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Applications of Machine Learning

• Web search, email spam detection, collaborative 
filtering, game player ranking, video games, real-time 
stereo, protein folding, image editing, jet engine anomaly 
detection, fluorescence in-situ hybridisation, signature 
verification, satellite scatterometer, cervical smear 
screening, human genome analysis, compiler 
optimization, handwriting recognition, breast X-ray 
screening, fingerprint recognition, fast spectral analysis, 
one-touch microwave oven, monitoring of premature 
babies, text/graphics discrimination, event selection in 
high energy physics, electronic nose, real-time tokamak
control, crash log analysis, QSAR, backgammon, sleep 
EEG staging, fMRI analysis, speech recognition, natural 
language processing, face detection, data visualization, 
computer Go, satellite track removal, iris recognition, …



Three Important Developments

• 1. Adoption of a Bayesian framework
• 2. Probabilistic graphical models
• 3. Efficient techniques for approximate inference



Illustration: Bayesian Ranking

• Goal is to rank player skill from outcome of games
• Conventional approach: Elo (used in chess)

– maintains a single strength value for each player
– cannot handle team games, or more than 2 players



Bayesian Ranking: TrueSkillTM

• Ralf Herbrich, Thore Graepel, Tom Minka
• Xbox 360 Live (November 2005)

– millions of players
– billions of service-hours
– hundreds of thousands of game outcomes per day

• First “planet-scale” application of Bayesian methods?
• NIPS (2006) oral



Expectation Propagation on a Factor Graph



New Book

• Springer (2006)
• 738 pages, hardcover 
• Full colour
• Low price
• 431 exercises + solutions
• Matlab software and 

companion text with
Ian Nabney

http://research.microsoft.com/~cmbishop/PRML



Mixture Models and EM

• K-means clustering 
• Gaussian mixture model
• Maximum likelihood and EM
• Bayesian GMM and variational inference

Please ask questions!



Old Faithful



Old Faithful Data Set
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K-means Algorithm

• Goal: represent a data set in terms of K clusters each of 
which is summarized by a prototype

• Initialize prototypes, then iterate between two phases:
– E-step: assign each data point to nearest prototype
– M-step: update prototypes to be the cluster means

• Simplest version is based on Euclidean distance
– re-scale Old Faithful data





















Responsibilities

• Responsibilities assign data points to clusters

such that 

• Example: 5 data points and 3 clusters



K-means Cost Function

prototypesresponsibilities

data



Minimizing the Cost Function

• E-step: minimize J w.r.t.

• M-step: minimize J w.r.t

• Convergence guaranteed since there is a finite number 
of possible settings for the responsibilities





Probabilistic Clustering

• Represent the probability distribution of the data as a 
mixture model
– captures uncertainty in cluster assignments
– gives model for data distribution
– Bayesian mixture model allows us to determine K

• Consider mixtures of Gaussians



The Gaussian Distribution

• Multivariate Gaussian

mean covariance
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Likelihood Function

• Data set

• Consider first a single Gaussian
• Assume observed data points generated independently

• Viewed as a function of the parameters, this is known as 
the likelihood function



Maximum Likelihood

• Set the parameters by maximizing the likelihood function
• Equivalently maximize the log likelihood



Maximum Likelihood Solution

• Maximizing w.r.t. the mean gives the sample mean

• Maximizing w.r.t covariance gives the sample covariance



Gaussian Mixtures

• Linear super-position of Gaussians

• Normalization and positivity require

• Can interpret the mixing coefficients as prior probabilities



Example: Mixture of 3 Gaussians
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Contours of Probability Distribution
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Surface Plot



Sampling from the Gaussian

• To generate a data point:
– first pick one of the components with probability 
– then draw a sample       from that component

• Repeat these two steps for each new data point



Synthetic Data Set
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Fitting the Gaussian Mixture

• We wish to invert this process – given the data set, find 
the corresponding parameters:
– mixing coefficients
– means 
– covariances

• If we knew which component generated each data point, 
the maximum likelihood solution would involve fitting 
each component to the corresponding cluster

• Problem: the data set is unlabelled
• We shall refer to the labels as latent (= hidden) variables



Synthetic Data Set Without Labels
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Posterior Probabilities

• We can think of the mixing coefficients as prior 
probabilities for the components

• For a given value of     we can evaluate the 
corresponding posterior probabilities, called 
responsibilities

• These are given from Bayes’ theorem by



Posterior Probabilities (colour coded)
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Latent Variables
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Maximum Likelihood for the GMM

• The log likelihood function takes the form

• Note: sum over components appears inside the log
• There is no closed form solution for maximum likelihood



Over-fitting in Gaussian Mixture Models

• Singularities in likelihood function when a component 
‘collapses’ onto a data point:

then consider

• Likelihood function gets larger as we add more 
components (and hence parameters) to the model
– not clear how to choose the number K of components



Problems and Solutions

• How to maximize the log likelihood
– solved by expectation-maximization (EM) algorithm

• How to avoid singularities in the likelihood function
– solved by a Bayesian treatment

• How to choose number K of components
– also solved by a Bayesian treatment



EM Algorithm – Informal Derivation

• Let us proceed by simply differentiating the log likelihood



EM Algorithm – Informal Derivation

• Similarly for the covariances

• For mixing coefficients use a Lagrange multiplier to give



EM Algorithm – Informal Derivation

• The solutions are not closed form since they are coupled
• Suggests an iterative scheme for solving them:

– make initial guesses for the parameters
– alternate between the following two stages:

1. E-step: evaluate responsibilities
2. M-step: update parameters using ML results

• Each EM cycle guaranteed not to decrease the likelihood















Relation to K-means

• Consider GMM with common covariances
• Take limit
• Responsibilities become binary 

• EM algorithm is precisely equivalent to K-means 



Bayesian Mixture of Gaussians

• Include prior distribution over parameters

• Make predictions by marginalizing over parameters
– c.f. point estimate from maximum likelihood



Bayesian Mixture of Gaussians

• Conjugate priors for the parameters:
– Dirichlet prior for mixing coefficients

– Normal-Wishart prior for means and precisions

where the Wishart distribution is given by



Variational Inference

• Exact solution is intractable
• Variational inference: 

– extension of EM
– alternate between updating posterior over parameters 

and posterior over latent variables
– again convergence is guaranteed



Illustration: a single Gaussian

• Convenient to work with precision

• Likelihood function

• Prior over parameters



Variational Inference

• Goal is to find true posterior distribution

• Factorized approximation

• Alternately update each factor to minimize a measure of 
closeness between the true and approximate distributions



Initial Configuration
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After Updating
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After Updating
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Converged Solution
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Variational Equations for GMM



Sufficient Statistics

• Small computational overhead compared to maximum 
likelihood EM



Bayesian Model Comparison

• Multiple models (e.g. different values of K) with priors

• Posterior probabilities

• For equal priors, models are compared using evidence

• Variational inference maximizes lower bound on



Evidence vs. K for Old Faithful



Bayesian Model Complexity



Take-home Messages

• Maximum likelihood gives severe over-fitting
– singularities
– favours ever larger numbers of components

• Bayesian mixture of Gaussians 
– no singularities
– determines optimal number of components

• Variational inference
– effective solution for Bayesian GMM
– little computational overhead compared to EM



Viewgraphs, tutorials and
publications available from:

http://research.microsoft.com/~cmbishop


