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Applications of Machine Learning

 Web search, email spam detection, collaborative
filtering, game player ranking, video games, real-time
stereo, protein folding, image editing, jet engine anomaly
detection, fluorescence in-situ hybridisation, signature
verification, satellite scatterometer, cervical smear
screening, human genome analysis, compiler
optimization, handwriting recognition, breast X-ray
screening, fingerprint recognition, fast spectral analysis,
one-touch microwave oven, monitoring of premature
babies, text/graphics discrimination, event selection in
high energy physics, electronic nose, real-time tokamak
control, crash log analysis, QSAR, backgammon, sleep
EEG staging, fMRI analysis, speech recognition, natural
language processing, face detection, data visualization,
computer Go, satellite track removal, iris recognition, ...



Three Important Developments

« 1. Adoption of a Bayesian framework
« 2. Probabilistic graphical models
« 3. Efficient techniques for approximate inference



lllustration: Bayesian Ranking

e Goalis to rank player skill from outcome of games
e Conventional approach: Elo (used in chess)
— maintains a single strength value for each player
— cannot handle team games, or more than 2 players




Bayesian Ranking: TrueSkill™

« Ralf Herbrich, Thore Graepel, Tom Minka
o Xbox 360 Live (November 2005)

— millions of players

— billions of service-hours

— hundreds of thousands of game outcomes per day
* First “planet-scale” application of Bayesian methods?
 NIPS (2006) oral




Expectation Propagation on a Factor Graph
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New Book

e Springer (2006)

o 738 pages, hardcover

o Full colour

 Low price

e 431 exercises + solutions

« Matlab software and
companion text with
lan Nabney

http://research.microsoft.com/~cmbishop/PRML




Mixture Models and EM

 K-means clustering

e (Gaussian mixture model

e Maximum likelihood and EM

« Bayesian GMM and variational inference

Please ask questions!



Old Faithful




Old Faithful Data Set
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K-means Algorithm

o Goal: represent a data set in terms of K clusters each of
which is summarized by a prototype p;

 Initialize prototypes, then iterate between two phases:
— E-step: assign each data point to nearest prototype
— M-step: update prototypes to be the cluster means
o Simplest version is based on Euclidean distance
— re-scale Old Faithful data






























Responsibilities

* Responsibilities assign data points to clusters

Tnk € {O, 1}
such that
Zrnk =1
k

« Example: 5 data points and 3 clusters

(1 0 0)
0 01
(Tnk): 010
0 01
\100)




K-means Cost Function
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Minimizing the Cost Function

* E-step: minimize Jw.r.t.

0= 22 Gllx .l

« Convergence guaranteed since there is a finite number
of possible settings for the responsibilities
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Probabilistic Clustering

* Represent the probability distribution of the data as a
mixture model

— captures uncertainty in cluster assignments

— gives model for data distribution

— Bayesian mixture model allows us to determine K
e Consider mixtures of Gaussians



The Gaussian Distribution

e Multivariate Gaussian
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Likelihood Function

e Data set

D={x,} n=1,...,N @

~— —

« Consider first a single Gaussian
 Assume observed data points generated independently
N
p(Dlﬂ,E) — N(Xn|u72)

n=1

* Viewed as a function of the parameters, this is known as
the likelihood function



Maximum Likelihood

o Set the parameters by maximizing the likelihood function
« Equivalently maximize the log likelihood
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Maximum Likelihood Solution

e Maximizing w.r.t. the mean gives the sample mean



Gaussian Mixtures

 Linear super-position of Gaussians \ &)
K
p(x) = > mN(x|pg, Xi)
k=1 |

« Normalization and positivity require )');C

K

Y mp=1 0<m<1

k=1

e Can interpret the mixing coefficients as prior probabilities

K

p(x) = > p(k)p(x|k)

k=1



Example: Mixture of 3 Gaussians




Contours of Probability Distribution
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Surface Plot




Sampling from the Gaussian

 To generate a data point:
— first pick one of the components with probability 7.
— then draw a sample Xy, from that component
 Repeat these two steps for each new data point



Synthetic Data Set
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Fitting the Gaussian Mixture

 We wish to invert this process — given the data set, find
the corresponding parameters:

— mixing coefficients
— means

— covariances

* |If we knew which component generated each data point,
the maximum likelihood solution would involve fitting
each component to the corresponding cluster

 Problem: the data set is unlabelled
 We shall refer to the labels as latent (= hidden) variables



Synthetic Data Set Without Labels
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Posterior Probabilities

« We can think of the mixing coefficients as prior
probabilities for the components

e For a given value of x we can evaluate the
corresponding posterior probabillities, called
responsibilities

 These are given from Bayes’ theorem by

p(k)p(x|k) ~
p(x)
WkN(X“"’kv Ek)

V(%) = p(k|x)

K

> miN(x|p;, 35)
j=1

rV



Posterior Probabillities (colour coded)
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Latent Variables
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Maximum Likelihood for the GMM

» The log likelihood function takes the form
N K
|np(D|7T, 22 Z) — Z In Z WkN(Xn“l’ka Ek)
n=1 k=1

« Note: sum over components appears inside the log
 There is no closed form solution for maximum likelihood



Over-fitting in Gaussian Mixture Models

« Singularities in likelihood function when a component
‘collapses’ onto a data point: 00

11 7\

(27)1/20, - .

then consider o; — 0

« Likelihood function gets larger as we add more =
components (and hence parameters) to the model

— not clear how to choose the number K of components



Problems and Solutions

 How to maximize the log likelihood

— solved by expectation-maximization (EM) algorithm
 How to avoid singularities in the likelihood function

— solved by a Bayesian treatment
« How to choose number K of components

— also solved by a Bayesian treatment



EM Algorithm — Informal Derivation

e Let us proceed b}\/j simply differentiating the log likelihood
K.
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EM Algorithm — Informal Derivation

« Similarly for the covariances

N
Z ’Vj(Xn)(Xn — Hj)(Xn — Hj)T
. — n=1
J N
Z W’j(Xn)
n=1

* For mixing coefficients use a Lagrange multiplier to give



EM Algorithm — Informal Derivation

 The solutions are not closed form since they are coupled
e Suggests an iterative scheme for solving them:
— make Initial guesses for the parameters
— alternate between the following two stages:
1. E-step: evaluate responsibilities
2. M-step: update parameters using ML results
« Each EM cycle guaranteed not to decrease the likelihood





















Relation to K-means

« Consider GMM with common covariances c T

e Take limit ¢ —+ O
* Responsibilities become binary

i @xp { = [|xn — pil|?/2¢]
¥ 5 exp { —llxn — pu;l|?/ 2]

Vi(Xn) = > s €10, 1}

« EM algorithm is precisely equivalent to K-means



Bayesian Mixture of Gaussians

 Include prior distribution over parameters

,——— D= 2"
p(p, A, ) - -

« Make predictions by marginalizing over parameters
— c.f. point estimate from maximum likelihood



Bayesian Mixture of Gaussians

« Conjugate priors for the parameters:
— Dirichlet prior for mixing coefficients

p(w) = C(ap) H o~

— Normal-Wishart prior for means and precisions

K

~—1 S
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p(p, A) =

where the Wishart distribution is given by

1
W(AIW, ) o |A]V—4=1)/2 exp (—ETr(W_lA)>
A=3x"1



Variational Inference

 EXxact solution is intractable
e Variational inference:
— extension of EM

— alternate between updating posterior over parameters
and posterior over latent variables

— again convergence Is guaranteed



lllustration: a single Gaussian

e Convenient to work with precision
r=1/0°

» Likelihood function

r\N/2 r N
p(D|p, 1) = (2—) exp{— S (zn — p)?

7

e Prior over parameters

p(p, T)



Variational Inference P! :f jf( Plp<)f iy e

o Goalisto find true posterior distribution

p(D|p, 7)p(w, )
p(D)

mlir 1)) —
P\Hy =) —

* Factorized approximation

q(p, 7) = q(p)q(T)

» Alternately update each factor to minimize a measure of
closeness between the true and approximate distributions



Initial Configuration
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After Updating q(u)




After Updating q(7)
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Variational Equations for GMM

¢(z) = ] 1]

~ ’71//2 f d Vi NT~x7 / 1
nk X WkAk expi—25k— 2(Xn—mk) Wk(Xn—mk)r

~ d v +1—1
InA, = ¢( L )+dln2—ln|Wk|
=~ 2/
Inm, = Y(ag) — (@)
¢"(w) = D(wlo) ar = ag + Ng v = Vo + Ng
¢ (g, Ax) = N(pymy, B AL W(AR Wy, 1)
1 _
my = - (Bomo + NiXp) Bk = Po + Nk
w1l — wlinN,.S Bo Nk (Xr — mo) (X — mO)T



Sufficient Statistics

N
N, — N O/~ o\
N — /2 \*nk/
n=1
1 N
X = — >_‘,<anl¢>Xn
jvanl
4 N
S, = — Sz Mxo — %M Mx — )T
k N, 2w \Enk/\Xn — X ){(Xn = Xk
TR n=1

Small computational overhead compared to maximum
likelihood EM



Bayesian Model Comparison

 Multiple models (e.g. different values of K) with priors

p(M;)

* Posterior probabilities
p(M;|D) o< p(D|M;)p(M;)

* For equal priors, models are compared using evidence
p(D|M;)

« Variational inference maximizes lower bound on p(D|M;)



Evidence vs. K for Old Faithful
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Bayesian Model Complexity
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Take-home Messages

 Maximum likelihood gives severe over-fitting
— singularities
— favours ever larger numbers of components
e Bayesian mixture of Gaussians
— no singularities
— determines optimal number of components
« Variational inference
— effective solution for Bayesian GMM
— little computational overhead compared to EM



Viewgraphs, tutorials and
publications available from:

http://research.microsoft.com/~cmbishop




