Construction Approaches for Component-Based Systems PhD Thesis

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Babeș-Bolyai University Cluj-Napoca

2008

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

 < □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ >

 Construction Approaches for Component-Based Systems

Outline

Setting the context Complete system construction Partial system construction Metrics Execution model Applications Conclusions and Future work Questions

- Setting the context
- 2 Complete system construction
 - Simple Component Selection Problem
 - Multicriteria-based Component Selection Problem
- Partial system construction
 - Adaptation architectures
 - Metrics
 - Software metrics to quantify quality attributes of CBD
 - Metrics-based selection of a component assembly
- 5 Execution model
 - Operations and execution rules
- 6 Applications
- Conclusions and Future work
 - Future work

Questions

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

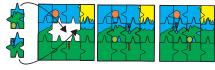
 < □ > < □</td>
 < Ξ > < Ξ >

 </t

Setting the context

- Component-Based Software Engineering
- Component integration and Component composition

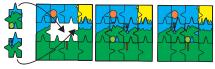
Setting the context


- Component-Based Software Engineering
- Component integration and Component composition

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting the context

- Component-Based Software Engineering
- Component integration and Component composition

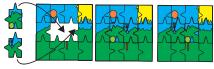


Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting the context

- Component-Based Software Engineering
- Component integration and Component composition

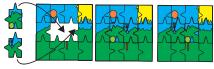


- Complete system construction
 - Component Selection Problem

イロト イポト イヨト イヨト

Setting the context

- Component-Based Software Engineering
- Component integration and Component composition



- Complete system construction
 - Component Selection Problem
- Partial system construction. Component Adaptation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Setting the context

- Component-Based Software Engineering
- Component integration and Component composition

- Complete system construction
 - Component Selection Problem
- Partial system construction. Component Adaptation
- Metrics in Component-Based Software Engineering

Simple Component Selection Problem Multicriteria-based Component Selection Problem

・ロン ・回と ・ヨン ・ヨン

Component Selection Problem

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Component Selection Problem

Consider the set $SR = \{r_1, r_2, ..., r_n\}$, and the set $SC = \{c_1, c_2, ..., c_m\}$.

Each component c_i can satisfy a subset of the requirements from SR,

$$SR_{c_i} = \{r_{i_1}, r_{i_2}, ..., r_{i_k}\}.$$

The goal is to find a set of components *Sol* in such a way that every requirement r_j from the set *SR* may have assigned a component c_i from *Sol* where r_i is in SR_{c_i} .

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Component Selection Problem

Consider the set $SR = \{r_1, r_2, ..., r_n\}$, and the set $SC = \{c_1, c_2, ..., c_m\}$.

Each component c_i can satisfy a subset of the requirements from SR,

$$SR_{c_i} = \{r_{i_1}, r_{i_2}, ..., r_{i_k}\}.$$

The goal is to find a set of components *Sol* in such a way that every requirement r_j from the set *SR* may have assigned a component c_i from *Sol* where r_j is in SR_{c_i} .

- Simple Component Selection Problem ([Fox et al., 2004])
- Multicriteria-based Component Selection Problem
 ([Haghpanah et al., 2007])

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simple Component Selection Problem

Simple Component Selection Problem approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

・ロン ・回と ・ヨン ・ヨン

Simple Component Selection Problem

Simple Component Selection Problem approaches

• Backtracking-based composition approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Simple Component Selection Problem

Simple Component Selection Problem approaches

- Backtracking-based composition approaches
- Automata-based composition approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Simple Component Selection Problem

Simple Component Selection Problem approaches

- Backtracking-based composition approaches
- Automata-based composition approaches
- Artificial intelligence-based composition approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backtracking-based composition approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backtracking-based composition approaches

• All Possible Components Configurations (APCC) algorithm [Fanea and Motogna, 2004]

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backtracking-based composition approaches

- All Possible Components Configurations (APCC) algorithm [Fanea and Motogna, 2004]
- Temporal Components Composition Restraint (TCCR) algorithm [Vescan, 2006] (ISI Proceeding), [Vescan, 2007b]

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backtracking-based composition approach (cont.)

Source component

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

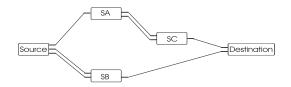
Backtracking-based composition approach (cont.)

- Source component
- Destination component

Simple Component Selection Problem Multicriteria-based Component Selection Problem

<ロ> <同> <同> <同> < 回> < 同> < 回> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d >

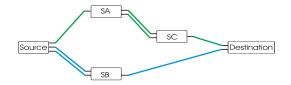
Backtracking-based composition approach (cont.)


- Source component
- Destination component
- Simple component

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

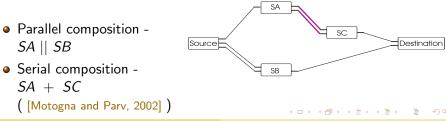
- Source component
- Destination component
- Simple component
- Compound component



Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

- Source component
- Destination component
- Simple component
- Compound component


• Parallel composition -SA || SB

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

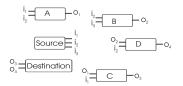
- Source component
- Destination component
- Simple component
- Compound component

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Backtracking-based composition approach (cont.)

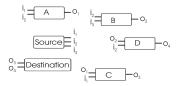

All Possible Components Configurations (APCC) algorithm

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

• Steps:

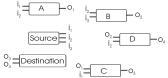

<ロ> <同> <同> <同> < 回> < 同> < 回> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d >

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;

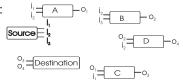


Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;
- Compute the interdependencies: A + C and B + D.

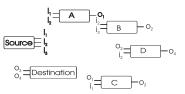


Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;
- Compute the interdependencies: A + C and B + D.
- APCC algorithm

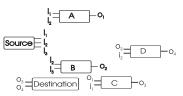


Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;
- Compute the interdependencies: A + C and B + D.
- APCC algorithm

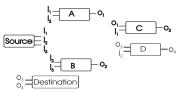


Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;
- Compute the interdependencies: A + C and B + D.
- APCC algorithm

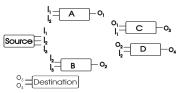

イロト イポト イヨト イヨト

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;
- Compute the interdependencies: A + C and B + D.
- APCC algorithm

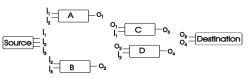

イロト イポト イヨト イヨ

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;
- Compute the interdependencies: A + C and B + D.
- APCC algorithm


イロト イポト イヨト イヨ

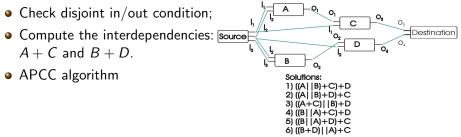
Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

- Steps:
- Check disjoint in/out condition;
- Compute the interdependencies: A + C and B + D.
- APCC algorithm

イロト イポト イヨト イヨ


Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨ

Backtracking-based composition approach (cont.)

All Possible Components Configurations (APCC) algorithm

• Steps:

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backtracking-based composition approach (cont.)

Temporal Components Composition Restraint (TCCR) algorithm

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backtracking-based composition approach (cont.)

Temporal Components Composition Restraint (TCCR) algorithm

• **Data composition restraint** *CSender* \xrightarrow{data} *CReceiver*.

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

Temporal Components Composition Restraint (TCCR) algorithm

- **Data composition restraint** *CSender* \xrightarrow{data} *CReceiver*.
- **Temporal composition restraint** *CPrevious* $\stackrel{\text{before}}{\longrightarrow}$ *CAfter*.

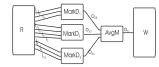
Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

Temporal Components Composition Restraint (TCCR) algorithm

- **Data composition restraint** *CSender* \xrightarrow{data} *CReceiver*.
- **Temporal composition restraint** *CPrevious* $\stackrel{\text{before}}{\longrightarrow}$ *CAfter*.
- Example: Average mark computation system.

Simple Component Selection Problem Multicriteria-based Component Selection Problem


Backtracking-based composition approach (cont.)

Temporal Components Composition Restraint (TCCR) algorithm

- **Data composition restraint** *CSender* \xrightarrow{data} *CReceiver*.
- **Temporal composition restraint** *CPrevious* $\stackrel{\text{before}}{\longrightarrow}$ *CAfter*.

• Example: Average mark computation system.

 Data composition restraints: MarkD₁ → AvgM, MarkD₂ → AvgM, MarkD₃ → AvgM.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Backtracking-based composition approach (cont.)

Temporal Components Composition Restraint (TCCR) algorithm

- **Data composition restraint** *CSender* \xrightarrow{data} *CReceiver*.
- Temporal composition restraint *CPrevious* $\stackrel{\text{before}}{\longrightarrow}$ *CAfter*.
- Example: Average mark computation system.
- Data composition restraints: $MarkD_1 \xrightarrow{o_{25}} AvgM$, $MarkD_2 \xrightarrow{o_{33}} AvgM$, $MarkD_3 \xrightarrow{o_{44}} AvgM$.
- Temporal composition restraint: $MarkD_2 \xrightarrow{before} MarkD_3$.

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Backtracking-based composition approach (cont.)

Temporal Components Composition Restraint (TCCR) algorithm

- **Data composition restraint** *CSender* \xrightarrow{data} *CReceiver*.
- **Temporal composition restraint** *CPrevious* $\stackrel{\text{before}}{\longrightarrow}$ *CAfter*.
- Example: Average mark computation system.
- Data composition restraints: MarkD₁ → AvgM, MarkD₂ → AvgM, MarkD₃ → AvgM.
- Temporal composition restraint: $MarkD_2 \stackrel{before}{\longrightarrow} MarkD_3$.

1	R	$MarkD_1$	$MarkD_2$	$MarkD_3$	AvgM	W
2	R	$MarkD_2$	$MarkD_1$	$MarkD_3$	AvgM	W
3	R	$MarkD_2$	$MarkD_3$	$MarkD_1$	AvgM	W

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Construction Approaches for Component-Based Systems

R

MarkD

MarkD

AvaM

W

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automata-based composition approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automata-based composition approaches

• MakeAllModels algorithm - Input data-based construction [Fanea et al., 2006] (indexed BDI)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Automata-based composition approaches

- MakeAllModels algorithm Input data-based construction [Fanea et al., 2006] (indexed BDI)
- ControlFlow and DataFlow Syntactic Composition algorithm Task-based construction [Vescan and Motogna, 2006b] (indexed Mathematical Reviews), [Vescan and Motogna, 2006a]

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

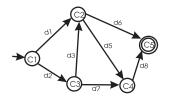
Automata-based composition approaches (cont.)

Automata representation ([Parv et al., 2004])

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Automata-based composition approaches (cont.)


Automata representation ([Parv et al., 2004]) A system of components is defined as a finite automaton $A = (Q, \Sigma, \delta, q_0, F)$, where:

Simple Component Selection Problem Multicriteria-based Component Selection Problem

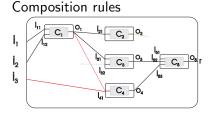
Automata-based composition approaches (cont.)

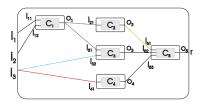
Automata representation ([Parv et al., 2004]) A system of components is defined as a finite automaton $A = (Q, \Sigma, \delta, q_0, F)$, where:

- Q is the set of states,
- Σ is the input alphabet,
- δ is the transition function,
- q₀ is the initial state,
- F is the set of final states.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simple Component Selection Problem Multicriteria-based Component Selection Problem

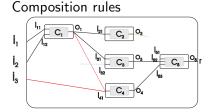

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

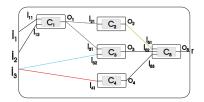

Automata-based composition approaches (cont.)

Composition rules

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Automata-based composition approaches (cont.)

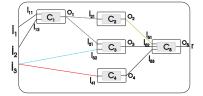




< ロ > < 同 > < 回 > < 回 >

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Automata-based composition approaches (cont.)


< ロ > < 同 > < 回 > < 回 >

No lost data

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Automata-based composition approaches (cont.)

Composition rules l_1 l_2 l_3 l_4 l_4 l_5 l_6 l_6 $l_$

<ロ> <同> <同> <同> < 回> < 同> < 回> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d >

- No lost data
- One provider/inport

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Automata-based composition approaches (cont.)

Composition rules I_1 I_2 I_3 I_4 I_4 I_5 I_6 I_6 $I_$

 $\begin{bmatrix} l_{11} & C_1 & O_1 & l_{21} & C_2 & O_2 \\ l_{12} & l_{12} & C_3 & C_3 & l_{10} \\ l_{12} & l_{12} & l_{12} & l_{12} \\ l_{13} & l_{14} & C_4 & O_4 \end{bmatrix}$

<ロ> <同> <同> <同> < 回> < 同> < 回> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d >

- No lost data
- One provider/inport
- "Broadcasting"

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Automata-based composition approach (cont.)

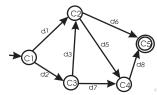
MakeAllModels algorithm Input data-based construction

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Automata-based composition approach (cont.)

MakeAllModels algorithm Input data-based construction


All	Sol. no	Sol. one	Final
Sol.	Lost Data	provider/input	
1323	40	64	1
100%	3.02%	4.83%	0.07%

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Automata-based composition approach (cont.)

MakeAllModels algorithm Input data-based construction

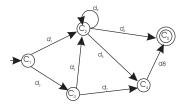
All	Sol.	no	Sol.	one	Final
Sol.	Lost Da	ta	provider	r/input	
1323	40		64		1
100%	3.02%		4.83%		0.07%

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


Automata-based composition approach (cont.)

ControlFlow and DataFlow Syntactic Composition algorithm Task-based construction

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Automata-based composition approach (cont.)

ControlFlow and DataFlow Syntactic Composition algorithm Task-based construction

Sol.	Task execution order
no.	
1	$r, t_1, t_2, t_4, t_3, t_5, w$
2	$r, t_1, t_2, t_4, t_5, t_3, w$
3	$r, t_1, t_4, t_2, t_3, t_5, w$
4	$r, t_1, t_4, t_2, t_5, t_3, w$
5	$r, t_1, t_4, t_3, t_2, t_5, w$
6	$r, t_4, t_1, t_2, t_3, t_5, w$
7	$r, t_4, t_1, t_2, t_5, t_3, w$
8	$r, t_4, t_1, t_3, t_2, t_5, w$

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

・ロン ・回と ・ヨン ・ヨン

Artificial intelligence-based composition approach

• Evolutionary Algorithms-based approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach

- Evolutionary Algorithms-based approaches
 - Evolutionary Algorithms to generate Components Execution Order [Fanea and Diosan, 2005a] (indexed BDI)
 - Evolutionary Algorithms to analyze Component Composition [Fanea and Diosan, 2006a] (indexed ISI-SCI-E)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

・ロン ・部 と ・ ヨ と ・ ヨ と …

Artificial intelligence-based composition approach

- Evolutionary Algorithms-based approaches
 - Evolutionary Algorithms to generate Components Execution Order [Fanea and Diosan, 2005a] (indexed BDI)
 - Evolutionary Algorithms to analyze Component Composition [Fanea and Diosan, 2006a] (indexed ISI-SCI-E)
- Genetic Programming-based approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト 不得 とくほと くほとう

Artificial intelligence-based composition approach

- Evolutionary Algorithms-based approaches
 - Evolutionary Algorithms to generate Components Execution Order [Fanea and Diosan, 2005a] (indexed BDI)
 - Evolutionary Algorithms to analyze Component Composition [Fanea and Diosan, 2006a] (indexed ISI-SCI-E)
- Genetic Programming-based approaches
 - Multi Expression Programming-based approach [Fanea and Diosan, 2005b]
 - Cartesian Genetic Programming-based approach [Fanea and Diosan, 2006b] (indexed ISI-SCI-E)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach

- Evolutionary Algorithms-based approaches
 - Evolutionary Algorithms to generate Components Execution Order [Fanea and Diosan, 2005a] (indexed BDI)
 - Evolutionary Algorithms to analyze Component Composition [Fanea and Diosan, 2006a] (indexed ISI-SCI-E)
- Genetic Programming-based approaches
 - Multi Expression Programming-based approach [Fanea and Diosan, 2005b]
 - Cartesian Genetic Programming-based approach [Fanea and Diosan, 2006b] (indexed ISI-SCI-E)
- P-Systems-based approach [Fanea and Diosan, 2006c] (indexed BDI)

イロト 不得 とくほと くほとう

Simple Component Selection Problem Multicriteria-based Component Selection Problem

・ロン ・回と ・ヨン ・ヨン

Artificial intelligence-based composition approach

Evolving Components Execution Order (ECEO)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach

Evolving Components Execution Order (ECEO)

APCC algorithm:

 $(((((((((((((((((C_3||C_6) + C_7)||C_1) + C_2)||C_4) + C_9) + C_5) + C_8) + C_{10}) + C_{11}).$

ECEO

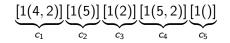
Algorithm	Solutions	Time
APCC	1680	1sec
ECEO	3017	1.3 <i>sec</i>

Table: Experiment: Eleven involved components with ten dependences

・ロン ・部 と ・ ヨ と ・ ヨ と …

Simple Component Selection Problem Multicriteria-based Component Selection Problem

<ロ> <同> <同> <同> < 回> < 同> < 回> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d >


Artificial intelligence-based composition approach (cont.)

Evolutionary Algorithms to analyze Component Composition

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach (cont.)

Evolutionary Algorithms to analyze Component Composition Automata representation $A = (Q, \Sigma, \delta, q_0, F)$, where • $Q = \{C_1, C_3, C_4, C_2, C_5\}$, • $\Sigma = \{...\}, \delta = \{...\},$ • $q_0 = \{C_1\}$ • $F = \{C_5\}$ EA representation

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Artificial intelligence-based composition approach (cont.)

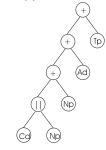
Multi Expression Programming-based approach

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Artificial intelligence-based composition approach (cont.)

Multi Expression Programming-based approach


Representation Terminals: $T = \{c_1, c_2, ..., c_n\}$; Functions: $F = \{+, ||\}$.

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach (cont.)

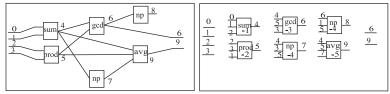
Multi Expression Programming-based approach

1: Np Representation 2: Cd Terminals: $T = \{c_1, c_2, ..., c_n\};$ Functions: $F = \{+, ||\}.$ 3: || 1, 2 Example: Verify if the pair 4: Np (nextPrime(cd(a, b)), 5: +3.4nextPrime(c)) is a pair of twin 6: Ad numbers. 7: +5.6(cd =greatest common 8: Tp divisor). 9:+7.8

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト


Artificial intelligence-based composition approach (cont.)

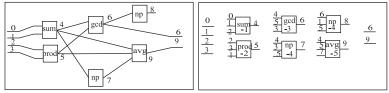
Cartesian Genetic Programming-based approach

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach (cont.)

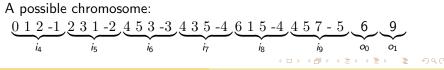
Cartesian Genetic Programming-based approach

a) Component-based system


b) Cartesian Genetic Program

<ロ> <同> <同> <同> < 回> < 同> < 回> < 因> < 因> < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < 因 > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d > < d >

Simple Component Selection Problem Multicriteria-based Component Selection Problem


Artificial intelligence-based composition approach (cont.)

Cartesian Genetic Programming-based approach

a) Component-based system

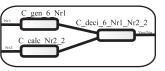
b) Cartesian Genetic Program

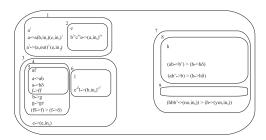
Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

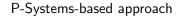
イロト イポト イヨト イヨト

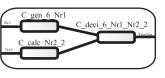

Artificial intelligence-based composition approach (cont.)

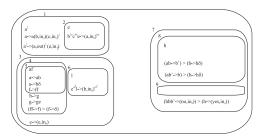

P-Systems-based approach

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach (cont.)


P-Systems-based approach





Simple Component Selection Problem Multicriteria-based Component Selection Problem

Artificial intelligence-based composition approach (cont.)

- Example: Decides if the number $6 * Nr_1$ (with Nr_1 given) is divided by the number Nr_2^2 (with Nr_2 given).
- First model execution $Nr_1 = 5$ and $Nr_2 = 4$.
- Second model execution $Nr_1 = 3$ and $Nr_2 = 3$.

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Multicriteria-based Component Selection Problem

Multicriteria-based Component Selection Problem approaches

Simple Component Selection Problem Multicriteria-based Component Selection Problem

・ロン ・回と ・ヨン ・ヨン

Multicriteria-based Component Selection Problem

Multicriteria-based Component Selection Problem approaches

• Greedy-based composition approach [Vescan, 2008c] (indexed BDI)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロン イロン イヨン イヨン

Multicriteria-based Component Selection Problem

Multicriteria-based Component Selection Problem approaches

- Greedy-based composition approach [Vescan, 2008c] (indexed BDI)
- Branch and Bound-based composition approach [Vescan and Pop, 2008] (indexed MathSciNet)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Multicriteria-based Component Selection Problem

Multicriteria-based Component Selection Problem approaches

- Greedy-based composition approach [Vescan, 2008c] (indexed BDI)
- Branch and Bound-based composition approach [Vescan and Pop, 2008] (indexed MathSciNet)
- Artificial intelligence-based composition approaches
 [Vescan, 2008b] (indexed IEEE), [Vescan, 2008a] (ISI Proceeding),
 [Vescan and Grosan, 2008b] (ISI Proceeding),
 [Vescan and Grosan, 2008a] (indexed IEEE),
 [Vescan et al., 2008] (ISI Proceeding),
 [Vescan, 2008e](indexed ISI-SCI-E)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Multicriteria-based Component Selection Problem

Multicriteria-based Component Selection Problem approaches

- Greedy-based composition approach [Vescan, 2008c] (indexed BDI)
- Branch and Bound-based composition approach [Vescan and Pop, 2008] (indexed MathSciNet)
- Artificial intelligence-based composition approaches
 [Vescan, 2008b] (indexed IEEE), [Vescan, 2008a] (ISI Proceeding),
 [Vescan and Grosan, 2008b] (ISI Proceeding),
 [Vescan and Grosan, 2008a] (indexed IEEE),
 [Vescan et al., 2008] (ISI Proceeding),
 [Vescan, 2008e](indexed ISI-SCI-E)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Greedy-based composition approach

```
Subalgorithm Greedy(SC, SR, Sol) is:

Begin

Sol := 0; RSR := SR;

While (RSR<>0) execute

@Choose c from SC;

Sol := Sol U {c}

RSR := RSR - SR<sub>o</sub>

Endwhile

End;
```

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Greedy-based composition approach

```
Subalgorithm Greedy(SC, SR, Sol) is:

Begin

Sol := 0; RSR := SR;

While (RSR <> 0) execute

@Choose c from SC;

Sol := Sol U {c}

RSR := RSR - SR<sub>c</sub>

Endwhile

End;
```

• Ratio Selection Function

$$\frac{SR_c \bigcap RSR}{cost(c)}$$
 is maximal.

イロト イポト イヨト イヨト

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Greedy-based composition approach

```
Subalgorithm Greedy(SC, SR, Sol) is:

Begin

Sol := 0; RSR := SR;

While (RSR <> 0) execute

@Choose c from SC;

Sol := Sol U {c}

RSR := RSR - SR<sub>c</sub>

Endwhile

End;
```

• Ratio Selection Function

$$\frac{SR_c \bigcap RSR}{cost(c)}$$
 is maximal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Ratio and Dependencies Selection Function

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Greedy-based composition approach

```
Subalgorithm Greedy(SC, SR, Sol) is:

Begin

Sol := 0; RSR := SR;

While (RSR <> 0) execute

@Choose c from SC;

Sol := Sol U {c}

RSR := RSR - SR<sub>c</sub>

Endwhile

End;
```

• Ratio Selection Function

$$\frac{SR_c \bigcap RSR}{cost(c)}$$
 is maximal.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Ratio and Dependencies Selection Function

•
$$\frac{SR_c \cap RSR}{cost(c)}$$
 is maximal;

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Greedy-based composition approach

```
Subalgorithm Greedy(SC, SR, Sol) is:

Begin

Sol := 0; RSR := SR;

While (RSR <> 0) execute

@Choose c from SC;

Sol := Sol U {c}

RSR := RSR - SR<sub>c</sub>

Endwhile

End;
```

• Ratio Selection Function

$$\frac{SR_c \bigcap RSR}{cost(c)}$$
 is maximal.

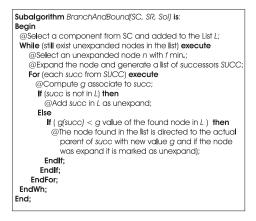
• Ratio and Dependencies Selection Function

• $\frac{SR_c \cap RSR}{cost(c)}$ is maximal;

• the dependencies must be satisfied.

イロト イポト イヨト イヨト

Simple Component Selection Problem Multicriteria-based Component Selection Problem


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Branch and Bound-based composition approach

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Branch and Bound-based composition approach

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Branch and Bound-based composition approach

	Fach node n has an associated
Subalgorithm BranchAndBound(SC, SR, Sol) is: Begin	value:
@Select a component from SC and added to the List L;	
While (still exist unexpanded nodes in the list) execute	
@Select an unexpanded node n with f min.;	
@Expand the node and generate a list of successors SUCC;	
For (each succ from SUCC) execute	
@Compute g associate to succ;	
If (succ is not in L) then	
@Add succ in L as unexpand;	
Else	
If (g(succ) < g value of the found node in L) then	
@The node found in the list is directed to the actual	
parent of <i>succ</i> with new value g and if the node	
was expand it is marked as unexpand);	
Endif;	
Endif;	
EndFor;	
EndWh;	
End;	

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

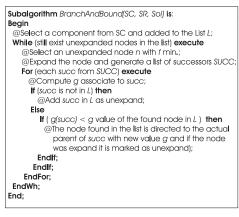
Branch and Bound-based composition approach

	Each n	ode n has an associated
Subalgorithm BranchAndBound(SC, SR, Sol) is:	value	f(n) = g(n) + h(n);
Begin	value.	f(n) = g(n) + n(n),
@Select a component from SC and added to the List L;		
While (still exist unexpanded nodes in the list) execute		
@Select an unexpanded node n with f min.;		
@Expand the node and generate a list of successors SUCC;		
For (each succ from SUCC) execute		
@Compute g associate to succ;		
If (succ is not in L) then		
@Add succ in L as unexpand;		
Else		
If $(g(succ) < g$ value of the found node in L) then		
@The node found in the list is directed to the actual		
parent of succ with new value g and if the node		
was expand it is marked as unexpand);		
Endif;		
Endlf;		
EndFor;		
EndWh;		
End;		
•]	

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Branch and Bound-based composition approach

Subalgorithm BranchAndBound(SC, SR, Sol) is: Begin
@Select a component from SC and added to the List L;
While (still exist unexpanded nodes in the list) execute
@Select an unexpanded node <i>n</i> with <i>f</i> min.;
@Expand the node and generate a list of successors SUCC;
For (each succ from SUCC) execute
@Compute g associate to succ;
If (succ is not in L) then
\widehat{a} Add succ in \widehat{L} as unexpand;
Else
If $(g(succ) < g$ value of the found node in L) then
@The node found in the list is directed to the actual
parent of succ with new value g and if the node
was expand it is marked as unexpand);
Endlf;
Endif;
EndFor;
EndWh;
End;


Each node n has an associated value: f(n) = g(n) + h(n);

 g(n) - the cost of the components that were used until now (from the root node to node n) to construct the solution;

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Branch and Bound-based composition approach

Each node n has an associated value: f(n) = g(n) + h(n);

- g(n) the cost of the components that were used until now (from the root node to node n) to construct the solution;
- h(n) the number of remaind requirements that need to be satisfied (to reach the final solution starting from the current node n).

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

・ロン ・回と ・ヨン ・ヨン

Evolutionary algorithms-based composition approaches

• Requirements-based chromosome representation

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evolutionary algorithms-based composition approaches

• Requirements-based chromosome representation

• Components-based chromosome representation

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Evolutionary algorithms-based composition approaches

• Requirements-based chromosome representation Multiobjective problem: *fCost* and *fNoComp*, and one constraint (requirements dependencies).

• Components-based chromosome representation Multiobjective problem: *fRemReq*, *fCost* and *fNoComp*.

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Evolutionary algorithms-based composition approaches

- Requirements-based chromosome representation Multiobjective problem: *fCost* and *fNoComp*, and one constraint (requirements dependencies).
 - Multiobjective optimization problem using weighted sum method (*EArWS*).

• Components-based chromosome representation Multiobjective problem: *fRemReq*, *fCost* and *fNoComp*.

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Evolutionary algorithms-based composition approaches

- Requirements-based chromosome representation Multiobjective problem: *fCost* and *fNoComp*, and one constraint (requirements dependencies).
 - Multiobjective optimization problem using weighted sum method (*EArWS*).
 - Multiobjective optimization problem using Pareto dominance principle (*EArP*).
- Components-based chromosome representation Multiobjective problem: *fRemReq*, *fCost* and *fNoComp*.
 - Multiobjective optimization problem using Pareto dominance principle (*EAcP*).

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Evolutionary algorithms-based composition approaches

- Requirements-based chromosome representation Multiobjective problem: *fCost* and *fNoComp*, and one constraint (requirements dependencies).
 - Multiobjective optimization problem using weighted sum method (*EArWS*).
 - Multiobjective optimization problem using Pareto dominance principle (*EArP*).
- Components-based chromosome representation Multiobjective problem: *fRemReq*, *fCost* and *fNoComp*.
 - Multiobjective optimization problem using Pareto dominance principle (*EAcP*).

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evolutionary algorithms-based composition approaches (cont.)

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Evolutionary algorithms-based composition approaches (cont.)

 $SR = \{r_0, r_1, r_2, r_3, r_4, r_5\} \text{ and } SC = \{c_0, c_1, c_2, c_3, c_4, c_5, c_6, c_7, c_8, c_9\}.$

<i>c</i> ₀	$\{r_0, r_3\}$	8
<i>c</i> ₁	$\{r_2, r_5\}$	7
<i>c</i> ₂	$\{r_0\}$	6
<i>C</i> 3	$\{r_0\}$	9
<i>C</i> 4	$\{r_1\}$	6
<i>C</i> 5	$\{r_2, r_4\}$	14
<i>c</i> ₆	$\{r_3, r_4, r_5\}$	15
<i>C</i> ₇	$\{r_4, r_5\}$	14
<i>C</i> 8	$\{r_1, r_2\}$	7
<i>C</i> 9	$\{r_0, r_4, r_5\}$	14

Dep.	<i>r</i> ₀	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₃	r ₄	<i>r</i> ₅
<i>r</i> ₀						
<i>r</i> ₁						
<i>r</i> ₂						
<i>r</i> ₃						
r ₄						
<i>r</i> ₅						

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

 < □ > < □ > < □ > < ≡ > < ≡ > < ≡ >

 Construction Approaches for Component-Based Systems

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Evolutionary algorithms-based composition approaches (cont.)

Approach	<i>r</i> ₁	<i>r</i> ₀	<i>r</i> ₄	<i>r</i> ₂	<i>r</i> ₃	<i>r</i> 5	cost	no
GreedyR	8	0	1	8	0	7	36	4
GreedyRd	4	0	9	8	0	9	35	4
BB	8	2	6	8	6	6	28	3
BBd	4	2	6	1	6	6	34	4
EArWS	8	2	6	8	6	6	28	3

Table: GreedyR, GreedyRd, BB, BBd and EArWS Solutions

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Simple Component Selection Problem Multicriteria-based Component Selection Problem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Evolutionary algorithms-based composition approach (cont.)

• EArP and EAcP

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Evolutionary algorithms-based composition approach (cont.)

- EArP and EAcP
- Dominance measure

DM(A, B) =

 $\frac{\text{Dominates (A, B)}}{\text{DifSol(A)} + \text{DifSol(B)}}$

Simple Component Selection Problem Multicriteria-based Component Selection Problem

イロト イポト イヨト イヨト

Evolutionary algorithms-based composition approach (cont.)

- EArP and EAcP
- Dominance measure

DM(A, B) =

 $\frac{\text{Dominates (A, B)}}{\text{DifSol(A)} + \text{DifSol(B)}}$

Simple Component Selection Problem Multicriteria-based Component Selection Problem

Evolutionary algorithms-based composition approach (cont.)

- EArP and EAcP
- Dominance measure

DM(A, B) =

 $\frac{\text{Dominates (A, B)}}{\text{DifSol(A)} + \text{DifSol(B)}}$

Approach	No of nondom.	DM		
10 individuals – 10 generations				
EArP	56	0.5		
EAcP	34	0		
10 individuals – 20 generations				
EArP	83	0.5		
EAcP	72	0		
10 individuals – 50 generations				
EArP	165	0.5		
EAcP	52	0		

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Construction Approaches for Component-Based Systems

Adaptation architectures

Partial system construction. Component Adaptation

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Adaptation architectures

Partial system construction. Component Adaptation

 Component function adaptation architectures [Vescan, 2008d] (ISI Proceeding)

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Adaptation architectures

Component function adaptation architectures

• Adaptation architectures:

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Adaptation architectures

Component function adaptation architectures

- Adaptation architectures:
 - Serial (or sequential) adaptation architecture (SAA);

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Adaptation architectures

Component function adaptation architectures

- Adaptation architectures:
 - Serial (or sequential) adaptation architecture (SAA);
 - Parallel adaptation architecture (PAA);

Adaptation architectures

Component function adaptation architectures

- Adaptation architectures:
 - Serial (or sequential) adaptation architecture (SAA);
 - Parallel adaptation architecture (PAA);
 - Alternative adaptation architecture (AAA);

Adaptation architectures

Component function adaptation architectures

- Adaptation architectures:
 - Serial (or sequential) adaptation architecture (SAA);
 - Parallel adaptation architecture (PAA);
 - Alternative adaptation architecture (AAA);
 - Repetitive adaptation architecture (RAA).

Adaptation architectures

Component function adaptation architectures

- Adaptation architectures:
 - Serial (or sequential) adaptation architecture (SAA);
 - Parallel adaptation architecture (PAA);
 - Alternative adaptation architecture (AAA);
 - Repetitive adaptation architecture (RAA).
- The behavior adaptation constraints are given for each architecture.

・ロン ・回と ・ヨン ・ヨン

Adaptation architectures

Component function adaptation architectures

- Adaptation architectures:
 - Serial (or sequential) adaptation architecture (SAA);
 - Parallel adaptation architecture (PAA);
 - Alternative adaptation architecture (AAA);
 - Repetitive adaptation architecture (RAA).
- The behavior adaptation constraints are given for each architecture.
- The construction of the new composed component from the two (one for RAA) selected components is described.

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Metrics in Component-Based Software Engineering

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

・ロン ・回と ・ヨン ・ヨン

Metrics in Component-Based Software Engineering

 Software metrics to quantify quality attributes of CBD [Serban and Vescan, 2007a] (indexed BDI)

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

・ロン ・回と ・ヨン ・ヨン

Metrics in Component-Based Software Engineering

- Software metrics to quantify quality attributes of CBD [Serban and Vescan, 2007a] (indexed BDI)
- Metrics-based selection of a component assembly [Serban and Vescan, 2007b] (indexed BDI)

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

イロト イポト イヨト イヨト

Software metrics to quantify quality attributes of CBD

• Assembly $DR = (C, D), D \subseteq C \times C.$

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

イロト イポト イヨト イヨト

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.

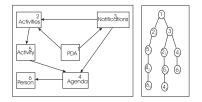


Figure: Personal Digital Assistant components and dependencies and the associated DT

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.
- Adapted metrics

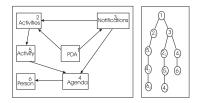


Figure: Personal Digital Assistant components and dependencies and the associated DT

< □ > < □ > < □ > < ≡ > < ≡ > ≡ <</p>
Construction Approaches for Component-Based Systems

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.
- Adapted metrics
 - c_1 is coupled with c_2 if $(c_1, c_2) \in D$.

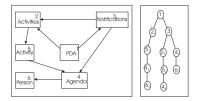


Figure: Personal Digital Assistant components and dependencies and the associated DT

< □ > < □ > < □ > < ≡ > < ≡ > ≡ <</p>
Construction Approaches for Component-Based Systems

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.
- Adapted metrics
 - c_1 is coupled with c_2 if $(c_1, c_2) \in D$.
 - Coupling Between Components (CBC(c))

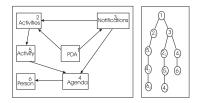


Figure: Personal Digital Assistant components and dependencies and the associated DT

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.
- Adapted metrics
 - c_1 is coupled with c_2 if $(c_1, c_2) \in D$.
 - Coupling Between Components (CBC(c))
- Defined metrics

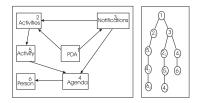


Figure: Personal Digital Assistant components and dependencies and the associated DT

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.
- Adapted metrics
 - c_1 is coupled with c_2 if $(c_1, c_2) \in D$.
 - Coupling Between Components (CBC(c))
- Defined metrics
 - Depth Dependency Tree (DDT(c));

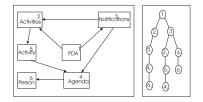


Figure: Personal Digital Assistant components and dependencies and the associated DT

Construction Approaches for Component-Based Systems

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Software metrics to quantify quality attributes of CBD

- Assembly $DR = (C, D), D \subseteq C \times C.$
- A dependency $d = (c_1, c_2) \in D$.
- Adapted metrics
 - c_1 is coupled with c_2 if $(c_1, c_2) \in D$.
 - Coupling Between Components (CBC(c))
- Defined metrics
 - Depth Dependency Tree (DDT(c));
 - Breadth Dependency Tree (BDT).

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

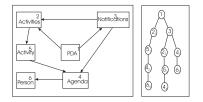


Figure: Personal Digital Assistant components and dependencies and the associated DT

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Metrics-based selection of a component assembly

• The influence of metrics values on quality attributes

	Reusability	Functionality	Understandability	Maintainability	Testability
PSU	m/+	m/-	m/+	m/+	m/+
RSU	m/+	-	m/+	m/+	m/+
CPSU	m/+	m/-	m/+	m/+	m/+
CRSU	m/+	-	m/+	m/+	m/+
IDC	m/+	m/-	m/+	m/+	m/+
IIDC	m/+	-	m/+	m/+	m/+
OIDC	m/+	m/-	m/+	m/+	m/+
AIDC	m/+	-	m/+	m/+	m/+
CCG	M/-	M/+	M/-	M/-	M/-
CCTG	M/-	M/+	M/-	M/-	M/-

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

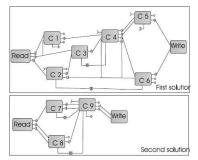
Metrics-based selection of a component assembly

- The influence of metrics values on quality attributes
- Component Coupling Grade;

	Reusability	Functionality	Understandability	Maintainability	Testability
PSU	m/+	m/-	m/+	m/+	m/+
RSU	m/+	-	m/+	m/+	m/+
CPSU	m/+	m/-	m/+	m/+	m/+
CRSU	m/+	-	m/+	m/+	m/+
IDC	m/+	m/-	m/+	m/+	m/+
IIDC	m/+	-	m/+	m/+	m/+
OIDC	m/+	m/-	m/+	m/+	m/+
AIDC	m/+	-	m/+	m/+	m/+
CCG	M/-	M/+	M/-	M/-	M/-
CCTG	M/-	M/+	M/-	M/-	M/-

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Metrics-based selection of a component assembly


- The influence of metrics values on quality attributes
- Component Coupling Grade;
- Component Coupling Total Grade.

	Reusability	Functionality	Understandability	Maintainability	Testability
PSU	m/+	m/-	m/+	m/+	m/+
RSU	m/+	-	m/+	m/+	m/+
CPSU	m/+	m/-	m/+	m/+	m/+
CRSU	m/+	-	m/+	m/+	m/+
IDC	m/+	m/-	m/+	m/+	m/+
IIDC	m/+	-	m/+	m/+	m/+
OIDC	m/+	m/-	m/+	m/+	m/+
AIDC	m/+	-	m/+	m/+	m/+
CCG	M/-	M/+	M/-	M/-	M/-
CCTG	M/-	M/+	M/-	M/-	M/-

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Metrics-based selection of a component assembly

- The influence of metrics values on quality attributes
- Component Coupling Grade;
- Component Coupling Total Grade.

<ロ> (日) (日) (日) (日) (日)

Software metrics to quantify quality attributes of CBD Metrics-based selection of a component assembly

Metrics-based selection of a component assembly

- The influence of metrics values on quality attributes
- Component Coupling Grade;
- Component Coupling Total Grade.

	PSU	RSU	IDC	IIDC	OIDC	CCTG	CPSU	CRSU	AIDC
C_1	0.33	1	0.5	1	0.25	2	0.68	0.82	0.77
C_2	0.66	0.50	0.66	0.5	0.75	1			
C_3	1	1	1	1	1	2	1		
C_4	1	0.75	0.88	0.80	1	3	First s	olutio	n
C_5	0.50	0.66	0.50	0.50	0.50	2	1 11 31 3	oluno	11
C_6	0.33	1	0.71	1	0.33	3	1		
C_R	1	-	1	-	1	-]		
C_W	-	1	1	1	-	2]		

- 4 同 2 4 日 2 4 日 2

	PSU	RSU	IDC	IIDC	OIDC	CCTG
C_7	1	1	1	1	1	1
C_8	0.50	1	0.80	1	0.66	2
C_9	0.66	0.75	0.70	0.83	0.50	3
C_R	1	-	1	-	1	-
C_W	-	1	1	1	-	2

 CPSU
 CRSU
 AIDC

 0.80
 0.88
 0.90

Second solution

Execution model

Operations and execution rules

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

・ロン ・部 と ・ ヨン ・ ヨン

Execution model

Operations and execution rules

イロト イヨト イヨト イヨト

3

• Execution model [Fanea, 2005]

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Execution model

- Execution model [Fanea, 2005]
- Improved execution rules [Vescan, 2007a] (indexed BDI)

cs Operations and execution rules

Operations and execution rules

・ロン ・部 と ・ ヨ と ・ ヨ と …

3

Execution model

A connection

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Execution model

- A connection
- Operations

Operations and execution rules

・ロト ・回ト ・ヨト ・ヨト

Operations and execution rules

Execution model

- A connection
- Operations
 - propagation;
 - evaluation.

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

イロン イロン イヨン イヨン

Execution model

- A connection
- Operations
 - propagation;
 - evaluation.
- State of execution:

State =

(operation, componentForEval).

Operations and execution rules

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Execution model

- A connection
- Operations
 - propagation;
 - evaluation.
- State of execution:

State =

(operation, componentForEval).

Execution rules

Operations and execution rules

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Execution model

- A connection
- Operations
 - propagation;
 - evaluation.
- State of execution:
 - State =

(operation, componentForEval).

- Execution rules
 - Alternative rule;
 - Repetitive rule.

Operations and execution rules

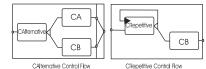


Figure: Alternative and Repetitive rules

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Applications

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

< ロ > < 回 > < 回 > < 回 > < 回 >

Applications

Traveling Salesman Problem [Fanea and Pintea, 2005] (indexed BDI), [Vescan and Pintea, 2006a] (indexed IEEE), [Vescan and Pintea, 2006b] (indexed IEEE), [Vescan and Pintea, 2007]

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Applications

- Traveling Salesman Problem [Fanea and Pintea, 2005] (indexed BDI), [Vescan and Pintea, 2006a] (indexed IEEE), [Vescan and Pintea, 2006b] (indexed IEEE), [Vescan and Pintea, 2007]
- Labyrinth Problem [Pintea and Vescan, 2007a] (indexed BDI)

イロト イポト イヨト

Applications

- Traveling Salesman Problem [Fanea and Pintea, 2005] (indexed BDI), [Vescan and Pintea, 2006a] (indexed IEEE), [Vescan and Pintea, 2006b] (indexed IEEE), [Vescan and Pintea, 2007]
- Labyrinth Problem [Pintea and Vescan, 2007a] (indexed BDI)
- Airport Gate Assignment Problem [Pintea and Vescan, 2007b] (indexed BDI)

Traveling Salesman Problem (TSP)

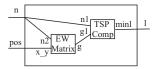


Figure: The inside structure of the TSP component-based system

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Traveling Salesman Problem (TSP)

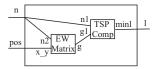


Figure: The inside structure of the TSP component-based system

• Sequential and recursive backtracking approaches

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

<ロ> <同> <同> < 同> < 同><</p>

Traveling Salesman Problem (TSP)

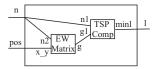


Figure: The inside structure of the TSP component-based system

- Sequential and recursive backtracking approaches
- Component Ant System-based approach

<ロ> <同> <同> < 同> < 同><</p>

Traveling Salesman Problem (TSP)

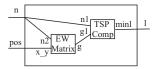
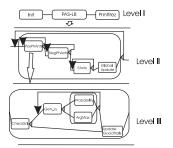



Figure: The inside structure of the TSP component-based system

- Sequential and recursive backtracking approaches
- Component Ant System-based approach
- Component Ant Colony-based approach

Labyrinth Problem (LP)

Component Ant Colony-based approach

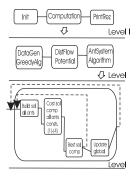


Figure: Architectural levels

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Airport Gate Assignment Problem (AGAP)

Component Ant Colony-based approach

Figure: Architectural levels

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

(Outline Setting the context Complete system construction Partial system construction Metrics Execution model Applications Conclusions and Future work Questions	Future work	
Conclusions			

・ロン ・部 と ・ ヨン ・ ヨン

æ

	Outline Setting the context Complete system construction Partial system construction Metrics Execution model Applications Conclusions and Future work Questions	Future work
Conclusions		

・ロト ・回ト ・ヨト ・ヨト

• Simple Component Selection Problem

• Multicriteria Component Selection Problem

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

Outline Setting the context Complete system construction Partial system construction Metrics Execution model Applications Conclusions and Future work Questions	Future work
onclusions	

伺 と く ヨ と く ヨ と

- Simple Component Selection Problem
 - Backtracking-based composition approaches
 - Automata-based composition approaches
 - Artificial intelligence-based composition approaches
- Multicriteria Component Selection Problem

Out Setting the conte Complete system construct Partial system construct Met Execution mo Applicatic Conclusions and Future w Questi	t on cs Future work el s rk
anclusions	

- Simple Component Selection Problem
 - Backtracking-based composition approaches
 - Automata-based composition approaches
 - Artificial intelligence-based composition approaches
- Multicriteria Component Selection Problem
 - Greedy-based composition approach
 - Branch and Bound-based composition approach
 - Artificial intelligence-based composition approaches

	Outline Setting the context Complete system construction Partial system construction Metrics Execution model Applications Conclusions and Future work Questions	Future work
Conclusions		

- Simple Component Selection Problem
 - Backtracking-based composition approaches
 - Automata-based composition approaches
 - Artificial intelligence-based composition approaches
- Multicriteria Component Selection Problem
 - Greedy-based composition approach
 - Branch and Bound-based composition approach
 - Artificial intelligence-based composition approaches

Partial system construction -

	Outline Setting the context omplete system construction Partial system construction Execution model Applications Conclusions and Future work Questions	Future work
Conclusions		

- Simple Component Selection Problem
 - Backtracking-based composition approaches
 - Automata-based composition approaches
 - Artificial intelligence-based composition approaches
- Multicriteria Component Selection Problem
 - Greedy-based composition approach
 - Branch and Bound-based composition approach
 - Artificial intelligence-based composition approaches

Partial system construction - Component adaptation architectures

Complete s Partial s	Outline etting the context ystem construction ystem construction Metrics Execution model Applications is and Future work Questions	Future work
Conclusions		

- Simple Component Selection Problem
 - Backtracking-based composition approaches
 - Automata-based composition approaches
 - Artificial intelligence-based composition approaches
- Multicriteria Component Selection Problem
 - Greedy-based composition approach
 - Branch and Bound-based composition approach
 - Artificial intelligence-based composition approaches

Partial system construction - Component adaptation architectures Metrics in Component-Based Software Engineering

Setting the con Complete system construc Partial system construc	tion tion trics odel ons vork	Future work
Conclusions		

- Simple Component Selection Problem
 - Backtracking-based composition approaches
 - Automata-based composition approaches
 - Artificial intelligence-based composition approaches
- Multicriteria Component Selection Problem
 - Greedy-based composition approach
 - Branch and Bound-based composition approach
 - Artificial intelligence-based composition approaches

Partial system construction - Component adaptation architectures Metrics in Component-Based Software Engineering Execution model and Applications - TSP, LP,AGAP

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Outline Setting the Outline Complete system construction Partial system construction Metrics Execution model Applications Conclusions and Future work Questions	Future work
- uture work	

Further work can be done in the following directions:

- checking if the constructed component configuration supports a given sequence of tasks;
- checking the behavior of components after syntactic composition;
- how can we use AI methods to analyze the behavior of a component-based system or to predict the behavior;
- the use of metrics for the Multicriteria Component Selection Problem.

Questions

• Thank You For Your Attention!

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu Construction Approaches for Component-Based Systems

< ロ > < 回 > < 回 > < 回 > < 回 >

3

Fanea, A. (2005).

In: Proceedings of the Cluj Computer Science Academic Colloquium pp. 87–92,.

- Fanea, A. and Diosan, L. (2005a). Studia Universitas Babes-Bolyai, Seria Informatica L (2), 23–32.
- Fanea, A. and Diosan, L. (2005b).

In: Proceedings of the Cluj Computer Science Academic Colloquium pp. 93–98,.

 Fanea, A. and Diosan, L. (2006a).
 In: Proceeding of the International Conference on Computers, Communications and Control, ISSN: 1841-9836 (indexed ISI-SCI-E) pp. 474–479,.

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Fanea, A. and Diosan, L. (2006b).

In: Proceeding of the International Conference on Computers, Communications and Control, ISSN: 1841-9836 (indexed ISI-SCI-E) pp. 480–485,.

Fanea, A. and Diosan, L. (2006c).

The International Journal of Information Technology and Intelligent Computing, ISSN: 1895-8648 1 (3), 499–508.

- Fanea, A. and Motogna, S. (2004).
 In: Proceedings of the Cluj Academic Days National Symposium pp. 160–167,.

Fanea, A., Motogna, S., and Diosan, L. (2006).

Studia Universitas Babes-Bolyai, Seria Informatica LI (1), 13–20.

- Fanea, A. and Pintea, C. M. (2005). Annals of Oradea University, Fascicola Matematica XII (0), 91–100.
- Fox, M. R., Brogan, D. C., and Paul F. Reynolds, J. (2004).
 In: WSC '04: Proceedings of the 36th conference on Winter simulation pp. 429–434, Winter Simulation Conference.
- Haghpanah, N., Moaven, S., Habibi, J., Kargar, M., and Yeganeh, S. H. (2007).
 In: APSEC pp. 159–166, IEEE Computer Society.
- Motogna, S. and Parv, B. (2002).

Bul. Stiint. Univ. Baia Mare, Seria B, Matematica-Informatica XVIII, 269–274.

- Parv, B., Motogna, S., and Petrascu, D. (2004).
 In: Proceedings of the International Conference on Computers and Communications pp. 325–329,.
- Pintea, C.-M. and Vescan, A. (2007a).

In: Proceedings of International Conference on Fundamental Science, ICFS 2007, Applied mathematics and computer science section, ISBN: 978-973-759-367-2 pp. 82–86,.

- Pintea, C.-M. and Vescan, A. (2007b).
 Studia Universitas Babes-Bolyai, Seria Informatica e LII (1), 21–32.
 - Serban, C. and Vescan, A. (2007a).

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Creative Mathematics and Informatics, ISSN: 1843-441X 16, 143–150.

Serban, C. and Vescan, A. (2007b).

Special Issue of Studia Universitatis Babes-Bolyai Informatica: Proceeding of The International Conference on Knowledge Engineering: Principles and Techniques, ISSN: 1224-869X , 324–331.

Vescan, A. (2006).

In: The 8th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, ISBN:978-0-7695-2740-6 (ISI Proceeding) pp. 195–200,.

🔋 Vescan, A. (2007a).

In: Proceeding of the Second Annual International Conference of Students, Post-graduates and Young Scientists, Computer Science and Engineering - 2007, ISBN: 978-966-553-649-9 pp. 20–24,.

Vescan, A. (2007b).

In: Proceeding of the 3rd Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, ISBN: 978-80-7355-077-6 pp. 249–256,.

Vescan, A. (2008a).

In: Proceedings of the 2nd UKSim European Symposium on Computer Modeling and Simulation, ISBN: 978-0-7695-3325-4 (indexed IEEE) pp. 58–63,.

Vescan, A. (2008b).

In: Proceedings of the First IEEE International Conference on the Applications of Digital Information and Web Technologies, ISBN: 978-1-444-264-9 (indexed IEEE) pp. 252–257,.

Vescan, A. (2008c).

In: Proceedings of the 6th ICAM - International Conference on Applied Mathematics p. (accepted),.

Vescan, A. (2008d).

In: The 12th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, ISBN: 978-3-540-85566-8 (ISI Proceeding) pp. 319–326,.

Vescan, A. (2008e).

Neural Network world, ISSN: 1210-0552 (indexed ISI-SCI-E) , (accepted).

Andreea Vescan Supervisor: Prof. Dr. Militon Frențiu

Vescan, A. and Grosan, C. (2008a).

In: Proceedings of the Fourth International Workshop on Evolutionary Multiobjective Optimization - Design and Applications (indexed IEEE) p. (accepted),.

Vescan, A. and Grosan, C. (2008b).

In: Proceedings of the 3rd International Workshop on Hybrid Artificial Intelligence Systems, ISBN: 978-3-540-87655-7 (ISI Proceeding) pp. 164–171,.

Vescan, A., Grosan, C., and Pop, H. F. (2008).

In: Proceedings of the 2nd International Workshop on Evolutionary Techniques in Data Processing, ISBN: 1529-4188 (indexed IEEE) pp. 509–513,.

- Vescan, A. and Motogna, S. (2006a).
 In: The 32nd EUROMICRO Software Engineering and Advanced Applications (SEAA), Proceeding of the Work in Progress session, ISBN: 3-902457-11-2 pp. 13–14,.
- Vescan, A. and Motogna, S. (2006b).
 Pure Mathematics and Applications (PUMA) 17 (3-4), 527–537.
- Vescan, A. and Pintea, C.-M. (2006a).
 In: Proceeding of The 6th International Conference Communication, ISBN: 978-973-718-479-5 (indexed IEEE) pp. 253–256,.
- Vescan, A. and Pintea, C.-M. (2006b).

In: Proceeding of the 2nd International Conference on Intelligence Computer Communication and Processing, ISBN: 973-662-235-5 (indexed IEEE) pp. 23–28,.

Vescan, A. and Pintea, C.-M. (2007).

Journal of Applied Mathematical Science, ISSN: 1312–885X 1 (25–28), 1347–1357.

Vescan, A. and Pop, H. F. (2008).

In: Proceedings of the Work In Progress Session of the 3rd IFIP TC2 Central and East European Conference on Software Engineering Techniques p. (accepted),.