set to be updated each time the score of a new

input was above the predefined threshold, since for this toy example, the dimension of the feature

space is 2k0 + 1. The KL-criterion prevents a the BV set from becoming larger than the dimension of

the feature space, thus there is no need for pruning the GPs.

To summarise, this section outlined a possibility to use GPs for density estimation. The applica-

bility of the model in its present form is restricted, we gave results only for one-dimensional density

modelling. The essential step in obtaining this density model was the transformation of the problem

such that the iterative GP algorithms were made applicable. This was achieved by choosing special

kernels corresponding to operators satisfying ΣΣΣ · ΣΣΣ = ΣΣΣ, condition needed to simplify the operator
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inversion eq. (5.26). Further simulations could be made using higher-dimensional inputs for which

these kernels are also computable, however we believe that the basic properties of this model are

highlighted using this toy example.

The GP density estimation has certain benefits: contrary to mixture density modelling, it does not

need a predefined number of mixture components. The corresponding entity, the BV set size in this

model is determined automatically, based on the data and the hyper-parameters of the model. An

other advantage is computational: we do not need to store the full kernel matrix, opposite to the case

of SVMs [Weston et al. 1999] or the application of the kernel PCA [Girolami 2002]. A drawback of the

model, apart from the need to find the proper hyper-parameters, is that the convergence time can be

long, as it is shown in Fig. 5.9.b. More theoretical study is required for speeding up the convergence

and making the model less dependent on the prior assumptions.

5.4 Estimating wind-fields from scatterometer data

In this section we consider the problem of data assimilation where we aim to build a global model based

on spatially distributed observations [Cressie 1993]. GPs are well suited for this type of application,

providing us with a convenient way of relating different observations.

The data was collected from the ERS-2 satellite [Offiler 1994] where the aim is to obtain an estimate

of the wind fields which the scatterometer indirectly measures using radar backscatter from the ocean

surface. There are significant difficulties in obtaining the wind direction from the scatterometer data,

the first being the presence of symmetries in the model: wind fields that have opposite directions

result in almost equal measurements [Evans et al. 2000; Nabney et al. 2000a], making the wind field

retrieval a complex problem with multiple solutions. Added the inherent noise in the observations

increases the difficulty we face in the retrieval process.

Current methods of transforming the observed values (scatterometer data, denoted as a vector sssi

at a given spatial location xxxi) into wind fields can be split into two phases: local wind vector retrieval

and ambiguity removal [Stoffelen and Anderson 1997] where one of the local solutions is selected as the

true wind vector. Ambiguity removal often uses external information, such as a Numerical Weather

Prediction (NWP) forecast of the expected wind field at the time of the scatterometer observations.

Nabney et al. [2000b] have recently proposed a Bayesian framework for wind field retrieval com-

bining a vector Gaussian process prior model with local forward (wind field to scatterometer) or

inverse models. The backscatter is measured over 50× 50 km cells over the ocean and the number of

observations acquired can be several thousand, making GPs hardly applicable to this problem.

In this section we build a sparse GP that scales down the computational needs of the conventional

GPs, this application was presented in [Csató et al. 2001].

5.4.1 Processing Scatterometer Data

We use a mixture density network (MDN) [Bishop 1995] to model the conditional dependence of the

local wind vector zzzi = (ui, vi) on the local scatterometer observations sssi:

pm(zzzi|sssi,ωωω) =

4∑

j=1

βijφ(zzzi|cccij, σij) (5.32)

where ωωω is the union of the MDN parameters: for each observation at location xxxi we have the set

weightings βij for the local Gaussians φ(cccij, σ
2
ij) where cccij is the mean and σ2ij is the variance. The
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MDN network

Figure 5.10: The outputs of the mixture density network (MDN) when applied to raw scatterometer
observations. Each arrow points into the direction of the respective wind field component from the
mixture, longer arrows represent larger wind speeds. The spatial locations were obtained indepen-
dently, using the outputs of the same MDN for the scatterometer data at each separate location.

parameters of the MDN are determined using an independent training set [Evans et al. 2000] and are

considered known in this section.

The MDN with four Gaussian component densities captures the ambiguity of the inverse problem.

An example of a 10×10 field produced by the MDN is shown in Fig 5.10. We see that for the majority

of the spatial locations we have symmetries in the MDN solution: the model prefers a speed, but the

orientation of the resulting wind-vector is uncertain.

In order to have a global model from theN wind vectors obtained by local inversion using eq. (5.32),

we combine them with a zero-mean vector GP [Cornford et al. 1999; Nabney et al. 2000b]:

q(zzz) ∝
(

N∏

i

p(sssi|zzzi)

)
p0(zzz|WWW0)

and instead of using the direct likelihood p(sssi|zzzi), we transform it using Bayes theorem again to

obtain:

q(zzz) ∝
(

N∏

i

pm(zzzi|sssi,ωωω)p(sssi)

p0(zzzi|WWW0i)

)
p0(zzz|WWW0) (5.33)

where zzz = [zzz1, . . . , zzzN]T is the concatenation of the local wind field components zzzi. These compo-

nents are random variables corresponding to a spatial location xxxi. These locations specify the prior

covariance matrix for the vector zzz, given by WWW0 = {WWW0(xxxi, xxxj)}
N
ij=1. The two-dimensional Gaussian

p0 is the prior GP marginalised at zi, with zero-mean and covarianceWWW0i. The prior GP was tuned

carefully to represent features seen in real wind fields.

Since all quantities involved are Gaussians, we could, in principle, compute the resulting proba-

bilities analytically, but this computation is practically intractable: the number of mixture elements

from q(zzz) is 4N which is extremely high even for moderate values of N. Instead, we will apply the

online approximation to have a jointly Gaussian approximation to the posterior at all data points.
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Figure 5.11: Illustration of the elements used in the update eq. (5.38).

5.4.2 Learning vector Gaussian processes

Due to the vector GP, the kernel function WWW0(xxx,yyy) is a 2 × 2 matrix, specifying the pairwise cross-

correlation between wind field components at different spatial positions. The representation of the

posterior GP thus requires vector quantities: the marginal of the vector GP at a spatial location

xxx has a bivariate Gaussian distribution with mean and covariance function of the vectors zzzxxx ∈ R2

represented as

〈zzzxxx〉 =

N∑

i=1

WWW0(xxx,xxxi) ·αααzzz(i)

ΣΣΣ(zzzxxx, zzzyyy) =WWW0(xxx,yyy) +

N∑

i,j=1

WWW0(xxx,xxxi) ·CCCzzz(ij) ·WWW0(xxxj,yyy)

(5.34)

where αααzzz(1),αααzzz(2), . . . ,αααzzz(N) and {CCCzzz(ij)}i,j=1,N of the vector GP. Since this form is not convenient,

we represent (for numerical convenience) the vectorial process by a scalar process with twice the

number of observations, i.e. we set

〈zzzxxx〉 =



〈fxxxu〉

〈fxxxv〉


 and WWW0(xxx,yyy) =



K0(xxx

u,yyyu) K0(xxx
u,yyyv)

K0(xxx
v,yyyu) K0(xxx

v,yyyv)


 (5.35)

where K0(xxx,yyy) is a scalar valued function which we are going to use purely for notation. Since we

are dealing with vector quantities, we will never have to evaluate the individual matrix elements.

K0 serves us just for re-arranging the GP parameters in a more convenient form. By ignoring the

superscripts v and u, we can write

〈fxxx〉 =

2N∑

i=1

K0(xxx,xxxi)α(i)

ΣΣΣ(fxxx, fyyy) = K0(xxx,yyy) +

2N∑

i,j=1

K0(xxx,xxxi)C(ij)K0(xxxj,yyy)

(5.36)

where ααα = [α1, . . . , α2N]T and CCC = {C(ij)}i,j=1,...,2N are rearrangements of the parameters from

eq. (5.34).

For a new observation ssst+1 we have a a local ”likelihood” from eq. (5.33):

pm(zzzt+1|ssst+1,ωωω)p(ssst+1)

pG(zzzt+1|WWW0,t+1)
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NWP Prediction Most frequent online result

(a) (b)

Symmetric solution Bad solution

(c) (d)

Figure 5.12: The NWP wind field estimation (a), the most frequent (b) and the second most frequent
(c) online solution together with a bad solution. The assessment of good/bad solution is based on
the value of the relative weight from Section 5.4.3. The gray-scale background indicates the model
confidence (Bayesian error-bars) in the prediction, darker shade is for smaller variance.

and the update of the parameters (ααα,CCC) is based on the average of this local likelihood with respect

to the marginal of the vectorial GP at xxxt+1:

g(〈zzzt+1〉) =

〈
pm(zzzt+1|ssst+1,ωωω)p(ssst+1)

pG(zzzt+1|WWW0,t+1)

〉

Nxxxt+1
(zzzt+1)

(5.37)

where Nxxxt+1
(zzzt+1) is the marginal of the vectorial GP at xxxt+1 and 〈zzzt+1〉 is the value of the mean

function at the same position. The function g(〈zzzt+1〉) is easy to compute, it involves two dimensional

Gaussian averages. To keep the flow of the presentation we deferred the calculations of g(〈zzzt+1〉) and
its derivatives to Appendix F. Using the differential of the log-averages with respect to the prior mean

vector at time t+ 1, we have the updates for the GP parameters ααα and CCC:

αααt+1 = αααt + vvvt+1
∂ lng(〈zzzt+1〉)
∂〈zzzt+1〉

CCCt+1 = CCCt + vvvt+1
∂2 lng(〈zzzt+1〉)
∂〈zzzt+1〉2

vvvTt+1

with vvvt+1 = CCCtKKK
[t+1]
0 + III

[t+1]
2 (5.38)

and 〈zzzt+1〉 is 2× 1 a vector, implying vector and matrix quantities in (5.38). The matrices KKK
[t+1]
0 and

III
[t+1]
2 are shown in Fig. 5.11.

Fig. 5.12 shows the results of the online algorithm applied on a sample wind field having 100 nodes

on an equally spaced lattice. In subfigure (a) the predictions from the Numerical Weather Prediction

(NWP) are shown as a reference to our online GP predictions, shown in sub-figures (b)-(d). The

88



Chapter 5. Applications

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������
�����������������������������������������������

( )Σ2,2µ

( 1, )Σ1µ

2I
f1

f2

1I

Figure 5.13: The illustration of computing the computation of the relative weights.

processing order of each node appears to be important for this case: depending on the order we have

a solution agreeing with the NWP results as shown in sub-figures (b) and (d), on other occasions the

online GP had a clearly suboptimal wind field structure, as shown in subfigure (d).

However, we know that the posterior distribution of the wind field given the scatterometer obser-

vations is multi-modal, with in general two dominating and well separated modes.

The variance in the predictive wind fields resulting from different presentation orders is a problem

for the online solutions: we clearly do not know in advance the preferred presentation order, and this

means that there is a need to empirically assess the quality of each resulting wind field, this will be

presented in the next section.

5.4.3 Measuring the Relative Weight of the Approximation

An exact computation of the posterior process, as it has been discussed previously, would lead to a

multi-modal distribution of wind fields at each data-point. This would correspond to a mixture of

GPs as a posterior rather than to a single GP that is used in our approximation. If the individual

components of the mixture are well separated, we may expect that our online algorithm will track

modes with significant underlying probability mass to give a relevant prediction. However, the mode

that will be tracked depends on the actual sequence of data-points that are visited by the algorithm.

To investigate the variation of our wind field prediction with the data sequence, we have generated

several random sequences and compared the outcomes based on a simple approximation for the relative

mass of the multivariate Gaussian component.

To compare two posterior approximations obtained from different presentations of the same data,

we assume that the marginal distribution (ẑzz, Σ̂ΣΣ) can be written as a sum of Gaussians that are well

separated. At the online solutions ẑzz we are at a local maximum of the pdf, meaning that the sum

from the mixture of Gaussians is reduced to a single term. This means that

q(ẑzz) ∝ γl (2π)
−2N/2

|Σ̂ΣΣ|−1/2 (5.39)

with q(ẑzz) from eq. (5.33), γl the weight of the component of the mixture to which our online algorithm

had converged, and we assume the local curvature is also well approximated by Σ̂ΣΣ.
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Having two different online solutions (ẑzz1, Σ̂ΣΣ1) and (ẑzz1, Σ̂ΣΣ1), we find from eq (5.39) that the propor-

tion of the two weights is given by
γ1

γ2
=
q(ẑzz1)|Σ̂ΣΣ1|

1/2

q(ẑzz2)|Σ̂ΣΣ2|
1/2

(5.40)

as illustrated in Fig. 5.13. This helps us to estimate the “relative weight” of the wind field solutions:

log γ = log q(ẑzz) +
log |Σ̂ΣΣ|

2
(5.41)

helping us to assess the quality of the approximation we obtained. Results, using multiple runs on

a wind field data confirm this expectation, the correct solution (Fig. 5.14.b) has large value and

high frequency if doing multiple runs. For the wind field example shown in Fig. 5.12 100 random

permutations of the presentation were made. The resulting good solutions, shown in subfigure (b)

and (c) always had the logarithm of the relative weight larger than 90 whilst the bad solutions had

the same quantity at ≈ 70.

5.4.4 Sparsity for vectorial GPs

The sparsity for the vectorial GP is also based on the same minimisation of the KL-distance, as for

the scalar GPs. The only difference from Chapter 3 is that here we have a vectorial process. Using

the transformed notations from eq. (5.36), the vectorial GP means that the removal and addition

operations can only be performed in pairs. The BV set, for the transformed GP has always an even

number of basis vectors: for each spatial location xxxi the BV set includes xxxui and xxxvi . If removing xxxi, we

have to remove both components from the BV set. The pruning is very similar to the one-dimensional

case. The difference is that the elements of the update are 2× 2 matrices (ccc∗ and qqq∗), p× 2 vectors

(CCC∗ and QQQ∗), and the 2 × 1 vector ααα∗, the decomposition is the same as showed in Fig. 3.3. Using

this decomposition the KL-optimal updates are

α̂αα = ααα(t) − (CCC∗ +QQQ∗) (ccc∗ +qqq∗)
−1
ααα∗

Q̂QQ =QQQ(t) −QQQ∗
qqq∗(−1)QQQ

∗T

ĈCC = CCC(t) +QQQ∗
qqq∗(−1)QQQ

∗T − (CCC∗ +QQQ∗) (ccc∗ +qqq∗)
−1

(CCC∗ +QQQ∗)
T

(5.42)

where QQQ−1 is the inverse Gram matrix and (ααα,CCC) are the GP parameters.

The quality of the removal of a location xxxi (or the two virtual basis vectors xxxui and xxxvi ) is measured

by the approximated KL-distance from Chapter 3, leading to the score

εi = αααTi (ccc∗ +qqq∗)
−1
αααi (5.43)

where the parameters are obtained from the 2N× 2N matrix using the same decomposition shown in

Fig 3.3.

The results of the pruning are promising: Fig. 5.14 shows the resulting wind field if 85 of the

spatial knots are removed from the presentation eq. (5.36). On the right-hand side the evolution of

the KL-divergence and the sum-squared errors in the means between the vector GP and a trimmed GP

using eq. (5.42) are shown as a function of the number of deleted points. Whilst the approximation

of the posterior variance decays quickly, the predictive mean is stable when deleting nodes.

The sparse solution from Fig. 5.14 is the result of combining the non-sparse online algorithm with

the KL-optimal removal, the two algorithms being performed one after the another. This means that
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Figure 5.14: (a) The predicted wind fields when 85% of the nodes has been removed (from Fig. 2.2).
The prediction is based only on basis vectors (circles). The model confidence is higher at these regions.
(b) The difference between the full solution and the approximations using the squared difference of
means (continuous line) and the KL-distance (dashed line) respectively.

we still have to store the full vector GP and the costly matrix inversion is still needed, the difference

from other methods is that the inversion is sequential.

Applying the sparse online algorithm without the EP re-learning steps lead to significant loss in

the performance of the online algorithm, this is due to the more complex multimodal “likelihoods”

provided by the MDNs that give rise to local symmetries in the parameter space. We compensated

for this loss by using additional prior knowledge. The prior knowledge was the wind vector at each

spatial location from a NWP model and we included this in the prior mean function. This leads to

better performance since we are initially closer to the solution than using simply a zero-mean prior

process. The performance of the resulting algorithm is comparable to the combination of the full

online learning with the removal and the result is shown in Fig. 5.14.b.

For the wind-field example the EP algorithm from Chapter 4 has not been developed yet. Future

work will involve testing the sparse EP algorithm applied to the wind-field problem. As seen for the

classification case, the second and third iteration through the data improved the performance. By

performing the multiple iterations for the spatial locations we expect to have a better approximation

for the posterior GP for this case also. Some improvement is also to be expected when estimating

the relative weight of a solution from eq. (5.41), especially since here an accurate estimation of the

posterior covariance is essential.

To conclude, we showed that the wind-field approximation using sparse GPs is a promising research

direction. We showed that a reduction of 70% of the basis points lead to a minor change in the actual

GP, measured using the KL-distance. The implementation and testing of the sparse EP algorithm for

this special problem is also an interesting question.

We estimated the wind-fields by first processing the raw scatterometer data using the local inverse

models into a mixture of Gaussians as shown in Fig 5.10. The GP learning algorithm used the

product of these local mixtures. Further investigations are aimed at implementing the GPs based on

likelihoods directly from the scatterometer observations. Since the dependence of the wind-field on the
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scatterometer observation is given by a complex forward model, we need to perform approximations

to compute g(〈zzz〉) and to benchmarks the results with previous ones.

A modification of the model in a different direction is suggested by the fact that the mixtures tend

to have two dominant modes, this resulting from the physics of the system. The same bimodality

has also been found in empirical studies [Nabney et al. 2000a]. It would be interesting to extend

the sparse GP approach to mixtures of GPs in order to incorporate this simple multi-modality of the

posterior process in a principled way.

5.5 Summary

We presented results for various problems solved using the sparse GP framework with the aim of

showing the applicability of the algorithm to a large class of likelihoods. Sparseness for the quadratic

regression case showed performance comparable with the full GP regression, tested with artificial and

real-world datasets. The additional EP iterations were beneficial only if the BV set size was very low,

but generally did not improved the test errors. This was not the case for the classification problems,

where we showed both the applicability of the sparse GP learning and the improved performance with

multiple sweeps through the data. The performance of the algorithm with the classification problem

was also tested on the relatively large USPS dataset having 7000 training data. Despite of the fact that

only a fraction of the data was retained, we had good performance. An interesting research direction

is to extend sparse GP framework to the robust regression, i.e. non-Gaussian noise distributions like

Laplace noise. However, we believe that this would be beneficial only if a method of hyper-parameter

selection could be proposed.

The application of the GPs to density estimation at the present time is very restrictive: we

considered one-dimensional data and special kernels. For this case the EP steps proved to be very

important, several iterations were needed to reach a reasonable solution. However the solution is

attractive: we showed the possibility to infer multi-modal distributions without specifying the number

of peaks in the distribution.

A real-world application is the sparse GP inference of wind-fields from scatterometer observations.

Previous studies [Cornford et al. 1999] shown that this problem in not unimodal, our sparse GP tracks

a mode of the posterior distribution. This being a work in progress, we expect more positive results

from the implementation and testing of the EP algorithms for the wind fields. Discussion about more

general future research topics like model selection can be found in the next chapter.
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Conclusions and Further Research

The application of the family of Gaussian processes to real problems is impeded by the intractability

of the the posteriors or the quadratic scaling of the algorithm with the size of the dataset. The

contribution of this thesis is to provide a methodology for the application of GPs to large datasets

via a representation of the posterior process and a fixed size of the parameter set, eliminating its

prohibitive scaling with growing data sizes. To achieve this independence, we needed

• a parametrisation lemma for the moments of the posterior process as a linear combination of

kernel function at the training set positions, and

• a subset of the training data, the Basis Vector set (BV set) that replaces the full training set

when representing the posterior process.

The lemma, given in Chapter 2, transformed the problem of functional inference into the esti-

mation of the GP parameters. The parametrisation of the approximating GP resembles the popular

representer theorem of Kimeldorf and Wahba [1971] that expresses the most probable (MAP) solution

as a linear combination of the kernel functions at data locations. In contrast to the representer theo-

rem, in Lemma 2.3.1 we also considered the posterior kernel. The approach to modeling using GPs is

thus fully probabilistic. In our opinion the proposed method of inference via estimation of both GP

moments is advantageous over the commonly used MAP-based approximations which represent the

state-of-the-art in kernel methods. Apart from the possibility of assessing uncertainty in the predic-

tion, the use of the approximated kernel in learning speeds up the online algorithm. This is similar to

the natural gradient methods for parametric models, where the covariance matrix is used to rescale

the parameter space to provide an optimal search direction.

In Chapter 2 we used Bayesian online learning [Opper 1996] to find the posterior GP. This is a

sequential algorithm that considers a single example from the training set. In this framework the

restrictions over the likelihood are very mild: the requirement is that the Gaussian average of it to be

differentiable. The online learning is thus applicable for a large class of likelihoods which includes for

example the non-differentiable step function for classification, for which other approximation methods

usually fail.

The parametrisation lemma with Bayesian online learning provided the resulting GP using all data

points with the parameters scaling quadratically with the size of the data. Apart from being inappli-

cable, this parametrisation was also unrealistic: by learning we implicitly meant a compression of the

information contained in the data into the set of parameters. By having the number of parameters

scaling quadratically with the size of the data, there is no compression.
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Chapter 6. Conclusions and Further Research

We derived a further approximation to the online solution, presented in Chapter 3. By having a

subsequent projection of the posterior to a process with less parameters than the original approxima-

tion, only a fraction of the training data was used in representing the posterior process, this subset of

the data is called the set of Basis Vectors. The important factor in obtaining the sparse approximation

was our ability to compute the KL-distance between two GPs, derived in Section 3.2. This distance

served both to obtain the sparse projection of the online GP and to estimate the error made by this

projection. It must be mentioned that, although only a fraction of the training data is used for GP

prediction, in learning we extracted information from the whole dataset.

This is similar to the result of Support Vector Machine learning, where a sparse set of support

vectors is used for generating predictions. The learning strategy, however, is different. For the sparse

algorithm we were able to eliminate the scaling of the parameter set and to reduce the computing time

to linear. In the basic SVM, indifferent of the degree of sparseness in the final result, the required

memory to obtain the sparse results is still quadratic.

The essential result of combining the Bayesian online learning from Chapter 2 with sparsity is the

sparse online algorithm presented in Section 3.6. The algorithm possesses means to add new inputs to,

and remove unwanted inputs from the BV set, thus providing us with full flexibility in manipulating

the BV set. Additionally, we were able to find a score corresponding to each BV that measured the

error that would result from its removal. It was possible to obtain this score without actually removing

the basis vector in question and without any matrix manipulation.

We can thus apply online GPs to arbitrarily large datasets. The online nature of the algorithm

with a single processing of each input is prohibitive for data sets with moderate sizes but for which the

full GP representation still impractical. Our aim was to have a more accurate result than obtained

from a single sweep through the data. A solution to this problem was proposed in Chapter 4. Con-

sidering recent improvements on the online learning both from statistical physics [Opper and Winther

2001] and the algorithmic [Minka 2000] viewpoints, we derived a sparse algorithm that iteratively

approximates the batch solution. The algorithm was based on the “expectation-propagation” (EP)

algorithm presented by Minka [2000] and was extended to give sparse solutions.

In Chapter 5 the sparse EP algorithm is applied to various problems. For quadratic regression,

which is analytically tractable, the results confirmed that, compared to the result of the full GP

algorithm, there is no significant loss in applying the sparse solution.

The EP iterations proved to be beneficial in classification where the test error was consistently

lower after subsequent EP-steps. In additionally to the improved performance, the fluctuations caused

by the order of the presentation had also diminished. We also showed that the sparse GP algorithm

can be applied to various likelihoods like density estimation or the specific data assimilation problem

for the wind fields.

We believe that the general parametrisation of the posterior processes and the KL-divergences

opens new possibilities in applying kernel methods. It allows, without significant additional complex-

ity, the representation of uncertainty, a feature that at present time is missing from the family of

kernel methods.

The cost of estimating uncertainties is the learning and memorisation of matrixCCC that parametrises

the kernel. This cost is greatly compensated by the full flexibility in setting up the size of the

parameters, making the sparse GP or EP algorithm highly competitive with respect to several kernel

algorithms in various application areas.
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Chapter 6. Conclusions and Further Research

6.1 Further Research Directions

We envisage further research in several directions:

• to improve the computational efficiency of the algorithm;

• to apply to other likelihoods; and

• to address the problems of estimating hyperparameters and model selection and the use of

non-Gaussian process priors.

The issue of computational efficiency is important in practical applications. We saw that the sparse

online algorithm, due to its greedy nature, had its running time scaling linearly with the data while

at the same time the number of parameters was kept constant.

The sparse EP algorithm, which had multiple iterations for each input, was more demanding,

with quadratic and linear scalings of computing time and size of parameters respectively. The bad

scaling of the latter algorithm was due to the need to memorise additional information about each

processed data point. We can reduce the computational overhead of the algorithm by first selecting

the relevant BV set from the available data. This can be done either by random selection, or by

examining the scores of the training data and including sequentially the ones with the highest score.

The random selection of the BV set would be feasible for low-dimensional data where we can hope for

a relatively even spread of the random selection in the input space. The second strategy would assure

an optimal representation of the training data, with the additional cost of evaluating the score after

every inclusion step. We foresee that the increase in test error made by fixating the BV set would not

be significant but the scaling of the computational time would be reduced by an order of magnitude.

The second direction to go would be the application of the sparse GPs to nonstandard likelihoods.

A particularly interesting question is whether we could apply GP inference to time-varying systems

to include simple dynamics, or to consider GP treatments of ICA models.

However, we believe that the most important issue to address is the hyper-parameter adjustment,

or model selection within the sparse GP framework. For this we see that the EP framework provides

us an approximation to the data likelihood using the approximated likelihood terms. In addition to

the sparse online learning, we have multiple iterative learning of the GP parameters, we could thus

adjust some of the hyperparameters of the model by gradient ascent, for example, to increase the data

likelihood. This could include the variance of the assumed noise for regression, or the steepness of

the probit model in the classification case. However, changing the model parameters should involve

corresponding changes in the GP parameters or the retraining of the whole GP with the new model,

the exact form requires more study.

An interesting research direction would be to address the selection of the parameters of the kernel

itself, like the width parameter in the RBF kernel or the order of the polynomial used in polynomial

kernels. Equally, one could consider the assessment of the relevance of the input components, similarly

to the case of automatic relevance determination [MacKay 1999] for the case of sparse Gaussian

processes where the size of the BV set is fixed. Simple improvements on the sparse EP algorithm are

also planned in the future.

Lastly, it would be interesting to extend the single GP latent variable model to mixtures of GPs.

Using the sparse EP algorithm to estimate the individual GPs is feasible, though we might need an

EM-like algorithm.
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Appendix A

Matrix inversion formulae

Throughout the thesis we are using the matrix inversion lemma: having quadratic matrices AAA and BBB

and a matrix XXX of corresponding number of columns and rows, we have the following equality (see for

example [Mardia et al. 1979, Appendix B] or [Press et al. 1992])

(
AAA+XXXBBBXXXT

)−1

= AAA−1 −AAA−1
XXX(BBB−1 +XXXTAAA−1

XXX)−1XXX
T
A−1. (A.1)

The matrix inversion formula for a symmetric matrix with block sub-matrices is:

[
AAA BBB

BBB
T

CCC

]−1

=

[
DDD

−1 −AAA−1
BBBEEE

−1

−EEE−1
BBB
T
AAA

−1
EEE

−1

]
(A.2)

=

[
AAA

−1 +AAA−1
BBBEEE

−1
BBB
T
AAA

−1 −EEE−1
BBBCCC

−1

−CCC−1
BBB
T
EEE

−1
CCC

−1 +CCC−1
BBB
T
DDD

−1
BBBCCC

−1

]
(A.3)

where
DDD = AAA−BBBCCC−1

BBB
T

EEE = CCC−BBBTAAA−1
BBB

The formulae for the determinants of block matrices are also used in the thesis:
∣∣∣∣∣
AAA BBB

BBB
T

CCC

∣∣∣∣∣ = |AAA| |EEE| = |CCC| |DDD| (A.4)

A useful short guide to manipulating block matrices and computing determinants is provided by

Sam Roweis, available at http://www.gatsby.ucl.ac.uk/~roweis/notes.html.
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Appendix B

Properties of zero-mean Gaussians

The following property of the Gaussian probability density functions (pdfs) is often used in this paper,

here we state it in a form of a theorem:

Theorem 1. Let xxx ∈ Rm and p(xxx) zero-mean Gaussian pdf with covariance ΣΣΣ = {Σij} (i, j from 1 to

m). If g : Rm → R is a differentiable function not growing faster than a polynomial and with partial
derivatives

∂jg(xxx) =
∂

∂xj
g(xxx) ,

then ∫

Rm
dxxxp(xxx) xig(xxx) =

m∑

j=1

Σij

∫

Rm
dxxxp(xxx) ∂jg(xxx) . (B.1)

In the following we will assume definite integration over Rm whenever the integral appears. Alterna-

tively, using the vector notation, the above identity reads:
∫

dxxxp(xxx) xxxg(xxx) = ΣΣΣ

∫

dxxxp(xxx) ∇g(xxx) (B.2)

For a general Gaussian pdf with mean µµµ the above equation transforms to:
∫

dxxxp(xxx) xxxg(xxx) = µµµ

∫

dxxxp(xxx) g(xxx) +ΣΣΣ

∫

dxxxp(xxx) ∇g(xxx) (B.3)

Proof. The proof uses the partial integration rule:
∫

dxxxp(xxx)∇g(xxx) = −

∫

dxxxg(xxx)∇p(xxx)

where we have used the fast decay of the Gaussian function to dismiss one of the terms. Using the

derivative of a Gaussian pdf. we have:
∫

dxxxp(xxx)∇g(xxx) =

∫

dxxx g(xxx)Σ−1xxxp(xxx)

Multiplying both sides with ΣΣΣ leads to eq. (B.2), completing the proof. For the nonzero mean the

deductions are also straightforward.
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Appendix C

Iterative computation of the inverse Gram

matrix

In obtaining sparsity in eqs. (3.19) and (3.21), we need the inverse Gram matrix of the BV set. In

the following the elements of the BV set are indexed from 1 to t. Using the matrix inversion formula,

eq. (A.2), the addition of a new element is done sequentially. This is well known, commonly used in

the Kalman filter algorithm. We consider the new element at the end (last row and column) of matrix

KKKt+1. The matrix KKKt+1 is decomposed:

KKKt+1 =

[
KKKt kkkt+1

kkk
T
t+1 k∗t+1

]
(C.1)

Assuming KKK−1
t known and applying the matrix inversion lemma for KKKt+1:

KKK
−1
t+1 =

[
KKKt kkkt+1

kkk
T
t+1 k∗t+1

]−1

=

[
KKK

−1
t +KKK−1

t kkkt+1kkk
T
t+1KKK

−1
t γ−1

t+1 −KKK−1
t kkkt+1γ

−1
t+1

−kkkTt+1KKK
−1
t γ−1

t+1 γ−1
t+1

] (C.2)

where γt+1 = k∗t+1 − kkkTt+1KKK
−1
t kkkt+1 is the squared distance of the last feature vector from the linear

span of all previous ones (see Section 3.1). Using notations KKK−1
t kkkt+1 = êeet+1 from eq. (3.3), KKK−1

t =QQQt,

and KKK−1
t+1 =QQQt+1 we have the recursion:

QQQt+1 =

[
QQQt + γ−1

t+1êeet+1êee
T
t+1 −γ−1

t+1êeet+1

−γ−1
t+1êee

T
t+1 γ−1

t+1

]
(C.3)

and in a more compact matrix notation:

QQQt+1 =QQQt + γ−1
t+1(êeet+1 − eeet+1)(êeet+1 − eeet+1)

T (C.4)

where eeet+1 is the t+ 1-th unit vector. With this recursion equation all matrix inversion is eliminated

(this result is general for block matrices, such implementation, together with an interpretation of the

parameters has been also made in [Cauwenberghs and Poggio 2001]). The introduction of the rule

γt+1 > 0 guarantees non-singularity of the Gram matrix (see Fig. 3.1).
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Appendix C. Iterative computation of the inverse Gram matrix

C.1 Computing determinants

The block-diagonal decomposition of the Gram matrix from eq. (C.1) allows us to have a recursive

expression for the determinant. Using eq. (A.4), we have

|KKKt+1| = |KKKt||k
∗
t+1 − kkkTt+1KKK

−1
t kkkt+1| = |KKKt| γt+1 (C.5)

where γt+1 is the squared distance of the new input from the subspace spanned by all previous inputs.

C.2 Updates for the Cholesky factorisation

For numerical stability we can use the Cholesky-factorisation of the inverse Gram matrix QQQ. Using

the lower-triangular matrix RRR with the corresponding indices, and the identity QQQ = RRRTRRR, we have the

update for the Cholesky-decomposition

RRRt+1 =

(
RRRt 0

−γ
−1/2
t+1 êee

T
t+1 γ

−1/2
t+1

)
(C.6)

that is a computationally very inexpensive operation, without additional operations provided that the

quantities γt+1 and eeet+1 are already computed.

In Chapter 3 the diagonal elements of the inverse Gram matrix are used in establishing the score

for an element of the BV set, and the columns of the same Gram matrix are used in updating the GP

elements. Fixing the index of the column to l, we have the l-th diagonal element and the columns

expressed as

γl = (r∗)2 + r̃rrTt−lr̃rrt−l

QQQ
∗ =

[
rrrlr

∗ +AAATrrrt−l

R̃RR
T

t−lr̃rrl

]
(C.7)

where we used the decomposition of RRRt+1 along the l-th column

RRRdatat+1 =



RRRl 000l 000l,t−l

rrrTl r∗ 000
T
t−l

AAA r̃rrt−l R̃RRt−l




and the update of the Cholesky decomposition, when removing the l-th column is written as

RRR
\l
t =


 RRRl 000l,t−l

UUU
−1
(
AAA−

r̃rrt−lrrr
T
l

rrr∗

)
U−1Q̃QQt−l


 (C.8)

with U being the Cholesky decomposition of IN−l +
q̃qqt−lq̃qq

T
t−l

(q∗)2
. This is always positive definite and

there is a fast computation for U (in matlab one can compute it with U=cholupdate(I,qN/q) with

corresponding quantities).
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Appendix D

KL-optimal parameter reduction

We want to find the constrained GP with parameters (α̂ααt+1, ĈCCt+1) with the last elements all having

zero values (see Section 3.3) that minimises the KL-divergence

2KL(ĜPt+1‖GPt+1) = (αααt+1 − α̂ααt+1)
(
CCCt+1 +KKK−1

t+1

)−1

(αααt+1 − α̂ααt+1)

+ tr
[
(ĈCCt+1 −CCCt+1)(CCCt+1 +KKK−1

t+1)
−1
]

− ln

∣∣∣∣
(
ĈCCt+1 +KKK−1

t+1

)(
CCCt+1 +KKK−1

t+1

)−1
∣∣∣∣

(D.1)

and we suppose the GP parameters (αααt+1,CCCt+1) and the BV set are given (we know KKKt+1 and KKKt).

In the following we use KKK−1
t+1 = QQQt+1 and the decomposition of the GP parameters as presented in

Chapter 3, with Fig 3.3 repeated in Fig D.1.

The differentiation with respect to parameters α̂1, . . . , α̂t leads to the system of equations that is

easily written in matrix form as

[
IIIt 000t

]
(QQQt+1 +CCCt+1)

−1
(α̂ααt+1 −αααt+1) = 0

[
BBB aaa

]
(α̂ααt+1 −αααt+1) = 0

(D.2)

where IIIt is the identity matrix and 000t is the column vector of length t with zero elements. In the

second line the matrix multiplication has been performed and we used the decomposition

(QQQt+1 +CCCt+1)
−1

=

[
BBB aaa

aaaT b

]
(D.3)

Finally, using the decomposition of the vector αααt+1 from Fig. 3.3, we have

α̂ααt+1 = ααα(r) + α∗ẽeet+1 with ẽeet+1 = BBB−1
aaa

and ẽeet+1 is obtained from the matrix inversion lemma for block matrices from eq. (A.2). Using the

matrix inversion lemma for (QQQt+1 +CCCt+1)
−1 from eq. (D.3) we have:

QQQt+1 +CCCt+1 =



(
BBB− aaaaaaT

b

)−1

−BBB−1
aaaδ

−aaaTBBB−1
δ δ


 with δ =

(
b−aaaTBBBaaa

)−1
(D.4)

and using the correspondence δ = q∗ + c∗ and QQQ∗ +CCC∗ = −BBB−1
aaaδ read from eq. (D.4), we have

ẽeet+1 = −
1

q∗ + c∗
(QQQ∗ +CCC∗) (D.5)
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Figure D.1: Grouping of the GP parameters (Fig 3.3 repeated).

and replacing it into the expression for the reduced mean parameters, we have

α̂ααt+1 = α(r) −
α∗

c∗ + q∗
(QQQ∗ +CCC∗) (D.6)

Before differentiating the KL-divergence with respect to ĈCCt+1, we simplify the terms that include

ĈCCt+1 in eq. (D.1). Firstly we write the constraints for the last row and column of ĈCCt+1 using the

extension matrix [IIIt 000t] as

ĈCCt+1 =
[
IIIt 000t

]T
ĈCC

(r)

t+1

[
IIIt 000t

]
(D.7)

where ĈCC
(r)

t+1 is a matrix with t rows and columns, and in the following we will use ĈCCt+1 instead of

ĈCC
(r)

t+1. Permuting the elements in the trace term of eq. (D.1) leads to

tr

[[
IIIt 000t

]T
ĈCCt+1

[
IIIt 000t

]
(CCCt+1 +QQQt+1)

−1

]

= tr

[
ĈCCt+1

[
IIIt 000t

]
(CCCt+1 +QQQt+1)

−1
[
IIIt 000t

]T]
(D.8)

where the additive term −CCCt+1(CCCt+1+QQQt+1)
−1 is ignored since it will not contribute to the result of

the differentiation. Ignoring also the term not depending on ĈCCt+1 in the determinant, and using the

replacement of ĈCCt+1 from eq. (D.7) we simplify the log-determinant

ln

∣∣∣∣
([
IIIt 000t

]T
ĈCCt+1

[
IIIt 000t

]
+QQQt+1

)∣∣∣∣ = ln

∣∣∣∣∣

[
ĈCCt+1 +QQQt + QQQ∗QQQ∗T

q∗
QQQ

∗

QQQ
∗T

q∗

]∣∣∣∣∣

= ln

∣∣∣∣∣ĈCCt+1 +QQQt +
QQQ

∗
QQQ

∗T

q∗
−
QQQ

∗
QQQ

∗T

q∗

∣∣∣∣∣+ lnq∗

= ln
∣∣∣ĈCCt+1 +QQQt

∣∣∣+ lnq∗ (D.9)

where we used the decomposition into block-diagonal matrices (first line) and the expression for the

determinants of block-diagonal matrices from eq (A.4).

The differentiation of the KL-distance with respect to ĈCCt+1 is the addition of differentiating

eqs. (D.8) and (D.9):

(
ĈCCt+1 +QQQt

)−1

=
[
IIIt 000

]
(QQQt+1 +CCCt+1)

−1
[
IIIt 000

]T
(D.10)
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Appendix D. KL-optimal parameter reduction

We apply the matrix inversion lemma to the RHS similarly to the case of eq (D.9) and retaining only

the upper-left part leads to

(
ĈCCt+1 +QQQt

)−1

=

(
CCC

(r) +QQQt +
QQQ

∗
QQQ

∗T

q∗
−

(CCC∗ +QQQ∗) (CCC∗ +QQQ∗)
T

q∗ + c∗

)−1

(D.11)

and the reduced covariance parameter is

ĈCCt+1 = CCC(r) +
QQQ

∗
QQQ

∗T

q∗
−

(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)
T

q∗ + c∗
(D.12)

D.1 Computing the KL-distance

We are assessing the error made when pruning the GP by evaluating the KL-divergence from eq. (D.1)

between the process with (αααt+1,CCCt+1) and the pruned one with (α̂ααt+1, ĈCCt+1) from the previous section.

We start by writing the pruning equations in function of t + 1-dimensional vectors: in the following

we will use QQQ∗ .= [QQQ∗T
q∗]T and CCC∗ .= [CCC∗T

c∗]T and the pruning equations are

α̂ααt+1 = αααt+1 −
α∗

c∗ + q∗
(QQQ∗ +CCC∗)

ĈCCt+1 = CCCt+1 +
1

q∗

(
QQQ

∗
QQQ

∗T
)

−
1

q∗ + c∗
(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)

T
(D.13)

and it is easy to check that the updates will result in the last row and column being all zeros. In

computing the KL-divergence we will use the identities from the matrix algebra:

(CCCt+1 +QQQt+1)
−1

(CCC∗ +QQQ∗) = eeet+1 and KKKt+1QQQ
∗ = eeet+1

Based on the first identity, the term containing the mean is

(αααt+1 − α̂ααt+1)
(
CCCt+1 +KKK−1

t+1

)−1

(αααt+1 − α̂ααt+1) =
α∗2

q∗ + c∗
(D.14)

The logarithm of the determinants is transformed, using the determinants of the block-diagonal ma-

trices, in eq. (A.4):

∣∣∣ĈCCt+1 +QQQt+1

∣∣∣ =

∣∣∣∣∣∣∣∣

CCC
(r) +QQQ(r) + 1

q∗
QQQQQQ

T − 1
q∗ + c∗

(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)
T

QQQ
∗

QQQ
∗T

q∗

∣∣∣∣∣∣∣∣

=

∣∣∣∣CCC
(r) +QQQ(r) −

1

q∗ + c∗
(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)

T

∣∣∣∣ q∗

(D.15)

and using a similar decomposition for the denominator we have

|CCCt+1 +QQQt+1| =

∣∣∣∣∣
CCC

(r) +QQQ(r)
CCC
∗ +QQQ∗

QQQ
∗T +CCC∗T

q∗ + c∗

∣∣∣∣∣

=

∣∣∣∣CCC
(r) +QQQ(r) −

1

q∗ + c∗
(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)

T

∣∣∣∣ (q∗ + c∗)

(D.16)
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Appendix D. KL-optimal parameter reduction

and the logarithm of the ratio has the simple expression as

ln
∣∣∣
(
ĈCCt+1 +QQQt+1

)
(CCCt+1 +QQQt+1)

−1
∣∣∣ = ln

q∗

q∗ + c∗
(D.17)

Finally, using the invariance of the trace of a product with respect to circular permutation of its

elements, the trace term is:

tr

[(
QQQ

∗
QQQ

∗T

q∗
−

(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)
T

q∗ + c∗

)
(CCCt+1 +QQQt+1)

−1

]

=
1

q∗
QQQ

∗T (CCCt+1 +QQQt+1)
−1
QQQ

∗ −
1

q∗ + c∗
(QQQ∗ +CCC∗)

T
(CCCt+1 +QQQt+1)

−1
(QQQ∗ +CCC∗)

=
1

q∗
QQQ

∗T

[
KKKt+1 −KKKt+1

(
CCC

−1
t+1 +KKKt+1

)−1

KKKt+1

]
QQQ

∗ − 1

= 1−
1

q∗
eeeTt+1

(
CCC

−1
t+1 +KKKt+1

)−1

eeet+1 − 1 = −
s∗

q∗
(D.18)

where s∗ is the last diagonal element of the matrix (CCC−1
t+1+KKKt+1)

−1. Summing up eqs (D.14), (D.17),

and (D.18), we have the minimum KL-distance

2KL(ĜPt+1‖GPt+1) =
α∗2

q∗ + c∗
−
s∗

q∗
+ ln

(
1+

c∗

q∗

)
(D.19)

D.2 Updates for SSSt+1 = (CCC−1
t+1 + KKKt+1)

−1

Matrix inversion is a sensitive issue and we are trying to avoid it. In computing the score for a given

BV in the previous section, eq. (D.19), we need the diagonal element of the matrix SSS = (CCC−1 +KKK)−1.

In this section we sketch an iterative update rule for the matrix SSS, and an update when the KL-optimal

removal of the last BV element is performed.

First we establish the update rules for the inverse of matrix CCCt+1. By using the matrix inversion

lemma and the update from eq. (2.46), the matrix CCC−1 is

CCC
−1
t+1 =

[
CCC

−1
t −kkkt+1

−kkkTt+1 (r(t+1))−1 + kkkTt+1CCCtkkkt+1

]
(D.20)

then we combine the above relation with the block-diagonal decomposition of the kernel matrix, and

observing that the t× 1 column vector is zero, we have

(
CCC

−1
t+1 +KKKt+1

)−1

=



(
CCC

−1
t +KKKt

)−1

000

000
T

a−1


 where a = (r(t+1))−1 + kkkTt+1CCCtkkkt+1 + k∗

and this shows that the update for the matrix SSSt+1 is particularly simple: we only need to add a value

on the last diagonal element.

When removing a BV however, the resulting matrix will not be diagonal any more. To have an

update quadratic in the size of SSS, we use the matrix inversion lemma

SSSt+1 =QQQt+1 −QQQt+1 (CCCt+1 +QQQt+1)
−1
QQQt+1

and after the pruning we are looking for the t× t matrix ŜSSt+1 =
(
ĈCC

−1

t+1 +KKKt

)−1

. We can obtain this

by using eq. (D.11): the pruned
(
ĈCCt+1 +QQQt

)−1

is the matrix obtained by cutting the last row and

column from (CCCt+1 +QQQt+1)
−1

. The computation of the updated matrix ŜSSt+1 has thus three steps:
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Appendix D. KL-optimal parameter reduction

1. compute

(CCCt+1 +QQQt+1)
−1

= KKKt+1 −KKKt+1SSSt+1KKKt+1

2. compute the reduced matrix
(
ĈCCt+1 +QQQt

)−1

by trimming, use eq. (D.11)

3. compute the updated ŜSSt+1 using

ŜSSt+1 =QQQt −QQQt

(
ĈCCt+1 +QQQt

)−1

QQQt
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Diagonalisation of matrix CCC

In this appendix we are deducing the online learning rules for a restricted GP where only the diagonal

elements of the matrix CCC parametrising the posterior kernel are nonzero, similarly to the parametri-

sation of the covariances in the kernel spaces proposed by Tipping [2001b].

We are doing the simplification by including the constraint in the learning rule: projecting to a

subspace of GP’s with the kernel specified using only diagonal elements, ie.

Kpost(xxx,xxx
′) = K0(xxx,xxx

′) +
∑

i

K0(xxx,xxxi)CiiK0(xxxi, xxx
′) (E.1)

and if we use matrix notation and the design matrixΦΦΦ = [φ1, . . . , φN] then we can write the posterior

covariance matrix in the feature space specified by the design matrix and the diagonal matrix CCC as

ΣΣΣpost = IIIH +ΦΦΦCCCΦΦΦT (E.2)

In online learning setup the KL-divergence between the true posterior and the projected one is min-

imised. Differentiating the KL-divergence from eq. (3.15) with respect to a diagonal element Cii leads

to the expression

0 = φTi ΣΣΣt+1 [−ΣΣΣt+1 +ΣΣΣpost]ΣΣΣt+1φi

ΣΣΣpost = ΣΣΣt −ΣΣΣtφt+1r
(t+1)φTt+1ΣΣΣt+1

with r(t+1) the scalar coefficient obtained using the online learning rule and φt+1 the feature vector

corresponding to the new datum.

We have t + 1 equations for t + 1 variables, but the system is not linear. Substituting the forms

for the covariances ΣΣΣ and using the matrix inversion lemma leads to the system of equations:

diag

[ (
KKK

−1
B +CCCt+1

)−1

(CCCt+1 −CCCpost)
(
KKK

−1
B +CCCt+1

)−1
]

= 0 (E.3)

CCCpost = CCCt + (CCCtkkkt+1 + eeet+1) r
(t+1) (CCCtkkkt+1 + eeet+1)

T
(E.4)

We see that we have a projection with respect to the unknown matrixCCCt+1, giving no analytic solution.

Using CCCpost from eq. (E.4) the solution is written

diag
(
KKK

−1
B +CCCt+1

)−1

= diag
(
KKK

−1
B +CCCpost

)−1
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We see that, to obtain the “simplified” solution we still need to invert full matrices. The posterior

covariance is not diagonal either. As a consequence we will be required to perform iterative approxima-

tions, also considered in [Tipping 2001b]. From this we conclude that the diagonalisation of parameter

matrix CCC is not feasible as it does not introduce any computational benefit and we believe that by

keeping the size of the BV set at a reasonable size is a better alternative then a diagonalisation of a

possibly larger BV set.
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Updates for the wind fields

In this section we obtain the coefficients for the online update of the vectorial GP from Section 5.4.

For this we need a single likelihood term, indexed t, and the vector GP marginal at time t−1, denoted

qt−1(zzz) where z is the two-dimensional wind vector. The single “likelihood” term has a mixture of 4

Gaussians (following the description from Evans et al. [2000]) pm(zzzt|ωωω,σ
0
t ) =

∑4
j=1 βtjφ(zzzt|ccctj, σtj)

in the numerator and the GP marginal at xxxt, a two-dimensional Gaussian denoted q0(zzz|µµµ0,WWW0) in

the denominator:

pm(zzzt|ωωω,σ
0
t )p(σ

0
t)

q0(zzz|µµµ0,WWW0)
=

4∑

j=1

βtj
φ(zzzt|ccctj, σtj)

q0(zzz|ααα0,WWW0)
(F.1)

with the mixture coefficients
∑

j βtj = 1 and φ(zzzt|ccctj, σtj) is one component of the Gaussian mixture:

a spherical Gaussian centered at ccctj and with spherical variance σtjIII2 = AAAtj. We will use zero prior

mean functions, thus we do not write µµµ0 in what follows.

We need to compute the average of the likelihood in eq. (F.1) with respect to the Gaussian

qt−1(zzz|µµµt,WWWt) where (µµµt,WWWt) are the mean and variance of the GP marginal at xxxt. Using these

notations we write the required average as:

g(〈zzz〉t) = g(µµµt) =

∫

dzzz

4∑

j=1

βtj
φ(zzzt|ccctj,AAAtj)

q0(zzz|ααα0,WWW0)
qt−1(zzz|µµµt,WWWt) (F.2)

where the dependence on the mean of the GP marginal µµµt is explicitly written. We decompose

eq. (F.2) into the sum:

g(µµµt) =

4∑

j=1

βtj

∫

dzzz
φ(zzzt|ccctj,AAAtj)

q0(zzz|ααα0,WWW0)
qt−1(zzz|µµµt,WWWt)

=

4∑

j=1

βtjstj(µµµt)

(F.3)

and in the following we compute stj(µµµt). We have the same integral for each stj(µµµt), we remove the

indices and compute a generic

s(µµµ) =

∫

dzzz
φ(zzz|ccc,AAA)

q0(zzz|WWW0)
qt−1(zzz|µµµ,WWW). (F.4)

All distributions involved are Gaussian, the resulting distribution thus will also be a Gaussian one

with the general form:

s = K exp(−
1

2
F)
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with the quadratic term

F = cccTAAA−1
ccc+µµµTWWW−1

µµµ−
(
AAA

−1
ccc+WWW−1

µµµ
)T (

AAA
−1 +WWW−1 −WWW−1

0

)−1 (
AAA

−1
ccc+WWW−1

µµµ
)

(F.5)

or equivalently (using the matrix inversions from eq. (A.1)):

F = cccTAAA−1

[
III2 −

(
WWW

−1 +AAA−1 −WWW−1
0

)−1
]
AAA

−1
ccc

+µµµT
[
WWW +

(
AAA

−1 −WWW−1
0

)−1
]−1

µµµ− 2µµµT
(
AAA+WWW −AAAWWW−1

0 WWW
)−1

ccc

(F.6)

and the multiplying constant

K2 =
|WWW0|

|WWW +AAA−AAAWWW−1
0 WWW|

. (F.7)

The first and second order differentials of F :

1

2
∂µµµF =

[
WWW +

(
AAA

−1 −WWW−1
0

)−1
]−1

µµµ−
(
AAA+WWW −AAAWWW−1

0 WWW
)−1

ccc

1

2
∂2µµµF =

[
WWW +

(
AAA

−1 −WWW−1
0

)−1
]−1

. (F.8)

We can substitute back each stj(µµµt) = Ktj exp(−Ftj/2) and differentiate log g(µµµt) with respect to µµµt

to get the quantities required for the updates of the vector GP in eq. (5.38):

∂µµµ lng(µµµt) = ∂µµµ ln


∑

j

βtjstj


 =

∑
j βtj∂µµµstj∑
j βtjstj

= −

∑
j βtjstj

1
2
∂µµµFtj

∑
j βtjstj

∂2µµµ lng(µµµt) = ∂2µµµ ln


∑

j

βtjstj


 =

∑
j βtj∂

2
µµµstj

∑
j βtjstj

−
(
∑

j βtj∂µµµstj)
2

(
∑

j βtjstj)
2

=

∑
j βtjstj

[(
1
2
∂µµµFtj

) (
1
2
∂µµµFtj

)T
− 1

2
∂2µµµFtj

]

∑
j βtjstj

−

(∑
j βtjstj

1
2
∂µµµFtj

)(∑
j βtjstj

1
2
∂µµµFtj

)T

(
∑

j βtjstj)
2

(F.9)

where βtjstj is the responsbility of the j-th component of the mixture for generating data xxxt.
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The Sparse EP algorithm

Table G.1: Detailed description of the sparse GP algorithm using the iterative EP extension.

Init. Choose the kernel type and parameters. Set the MBV and εtol.

Set the BV set to empty set. Set (ααα,CCC), (aaa,ΛΛΛ,PPP), and (KKK,QQQ) to empty values.

t = 0

Iterate For a selected example (yyyt+1, xxxt+1) do

(a) Par. adj.

(EP)

If λt+1 6= 0 then (subtract contribution from previous iteration)

hhht+1 = CCCKKKpppt+1 + pppt+1

v−1
t+1 = λ−1

t+1 − pppTt+1KKKpppt+1 − pppTt+1KKKCCCKKKpppt+1

α̃αα = ααα+hhht+1vt+1
(
αααTKKKpppt+1 − at+1

)

C̃CC = CCC+ vt+1hhht+1hhh
T
t+1

(b) Online co-

eff.

Compute q(t+1) and r(t+1) using GP with (α̃αα, C̃CC), the first and second deriva-

tives of:

ln

〈
P(yyyt+1|xxxt+1, ft+1)

〉

GP(α̂αα, ĈCC)

(c) Scalars &

Vectors
k∗t+1 = K0(xxxt+1, xxxt+1) kkkt+1 = [K0(xxxt+1, xxxj)]

T
j∈BV

êeet+1 =QQQkkkt+1 γt+1 = k∗t+1 − kkkTt+1êeet+1

σ2t+1 = k∗t+1 + kkkTt+1CCCkkkt+1 ηt+1 =
(
1+ γt+1r

(t+1)
)−1

(d) EP update

at+1 = kkk
T
t+1α̃αα−

q(t+1)

r(t+1)

λt+1 = −
(
(r(t+1))−1 + σ2t+1

)−1

...continued
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(e) Geom. test If γt+1 < εtol then (perform full update)

ssst+1 = C̃CCkkkt+1 + êeet+1

pppt+1 = êeet+1

otherwise (perform sparse update)

• add xxxt+1 to the BV set:

KKK
new = KKK+ (kkkt+1 + eeet+1)(kkkt+1 + eeet+1)

T

QQQ
new = QQQ+ γ−1

t+1(êeet+1 − eeet+1)(êeet+1 + eeet+1)
T

• compute

ssst+1 = C̃CCkkkt+1 + eeet+1

pppt+1 = eeet+1

(where pppi is the i-th row of matrix PPP.)

(f) GP par.

update
αααnew = α̂αα+ q(t+1)ηt+1 ssst+1

CCC
new = ĈCC+ r(t+1)ηt+1 ssst+1sss

T
t+1

(g) BV removal If #BV > MBV (remove a BV )

• compute scores for each BV (i):

εi =
αi

qi + ci

• find the BV with minimal score j = argmin{εi|i ∈ BV}

• remove BVj from the BV set, using notation from Fig. 3.3 and Fig. D.1,

with BV set rearranged such that the j-th element is the last one.

αααnew = α(r) −
α∗

c∗ + q∗
(QQQ∗ +CCC∗)

CCC
new = CCC

(r) +
QQQ

∗
QQQ

∗T

q∗
−

(QQQ∗ +CCC∗) (QQQ∗ +CCC∗)
T

q∗ + c∗

QQQ
new = QQQ

(r) −
QQQ

∗
QQQ

∗T

q∗

PPP
new = PPP

(r) −
PPP
∗
QQQ

∗T

q∗

where PPP(r) is the matrix PPP without the j-th column (or the last one, if

we reordered the BV set), and PPP∗ is the column vector containing the

projection coefficients corresponding to the j-th BV element.

...continued
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(h) Goto (a) t = t+ 1

Select a new input (yyyt+1, xxxt+1) to process.

Restart iteration.
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